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1 Introduction

1.1 Historical background

Interior-point methods (IPMs) are among the most efficient methods for solv-
ing linear, and also wide classes of other convex optimization problems. Since
the path-breaking work of Karmarkar [48], much research was invested in
IPMs. Many algorithmic variants were developed for Linear Optimization
(LO). The new approach forced to reconsider all aspects of optimization
problems. Not only the research on algorithms and complexity issues, but
implementation strategies, duality theory and research on sensitivity analy-
sis got also a new impulse. After more than a decade of turbulent research,
the IPM community reached a good understanding of the basics of IPMs.
Several books were published that summarize and explore different aspects
of IPMs. The seminal work of Nesterov and Nemirovski [63] provides the
most general framework for polynomial IPMs for convex optimization. Den
Hertog [42] gives a thorough survey of primal and dual path-following IPMs
for linear and structured convex optimization problems. Jansen [45] discusses
primal-dual target following algorithms for linear optimization and comple-
mentarity problems. Wright [93] also concentrates on primal-dual IPMs, with
special attention on infeasible IPMs, numerical issues and local, asymptotic
convergence properties. The volume [80] contains 13 survey papers that cover
almost all aspects of IPMs, their extensions and some applications. The book
of Ye [96] is a rich source of polynomial IPMs not only for LO, but for convex
optimization problems as well. It extends the IPM theory to derive bounds
and approximations for classes of nonconvex optimization problems as well.
Finally, Roos, Terlaky and Vial [72] present a thorough treatment of the IPM
based theory – duality, complexity, sensitivity analysis – and wide classes of
IPMs for LO.
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Before going in a detailed discussion of our approach, some remarks are
made on implementations of IPMs and on extensions and generalizations.

IPMs have also been implemented with great success for linear, conic and
general nonlinear optimization. It is now a common sense that for large-scale,
sparse, structured LO problems, IPMs are the method of choice and by today
all leading commercial optimization software systems contain implementations
of IPMs. The reader can find thorough discussions of implementation strate-
gies in the following papers: [5, 53, 55, 94]. The books [72, 93, 96] also devote
a chapter to that subject.

Some of the earlier mentioned books [42, 45, 63, 80, 96] discuss exten-
sions of IPMs for classes of nonlinear problems. In recent years the major-
ity of research is devoted to IPMs for nonlinear optimization, specifically
for second order (SOCO) and semidefinite optimization (SDO). SDO has
a wide range of interesting applications not only in such traditional areas
as combinatorial optimization [1], but also in control, and different areas of
engineering, more specifically structural [17] and electrical engineering [88].
For surveys on algorithmic and complexity issues the reader may consult
[16, 18, 19, 20, 63, 64, 69, 75].

In the following sections we will build up the theory gradually, starting
with linear optimization and generalizing through conic optimization to non-
linear optimization. We will demonstrate that the main idea behind the al-
gorithms is similar but the details and most importantly the analysis of the
algorithms are slightly different.

1.2 Notation and Preliminaries

After years of intensive research a deep understanding of IPMs is developed.
There are easy to understand, simple variants of polynomial IPMs. The self-
dual embedding strategy [47, 72, 97] provides an elegant solution for the
initialization problem of IPMs. It is also possible to build up not only the
complete duality theory of [72] of LO, but to perform sensitivity analysis
[45, 46, 58, 72] on the basis of IPMs. We also demonstrate that IPMs not
only converge to an optimal solution (if it exists), but after a finite number
of iterations also allow a strongly polynomial rounding procedure [56, 72] to
generate exact solutions. This all requires only the knowledge of elementary
calculus and can be taught not only at a graduate, but at an advanced un-
dergraduate level as well. Our aim is to present such an approach, based on
the one presented in [72].

This chapter is structured as follows. First, in §2.1 we briefly review the
general LO problem in canonical form and discuss how Goldman and Tucker’s
[32, 85] self-dual and homogeneous model is derived. In §2.2 the Goldman-
Tucker theorem, i.e., the existence of a strictly complementary solution for the
skew-symmetric self-dual model will be proved. Here such basic IPM objects,
as the interior solution, the central path, the Newton step, the analytic center
of polytopes will be introduced. We will show that the central path converges
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to a strictly complementary solution, and that an exact strictly complemen-
tary solution for LO, or a certificate for infeasibility can be obtained after
a finite number of iterations. Our theoretical development is summarized in
§2.3. Finally, in §2.4 a general scheme of IPM algorithms is presented. This is
the scheme that we refer back to in later sections. In §3 we extend the theory
to conic (second order and semidefinite) optimization, discuss some applica-
tions and present a variant of the algorithm. Convex nonlinear optimization
is discussed in §4 and a suitable interior point method is presented. Available
software implementations are discussed in §5. Some current research directions
and open problems are discussed in §6.

Notation

Rn+ denotes the set of nonnegative vectors in Rn. Throughout, we use ‖·‖p (p ∈
{1, 2,∞}) to denote the p-norm on Rn, with ‖·‖ denoting the Euclidean norm
‖·‖2. I denotes the identity matrix, e is used to denote the vector which has
all its components equal to one. Given an n-dimensional vector x, we denote
by X the n × n diagonal matrix whose diagonal entries are the coordinates
xj of x. If x, s ∈ Rn then xT s denotes the dot product of the two vectors.
Further, xs, xα for α ∈ R and max{x, y} denotes the vectors resulting from
coordinatewise operations. For any matrix A ∈ Rm×n, Aj denotes the jth

column of A. Furthermore,

π(A) :=

n∏
j=1

‖Aj‖. (1)

For any index set J ⊆ {1, 2, . . . , n}, |J | denotes the cardinality of J and
AJ ∈ Rm×|J| the submatrix of A whose columns are indexed by the elements
in J . Moreover, if K ⊆ {1, 2, . . . ,m}, AKJ ∈ R|K|×|J| is the submatrix of AJ
whose rows are indexed by the elements in K.

Vectors are assumed to be column vectors. The (vertical) concatenation
of two vectors (or matrices of appropriate size) u and v is denoted by (u; v),
while the horizontal concatenation is (u, v).

2 Interior Point Methods for Linear Optimization

This section is based on [81]. Here we build the theory of interior point meth-
ods for linear optimization including almost all the proofs. In later sections
we refer back to these results.

2.1 The Linear Optimization Problem

We consider the general LO problem (P ) and its dual (D) in canonical form:
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min
{
cTu : Au ≥ b, u ≥ 0

}
(P)

max
{
bT v : AT v ≤ c, v ≥ 0

}
, (D)

where A is an m × k matrix, b, v ∈ Rm and c, u ∈ Rk. It is well known that
by using only elementary transformations, any given LO problem can easily
be transformed into a “minimal” canonical form. These transformations can
be summarized as follows:

• introduce slacks in order to get equations (if a variable has a lower and
an upper bound, then one of these bounds is considered as an inequality
constraint);

• shift the variables with lower or upper bound so that the respective bound
becomes 0 and, if needed replace the variable by its negative;

• eliminate free variables;3

• use Gaussian elimination to transform the problem into a form where all
equations have a singleton column (i.e., choose a basis and multiply the
equations by the inverse basis) while dependent constraints are eliminated.

The weak duality theorem for the canonical LO problem is easily proved.

Theorem 1 (Weak duality for linear optimization). Let us assume that
u ∈ Rk and v ∈ Rm are feasible solutions for the primal problem (P ) and dual
problem (D), respectively. Then one has

cTu ≥ bT v

where equality holds if and only if

(i) ui(c−AT v)i = 0 for all i = 1, . . . , k and
(ii) vj(Au− b)j = 0 for all j = 1, . . . ,m.4

3 Free variables can easily be eliminated one-by-one. If we assume that x1 is a free
variable and has a nonzero coefficient in a constraint, e.g., we have

n∑
i=1

αixi = β

with α1 6= 0, then we can express x1 as

x1 =
β

α1
−

n−1∑
i=1

αi

α1
xi. (2)

Because x1 has no lower or upper bounds, this expression for x1 can be substituted
into all the other constraints and in the objective function.

4 These conditions are in general referred to as the complementarity conditions.
Using the coordinatewise notation we may write u(c−AT v) = 0 and v(Au−b) = 0.
By the weak duality theorem complementarity and feasibility imply optimality.
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Proof. Using primal and dual feasibility of u and v we may write

(c−AT v)Tu ≥ 0 and vT (Au− b) ≥ 0

with equality if and only if (i), respectively (ii) holds. Summing up these two
inequalities we have the desired inequality

0 ≤ (c−AT v)Tu+ vT (Au− b) = cTu− bT v.

The theorem is proved. ut
One easily derives the following sufficient condition for optimality.

Corollary 1. Let a primal and dual feasible solution u ∈ Rk and v ∈ Rm with
cTu = bT v be given. Then u is an optimal solution of the primal problem (P )
and v is an optimal solution of the dual problem (D). ut

The Weak Duality Theorem provides a sufficient condition to check optimality
of a feasible solution pair. However, it does not guarantee that, in case of
feasibility, an optimal pair with zero duality gap always exists. This is the
content of the so-called Strong Duality Theorem that we are going to prove in
the next sections by using only simple calculus and basic concepts of IPMs.

As we are looking for optimal solutions of the LO problem with zero du-
ality gap, we need to find a solution of the system formed by the primal and
the dual feasibility constraints and by requiring that the dual objective is at
least as large as the primal one. By the Weak Duality Theorem (Thm. 1) we
know that any solution of this system is both primal and dual feasible with
equal objective values. Thus, by Corollary 1, they are optimal. By introducing
appropriate slack variables the following inequality system is derived.

Au− z = b, u ≥ 0, z ≥ 0
AT v + w = c, v ≥ 0, w ≥ 0

bT v − cTu− ρ = 0, ρ ≥ 0.
(3)

By homogenizing, the Goldman-Tucker model [32, 85] is obtained.

Au −τb −z = 0, u ≥ 0, z ≥ 0
−AT v +τc −w = 0, v ≥ 0, w ≥ 0
bT v −cTu −ρ = 0, τ ≥ 0, ρ ≥ 0.

(4)

One easily verifies that if (v, u, τ, z, w, ρ) is a solution of the Goldman-
Tucker system (4), then τρ > 0 cannot hold. Indeed, if τρ were positive then
the we would have

0 < τρ = τbT v − τcTu = uTAT v − zT v − vTAu− wTu = −zT v − wTu ≤ 0

yielding a contradiction.
The homogeneous Goldman-Tucker system admits the trivial zero solution,

but that has no value for our discussions. We are looking for some specific
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nontrivial solutions of this system. Clearly any solution with τ > 0 gives a
primal and dual optimal pair (uτ ,

v
τ ) with zero duality gap because ρ must be

zero if τ > 0. On the other hand, any optimal pair (u, v) with zero duality
gap is a solution of the Goldman-Tucker system with τ = 1 and ρ = 0.

Finally, if the Goldman-Tucker system admits a nontrivial feasible solution
(v̄, ū, τ̄ , z̄, w̄, ρ̄) with τ̄ = 0 and ρ̄ > 0, then we may conclude that either (P ),
or (D), or both of them are infeasible. Indeed, τ̄ = 0 implies that Aū ≥ 0 and
AT v̄ ≤ 0. Further, if ρ̄ > 0 then we have either bT v̄ > 0, or cT ū < 0, or both.
If bT v̄ > 0, then by assuming that there is a feasible solution u ≥ 0 for (P )
we have

0 < bT v̄ ≤ uTAT v̄ ≤ 0

which is a contradiction, thus if bT v̄ > 0, then (P ) must be infeasible. Simi-
larly, if cT ū < 0, then by assuming that there is a dual feasible solution v ≥ 0
for (D) we have

0 > cT ū ≥ vTAū ≥ 0

which is a contradiction, thus if cT ū > 0, then (D) must be infeasible.
Summarizing the results obtained so far, we have the following theorem.

Theorem 2. Let a primal dual pair (P ) and (D) of LO problems be given.
The following statements hold for the solutions of the Goldman-Tucker system
(4).

1. Any optimal pair (u, v) of (P ) and (D) with zero duality gap is a solution
of the corresponding Goldman-Tucker system with τ = 1.

2. If (v, u, τ, z, w, ρ) is a solution of the Goldman-Tucker system then either
τ = 0 or ρ = 0, i.e., τρ > 0 cannot happen.

3. Any solution (v, u, τ, z, w, ρ) of the Goldman-Tucker system, where τ > 0
and ρ = 0, gives a primal and dual optimal pair (uτ ,

v
τ ) with zero duality

gap.
4. If the Goldman-Tucker system admits a feasible solution (v̄, ū, τ̄ , z̄, w̄, ρ̄)

with τ̄ = 0 and ρ̄ > 0, then we may conclude that either (P ), or (D), or
both of them are infeasible. ut

Our interior-point approach will lead us to a solution of the Goldman-
Tucker system, where either τ > 0 or ρ > 0, avoiding the undesired situation
when τ = ρ = 0.

Before proceeding, we simplify our notations. Observe that the Goldman-
Tucker system can be written in the following compact form

Mx ≥ 0, x ≥ 0, s(x) = Mx, (5)

where

x =

 v
u
τ

 , s(x) =

 z
w
ρ

 and M =

 0 A −b
−AT 0 c
bT −cT 0


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is a skew-symmetric matrix, i.e., MT = −M . The Goldman-Tucker theorem
[32, 72, 85] says that system (5) admits a strictly complementary solution.
This theorem will be proved in the next section.

Theorem 3 (Goldman, Tucker). System (5) has a strictly complementary
feasible solution, i.e., a solution for which x+ s(x) > 0.

Observe that this theorem ensures that either case 3 or case 4 of Theorem
2 must occur when one solves the Goldman-Tucker system of LO. This is in
fact the strong duality theorem of LO.

Theorem 4. Let a primal and dual LO problem be given. Exactly one of the
following statements hold:

• (P ) and (D) are feasible and there are optimal solutions u∗ and v∗ such
that cTu∗ = bT v∗.

• Either problem (P ), or (D), or both are infeasible.

Proof. Theorem 3 implies that the Goldman-Tucker system of the LO problem
admits a strictly complementary solution. Thus, in such a solution, either
τ > 0, and in that case item 3 of Theorem 2 implies the existence of an
optimal pair with zero duality gap. On the other hand, when ρ > 0, item 4 of
Theorem 2 proves that either (P ) or (D) or both are infeasible. ut

Our next goal is to give an elementary constructive proof of Theorem 3.
When this project is finished, we have the complete duality theory for LO.

2.2 The skew-symmetric self-dual model

Basic properties of the skew-symmetric self-dual model

Following the approach in [72] we make our skew-symmetric model (5) a bit
more general. Thus our prototype problem is

min
{
qTx : Mx ≥ −q, x ≥ 0

}
, (SP)

where the matrix M ∈ Rn×n is skew-symmetric and q ∈ Rn+. The set of
feasible solutions of (SP ) is denoted by

SP := {x : x ≥ 0, Mx ≥ −q }.

By using the assumption that the coefficient matrix M is skew-symmetric
and the right-hand-side vector −q is the negative of the objective coefficient
vector, one easily verifies that the dual of (SP) is equivalent to (SP) itself, i.e.,
problem (SP) is self-dual. Due to the self-dual property the following result is
trivial.

Lemma 1. The optimal value of (SP) is zero and (SP) admits the zero vector
x = 0 as a feasible and optimal solution.
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Given (x, s(x)), where s(x) = Mx+ q we may write

qTx = xT (s(x)−Mx) = xT s(x) = eT (xs(x)),

i.e., for any optimal solution eT (xs(x)) = 0 implying that the vectors x and
s(x) are complementary. For further use, the optimal set of (SP) is denoted
by

SP ∗ := {x : x ≥ 0, s(x) ≥ 0, xs(x) = 0}.

A useful property of optimal solutions is given by the following lemma.

Lemma 2. Let x and y be feasible for (SP). Then x and y are optimal if and
only if

xs(y) = ys(x) = xs(x) = ys(y) = 0. (6)

Proof. Because M is skew-symmetric we have (x − y)TM(x − y) = 0, which
implies that (x − y)T (s(x) − s(y)) = 0. Hence xT s(y) + yT s(x) = xT s(x) +
yT s(y) and this vanishes if and only if x and y are optimal. ut

Thus, optimal solutions are complementary in the general sense, i.e., they
are not only complementary w.r.t. their own slack vector, but complementary
w.r.t. the slack vector for any other optimal solution as well.

All of the above results, including to find a trivial optimal solution were
straightforward for (SP). The only nontrivial result that we need to prove is
the existence of a strictly complementary solution.

First we prove the existence of a strictly complementary solution if the
so-called interior-point condition holds.

Assumption 5 (Interior-Point Condition (IPC)) There exists a point
x0 ∈ SP such that

(x0, s(x0)) > 0. (7)

Before proceeding, we show that this condition can be assumed without
loss of generality. If the reader is eager to know the proof of the existence of
a strictly complementary solution for the self dual model (SP), he/she might
temporarily skip the following subsection and return to it when all the results
for the problem (SP) are derived under the IPC.

IPC for the Goldman-Tucker model

Recall that (SP) is just the abstract model of the Goldman-Tucker problem
(5) and our goal is to prove Theorem 3. In order to apply the results of the
coming sections we need to modify problem (5) so that the resulting equivalent
problem satisfies the IPC.
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Self-dual embedding of (5) with IPC

Due to the second statement of Theorem 2, problem (5) cannot satisfy the
IPC. However, because problem (5) is just a homogeneous feasibility problem,
it can be transformed into an equivalent problem (SP) which satisfies the
IPC. This happens by enlarging, i.e., embedding the problem and defining an
appropriate nonnegative vector q.

Let us take x = s(x) = e. These vectors are positive, but they do not
satisfy (5). Let us further define the error vector r obtained this way by

r := e−Me, and let λ := n+ 1.

Then we have(
M r
−rT 0

)(
e
1

)
+

(
0
λ

)
=

(
Me+ r
−rT e+ λ

)
=

(
e
1

)
. (8)

Hence, the following problem

min

{
λϑ : −

(
M r
−rT 0

)(
x
ϑ

)
+

(
s
ν

)
=

(
0
λ

)
;

(
x
ϑ

)
,

(
s
ν

)
≥ 0

}
(SP)

satisfies the IPC because for this problem the all-one vector is feasible. This
problem is in the form of (SP), where

M =

(
M r
−rT 0

)
, x̄ =

(
x
ϑ

)
and q̄ =

(
0
λ

)
.

We claim that finding a strictly complementary solution to (5) is equivalent
to finding a strictly complementary optimal solution to problem (SP). This
claim is valid, because (SP) satisfies the IPC and thus, as we will see, it admits
a strictly complementary optimal solution. Because the objective function
is just a constant multiple of ϑ, this variable must be zero in any optimal
solution, by Lemma 1. This observation implies the claimed result.

Conclusion

Every LO problem can be embedded in a self-dual problem (SP) of the form
(SP). This can be done in such a way that x̄ = e is feasible for (SP) and
s̄(e) = e. Having a strictly complementary solution of (SP) we either find an
optimal solution of the embedded LO problem, or we can conclude that the
LO problem does not have an optimal solution.

After this intermezzo, we return to the study of our prototype problem
(SP) by assuming the IPC.
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The level sets of (SP)

Let x ∈ SP and s = s(x) be a feasible pair. Due to self duality, the duality
gap for this pair is twice the value

qTx = xT s,

however, for the sake of simplicity, the quantity qTx = xT s itself will be
referred to as the duality gap. First we show that the IPC implies the bound-
edness of the level sets.

Lemma 3. Let the IPC be satisfied. Then, for each positive K, the set of all
feasible pairs (x, s) such that xT s ≤ K is bounded.

Proof. Let (x0, s0) be an interior-point. Because the matrix M is skew-
symmetric, we may write

0 = (x−x0)TM(x−x0) = (x−x0)T (s−s0) = xT s+(x0)T s0−xT s0−sTx0. (9)

From here we get

xjs
0
j ≤ xT s0 + sTx0 = xT s+ (x0)T s0 ≤ K + (x0)T s0.

The proof is complete. ut
In particular, this lemma implies that the set of optimal solutions SP ∗ is

bounded as well.5

Central path, optimal partition

First we define the central path [23, 27, 54, 74] of (SP).

Definition 1. Let the IPC be satisfied. The set of solutions

{(x(µ), s(x(µ))) : Mx+ q = s, xs = µe, x > 0 for some µ > 0} (10)

is called the central path of (SP).

If no confusion is possible, instead of s(x(µ)) the notation s(µ) will be used.
Now we are ready to present our main theorem. This in fact establishes the
existence of the central path. At this point our discussion deviates from the
one presented in [72]. The proof presented here is more elementary because it
does not make use of the logarithmic barrier function.

5 The following result shows that the IPC not only implies the boundedness of the
level sets, but the converse is also true. We do not need this property in developing
our main results, so this is presented without proof.

Corollary 2. Let (SP) be feasible. Then the following statements are equivalent:

i. the interior-point condition is satisfied;
ii. the level sets of xT s are bounded;

iii. the optimal set SP ∗ of (SP) is bounded.
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Theorem 6. The next statements are equivalent.

i. (SP) satisfies the interior-point condition;
ii. For each 0 < µ ∈ R there exists (x(µ), s(µ)) > 0 such that

Mx+ q = s (11)

xs = µe.

iii. For each 0 < w ∈ Rn there exists (x, s) > 0 such that

Mx+ q = s (12)

xs = w.

Moreover, the solutions of these systems are unique.

Before proving this highly important result we introduce the notion of optimal
partition and present our main result. The partition (B,N) of the index set
{1, ..., n} given by

B := {i : xi > 0, for some x ∈ SP ∗} , (13a)

N := {i : s(x)i > 0, for some x ∈ SP ∗} . (13b)

is called the optimal partition. By Lemma 2 the sets B and N are disjoint. Our
main result says that the central path converges to a strictly complementary
optimal solution, and this result proves that B ∪ N = {1, ..., n}. When this
result is established, the Goldman-Tucker theorem (Theorem 3) for the general
LO problem is proved because we use the embedding method presented in §2.2.

Theorem 7. If the IPC holds then there exists an optimal solution x∗ and
s∗ = s(x∗) of problem (SP) such that x∗B > 0, s∗N > 0 and x∗ + s∗ > 0.

First we prove Theorem 6.

Proof. We start the proof by demonstrating that the systems in (ii) and (iii)
may have at most one solution. Because (ii) is a special case of (iii), it is
sufficient to prove uniqueness for (iii).

Let us assume to the contrary that for a certain w > 0 there are two
vectors (x, s) 6= (x̄, s̄) > 0 solving (iii). Then using the fact that matrix M is
skew-symmetric, we may write

0 = (x− x̄)TM(x− x̄) = (x− x̄)T (s− s̄) =
∑
xi 6=x̄i

(x− x̄)i(s− s̄)i. (14)

Due to xs = w = x̄s̄ we have

xi < x̄i ⇐⇒ si > s̄i (15a)

xi > x̄i ⇐⇒ si < s̄i. (15b)



12 Imre Pólik and Tamás Terlaky

By considering these sign properties one easily verifies that the relation

0 =
∑
xi 6=x̄i

(x− x̄)i(s− s̄)i < 0 (16)

should hold, but this is an obvious contradiction. As a result, we may conclude
that if the systems in (ii) and (iii) admit a feasible solution, then such a
solution is unique.

The Newton step

In proving the existence of a solution for the systems in (ii) and (iii) our main
tool is a careful analysis of the Newton step when applied to the nonlinear
systems in (iii).6

Let a vector (x, s) > 0 with s = Mx+ q be given. For a particular w > 0
one wants to find the displacement (∆x,∆s) that solves

M(x+∆x) + q = s+∆s (17)

(x+∆x)(s+∆s) = w.

This reduces to

M∆x = ∆s (18)

x∆s+ s∆x+∆x∆s = w − xs.

This equation system is still nonlinear. When we neglect the second order
term ∆x∆s the Newton equation

M∆x = ∆s (19)

x∆s+ s∆x = w − xs

is obtained. This is a linear equation system and the reader easily verifies
that the Newton direction ∆x is the solution of the nonsingular system of
equations7

(M +X−1S)∆x = x−1w − s. (20)

When we perform a step in the Newton direction with step-length α, for the
new solutions (x+, s+) = (x+ α∆x, s+ α∆s) we have

x+s+ = (x+ α∆x)(s+ α∆s) = xs+ α(x∆s+ s∆x) + α2∆x∆s (21)

= xs+ α(w − xs) + α2∆x∆s.

6 Observe that no preliminary knowledge on any variants of Newton’s method is
assumed. We just define and analyze the Newton step for our particular situation.

7 Nonsingularity follows from the fact that the sum of a skew-symmetric, thus
positive semi-definite, and a positive definite matrix is positive definite. Although
it is not advised to use for numerical computations, the Newton direction can be
expressed as ∆x = (M +X−1S)−1(x−1w − s).
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This relation clarifies that the local change of xs is determined by the vector
w − xs. Luckily this vector is known in advance when we apply a Newton
step, thus for sufficiently small α we know precisely which coordinates of xs
decrease locally (precisely those for which the related coordinate of w − xs
is negative) and which coordinate of xs increase locally (precisely those for
which the related coordinate of w − xs is positive).

The equivalence of the three statements in Theorem 6.

Clearly (ii) is a special case of (iii) and the implication (ii)→ (i) is trivial.
It only remains to be proved that (i), i.e., the IPC, ensures that for each

w > 0 the nonlinear system in (iii) is solvable. To this end, let us assume that
an x0 ∈ SP with (x0, s(x0)) > 0 is given. We use the notation w0 := x0s(x0).
The claim is proved in two steps.

Step 1. For each 0 < w < w ∈ Rn the following two sets are compact:

Lw := {x ∈ SP : xs(x) ≤ w} and

U(w,w) := {w : w ≤ w ≤ w, w = xs(x) for some x ∈ Lw}.

Let us first prove that Lw is compact. For each w > 0, the set Lw is obviously
closed. By definition Lw is included in the level set xT s ≤ eTw, which by
Lemma 3 is bounded, thus Lw is compact.

By definition the set U(w,w) is bounded. We only need to prove that it
is closed. Let a convergent sequence wi → ŵ, wi ∈ U(w,w), i = 1, 2, · · · be
given. Then clearly w ≤ ŵ ≤ w holds. Further, for each i there exists xi ∈ Lw
such that wi = xis(xi). Because the set Lw is compact, there is an x̂ ∈ Lw
and a convergent subsequence xi → x̂ (for ease of notation the subsequence is
denoted again the same way). Then we have x̂s(x̂) = ŵ, proving that U(w,w)
is closed, thus compact.

Observe that for each w ∈ U(w,w) by definition we have an x ∈ SP with
w = xs(x). Due to w > 0 this relation implies that x > 0 and s(x) > 0.

Step 2. For each ŵ > 0, the system Mx + q = s, xs = ŵ, x > 0 has a
solution.
If we have ŵ = w0 = x0s(x0), then the claim is trivial. If ŵ 6= w0 then we
define w := max{ŵ, w0}, η = ‖w‖∞ + 1, w := min{ŵ, w0} and η = 1

2 mini wi.

Then ηe < ŵ < ηe and ηe < w0 < ηe. Due to the last relation the set

U := U(ηe, ηe) is nonempty and compact. We define the nonnegative function

d(w) : U → R as
d(w) := ‖w − ŵ‖∞.

The function d(w) is continuous on the compact set U , thus it attains its
minimum

w̃ := arg min
w∈U
{d(w)}.

If d(w̃) = 0, then w̃ = ŵ ⇒ ŵ ∈ U and hence by the definition of U there is
an x ∈ SP satisfying xs(x) = ŵ and the claim is proved.
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If d(w̃) > 0 then we will show that a damped Newton step from w̃ towards
ŵ gives a point w(α) ∈ U such that d(w(α)) < d(w̃), contradicting the fact
that w̃ minimizes d(w). This situation is illustrated in Figure 1.

-

6

wi

w
wj

ŵ

w0

w̃

w(α)

η̄e

ηe w̃

w(α)

w(α)
w̃

w

Fig. 1. The situation when ŵ 6= w̃. A damped Newton step from w̃ to ŵ is getting
closer to ŵ. For illustration three possible different w̃ values are chosen.

The Newton step is well defined, because for the vector x̃ ∈ SP defining w̃
the relations x̃ > 0 and s̃ = s(x̃) > 0 hold. A damped Newton step from w̃ to
ŵ with sufficiently small α results in a point closer (measured by d(·) = ‖·‖∞)
to ŵ, because

w(α) = x(α)s(α) := (x̃+ α∆x)(s̃+ α∆s) = x̃s̃+ α(ŵ − x̃s̃) + α2∆x∆s

= w̃ + α(ŵ − w̃) + α2∆x∆s. (22)

This relation implies that

w(α)− ŵ = (1− α)(w̃ − ŵ) + α2∆x∆s, (23)

i.e., for α small enough8 all nonzero coordinates of |w(α) − ŵ| are smaller
than the respective coordinates of |w̃− ŵ|. Hence, w(α) is getting closer to ŵ,

8 The reader easily verifies that any value of α satisfying
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closer than w̃. Due to ηe < ŵ < ηe this result also implies that for the chosen

small α value the vector w(α) stays in U . Thus w̃ 6= ŵ cannot be a minimizer
of d(w), which is a contradiction. This completes the proof. ut

Now we are ready to prove our main theorem, the existence of a strictly
complementary solution, when the IPC holds.

Proof of Theorem 7.

Let µt → 0 (t = 1, 2, · · · ) be a monotone decreasing sequence, hence for all
t we have x(µt) ∈ Lµ1e. Because Lµ1e is compact the sequence x(µt) has an
accumulation point x∗ and without loss of generality we may assume that
x∗ = lim

t→∞
x(µt). Let s∗ := s(x∗). Clearly x∗ is optimal because

x∗s∗ = lim
t→∞

x(µt)s(x(µt)) = lim
t→∞

µte = 0. (24)

We still have to prove that (x∗, s(x∗)) is strictly complementary, i.e., x∗+s∗ >
0. Let B = {i : x∗i > 0} and N = {i : s∗i > 0}. Using the fact that M is skew-
symmetric, we have

0 = (x∗ − x(µt))
T (s∗ − s(µt)) = x(µt)

T s(µt)− x∗T s(µt)− x(µt)
T s∗, (25)

which, by using that x(µt)is(µt)i = µt, can be rewritten as∑
i∈B

x∗i s(µt)i +
∑
i∈N

s∗i x(µt)i = nµt, (26a)

∑
i∈B

x∗i
x(µt)i

+
∑
i∈N

s∗i
s(µt)i

= n. (26b)

By taking the limit as µt goes to zero we obtain that

|B|+ |N| = n,

i.e., (B,N) is a partition of the index set, hence (x∗, s(x∗)) is a strictly com-
plementary solution. The proof of Theorem 7 is complete. ut

As we mentioned earlier, this result is powerful enough to prove the strong
duality theorem of LO in the strong form, including strict complementarity,
i.e., the Goldman-Tucker Theorem (Thm. 3) for SP and for (P ) and (D).

Our next step is to prove that the accumulation point x∗ is unique.

α < min

{
w̃i − ŵi

∆xi∆si
: (w̃i − ŵi)(∆xi∆si) > 0

}
satisfies the requirement.
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Convergence to the analytic center

In this subsection we prove that the central path has only one accumulation
point, i.e., it converges to a unique point, the so-called analytic center [74] of
the optimal set SP ∗.

Definition 2. Let x̄ ∈ SP ∗, s̄ = s(x̄) maximize the product∏
i∈B

xi
∏
i∈N

si (27)

over x ∈ SP ∗. Then x̄ is called the analytic center of SP ∗.

It is easily to verify that the analytic center is unique. Let us assume to the
contrary that there are two different vectors x̄ 6= x̃ with x̄, x̃ ∈ SP ∗ which
satisfy the definition of analytic center, i.e.,

ϑ∗ =
∏
i∈B

x̄i
∏
i∈N

s̄i =
∏
i∈B

x̃i
∏
i∈N

s̃i = max
x∈SP∗

∏
i∈B

xi
∏
i∈N

si. (28)

Let us define x∗ = x̄+x̃
2 . Then we have∏

i∈B

x∗i
∏
i∈N

s∗i =
∏
i∈B

1

2
(x̄i + x̃i)

∏
i∈N

(s̄i + s̃i) (29)

=
∏
i∈B

1

2

(√
x̄i
x̃i

+

√
x̃i
x̄i

)∏
i∈N

1

2

(√
s̄i
s̃i

+

√
s̃i
s̄i

)√∏
i∈B

x̄i
∏
i∈N

s̄i
∏
i∈B

x̃i
∏
i∈N

s̃i

>
∏
i∈B

x̄i
∏
i∈N

s̄i = ϑ∗,

which shows that x̄ is not the analytic center. Here the last inequality follows
from the classical inequality α + 1

α ≥ 2 if α ∈ R+ and strict inequality holds
when α 6= 1.

Theorem 8. The limit point x∗ of the central path is the analytic center of
SP ∗.

Proof. The same way as in the proof of Theorem 7 we derive∑
i∈B

x̄i
x∗i

+
∑
i∈N

s̄i
s∗i

= n. (30)

Now we apply the arithmetic-geometric mean inequality to derive(∏
i∈B

x̄i
x∗i

∏
i∈N

s̄i
s∗i

) 1
n

≤ 1

n

(∑
i∈B

x̄i
x∗i

+
∑
i∈N

s̄i
s∗i

)
= 1. (31)

Hence, ∏
i∈B

x̄i
∏
i∈N

s̄i ≤
∏
i∈B

x∗i
∏
i∈N

s∗i (32)

proving that x∗ is the analytic center of SP ∗. The proof is complete. ut
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Identifying the optimal partition

The condition number

In order to give bounds on the size of the variables along the central path we
need to find a quantity that in some sense characterizes the set of optimal
solutions. For an optimal solution x ∈ SP ∗ we have

xs(x) = 0 and x+ s(x) ≥ 0.

Our next question is about the size of the nonzero coordinates of optimal
solutions. Following the definitions in [72, 96] we define a condition number of
the problem (SP) which characterizes the magnitude of the nonzero variables
on the optimal set SP ∗.

Definition 3. Let us define

σx := min
i∈B

max
x∈SP∗

{xi} (33a)

σs := min
i∈N

max
x∈SP∗

{s(x)i}. (33b)

Then the condition number of (SP) is defined as

σ = min{σx, σs} = min
i

max
x∈SP∗

{xi + s(x)i}. (34)

To determine the condition number σ is in general more difficult than to solve
the optimization problem itself. However, we can give an easily computable
lower bound for σ. This bound depends only on the problem data.

Lemma 4 (Lower bound for σ:). If M and q are integral 9 and all the
columns of M are nonzero, then

σ ≥ 1

π(M)
, (35)

where π(M) =
∏n
i=1 ‖Mi‖.

Proof. The proof is based on Cramer’s rule and on the estimation of de-
terminants by using Hadamard’s inequality.10 Let z = (x, s) be an optimal
solution. Without loss of generality we may assume that the columns of the

9 If the problem data is rational, then by multiplying by the least common multiple
of the denominators an equivalent LO problem with integer data is obtained.

10 Let G be a nonsingular n× n matrix. Hadamard’s inequality states that

det(G) ≤
n∏

i=1

‖Gi‖

holds, see [37] for a reference.
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matrix D = (−M, I) corresponding to the nonzero coordinates of z = (x, s)
are linearly independent. If they are not independent, then by using Gaussian
elimination we can reduce the solution to get one with linearly independent
columns. Let us denote this index set by J . Further, let the index set K be
such that DKJ is a nonsingular square submatrix of D. Such K exists, because
the columns in DJ are linearly independent. Now we have DKJzJ = qK , and
hence, by Cramer’s rule,

zj =
det
(
D

(j)
KJ

)
det (DKJ)

, ∀j ∈ J, (36)

where D
(j)
KJ denotes the matrix obtained when the jth column in DKJ is

replaced by qK . Assuming that zj > 0 then, because the data is integral, the
numerator in the quotient given above is at least one. Thus we obtain zj ≥

1
det(DKJ ) . By Hadamard’s inequality the last determinant can be estimated

by the product of the norm of its columns, which can further be bounded by
the product of the norms of all the columns of the matrix M . ut

The condition that none of the columns of the matrix M is a zero vector is
not restrictive. For the general problem (SP) a zero column Mi would imply
that si = qi for each feasible solution, thus the pair (xi, si) could be removed.
More important is that for our embedding problem (SP) none of the columns
of the coefficient matrix (

M r
−rT 0

)
is zero. By definition we have r = e − Me nonzero, because eT r = eT e −
eTMe = n. Moreover, if Mi = 0, then by using that matrix M is skew-
symmetric we have ri = 1, thus the ith column of the coefficient matrix is
again nonzero.

The size of the variables along the central path

Now, by using the condition number σ, we are able to derive lower and upper
bounds for the variables along the central path. Let (B,N) be the optimal
partition of the problem (SP).

Lemma 5. For each positive µ one has

xi(µ) ≥ σ

n
i ∈ B, xi(µ) ≤ nµ

σ
i ∈ N, (37a)

si(µ) ≤ nµ

σ
i ∈ B, si(µ) ≥ σ

n
i ∈ N. (37b)

Proof. Let (x∗, s∗) be optimal, then by orthogonality we have

(x(µ)− x∗)T (s(µ)− s∗) = 0,

x(µ)T s∗ + s(µ)Tx∗ = nµ,

xi(µ)s∗i ≤ x(µ)T s∗ ≤ nµ, 1 ≤ i ≤ n.
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Since we can choose (x∗, s∗) such that s∗i ≥ σ and because xi(µ)si(µ) = µ,
for i ∈ N, we have

xi(µ) ≤ nµ

s∗i
≤ nµ

σ
and si(µ) ≥ σ

n
, i ∈ N.

The proofs of the other bounds are analogous. ut

Identifying the optimal partition

The bounds presented in Lemma 5 make it possible to identify the optimal
partition (B,N), when µ is sufficiently small. We just have to calculate the
µ value that ensures that the coordinates going to zero are certainly smaller
than the coordinates that converge to a positive number.

Corollary 3. If we have a central solution x(µ) ∈ SP with

µ <
σ2

n2
, (38)

then the optimal partition (B,N) can be identified.

The results of Lemma 5 and Corollary 3 can be generalized to the situation
when a vector (x, s) is not on, but just in a certain neighbourhood of the
central path. In order to keep our discussion short, we do not go into those
details. The interested reader is referred to [72].

Rounding to an exact solution

Our next goal is to find a strictly complementary solution. This could be done
by moving along the central path as µ → 0. Here we show that we do not
have to do that, we can stop at a sufficiently small µ > 0, and round off the
current “almost optimal” solution to a strictly complementary optimal one.
We need some new notation. Let the optimal partition be denoted by (B,N),
let ω := ‖M‖∞ = max1≤i≤n

∑n
j=1 |Mij | and π := π(M) =

∏n
i=1 ‖Mi‖.

Lemma 6. Let M and q be integral and all the columns of M be nonzero. If
(x, s) := (x(µ), s(x(µ))) is a central solution with

xT s = nµ <
σ2

n
3
2 (1 + ω)2π

, which certainly holds if nµ ≤ 1

n
3
2 (1 + ω)2π3

,

then by a simple rounding procedure a strictly complementary optimal solution
can be found in O(n3) arithmetic operations.

Proof. Let x := x(µ) > 0 and s := s(x) > 0 be given. Because

µ <
σ2

n
5
2 (1 + ω)2π

<
σ2

n2
(39)
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the optimal partition (B,N) is known. Let us simply set the small variables
xN and sB to zero. Then we correct the created error and estimate the size
of the correction.

For (x, s) we have

MBBxB +MBNxN + qB = sB, (40)

but by rounding xN and sB to zero the error q̂B = sB − MBNxN occurs.
Similarly, we have

MNBxB +MNNxN + qN = sN (41)

but by rounding xN and sB to zero the error q̂N = −MNNxN occurs.
Let us first estimate q̂B and q̂N by using the results of Lemma 5. For q̂B

we have

‖q̂B‖ ≤
√
n‖q̂B‖∞ =

√
n‖sB −MBNxN‖∞ ≤

√
n‖(I,−MBN)‖∞

∥∥∥∥ sBxN
∥∥∥∥
∞

≤
√
n(1 + ω)

nµ

σ
=
n

3
2µ(1 + ω)

σ
. (42)

We give a bound for the infinity norm of q̂N as well:

‖q̂N‖∞ = ‖ −MNNxN‖∞ ≤ ‖MNN‖∞‖xN‖∞ ≤ ω
nµ

σ
. (43)

Now we are going to correct these errors by adjusting xB and sN. Let us
denote the correction by ξ for xB and by ζ for sN, further let (x̂, ŝ) be given
by x̂B := xB + ξ > 0, x̂N = 0, ŝB = 0 and ŝN := sN + ζ > 0.

If we know the correction ξ of xB, then from equation (41) the necessary
correction ζ of sN can easily be calculated. Equation (40) does not contain
sN , thus by solving the equation

MBBξ = −q̂B (44)

the corrected value x̂B = xB + ξ can be obtained.
First we observe that the equation MBBξ = −q̂B is solvable, because any

optimal solution x∗ satisfies MBBx
∗
B = −qB, thus we may write MBB(xB +

ξ) = MBBx
∗
B = −qB, hence

MBBξ = MBB(x∗B − xB) = −qB − sB +MBNxN + qB (45)

= −sB +MBNxN = −q̂B.

This equation system can be solved by Gaussian elimination. The size of ξ
obtained this way can be estimated by applying Cramer’s rule and Hadamard’s
inequality, the same way as we have estimated σ in Lemma 4. If MBB is zero,
then we have qB = 0 and MBNxN = sB, thus rounding xN and sB to zero
does not produce any error here, hence we can choose ξ = 0. If MBB is not
the zero matrix, then let MBB be a maximal nonsingular square submatrix of
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MBB and let q̄B be the corresponding part of q̂B. By using the upper bounds
on xN and sB by Lemma 5 we have

|ξi| =
|det(M

(i)

BB)|
|det(MBB)|

≤ |det(M
(i)

BB)| (46)

≤ ‖q̄B‖ |det(MBB)| ≤ n
3
2µ(1 + ω)

σ
π,

where (42) was used in the last estimation. This result, due to ‖xB‖∞ ≥ σ
n ,

implies that x̂B = xB + ξ > 0 certainly holds if nµ < σ2

n
3
2 (1+ω)π

, and this is

implied by the hypothesis of the theorem which was involving (1+ω)2 instead
of (1 + ω).

Finally, we simply correct sN by using (41), i.e., we define ζ := q̂N+MNBξ.
We still must ensure that

ŝN := sN + q̂N +MNBξ > 0. (47)

Using again the bounds given in Lemma 4, the bound (43) and the estimate
on ξ, one easily verifies that

‖q̂N +MNBξ‖∞ ≤ ‖(I,MNB)‖∞
∥∥∥∥ q̂Nξ

∥∥∥∥
∞

(48)

≤ (1 + ω) max

{
ω
nµ

σ
,
n

3
2µ(1 + ω)π

σ

}
=
n

3
2µ(1 + ω)2π

σ
.

Thus, due to ‖sN‖∞ ≥ σ
n , the vector ŝN is certainly positive if

σ

n
>
n

3
2µ(1 + ω)2π

σ
. (49)

This is exactly the first inequality given in the lemma. The second inequality
follows by observing that πσ ≥ 1, by Lemma 4.

The proof is completed by noting that the solution of an equation sys-
tem by using Gaussian elimination, some matrix-vector multiplications and
vector-vector summations, all with a dimension not exceeding n, are needed
to perform our rounding procedure. Thus the computational complexity of
our rounding procedure is at most O(n3). ut

Note that this rounding result can also be generalized to the situation
when a vector (x, s) is not on, but just in a certain neighbourhood of the
central path. For details the reader is referred again to [72].11

11 This result makes clear that when one solves an LO problem by using an IPM,
the iterative process can be stopped at a sufficiently small value of µ. At that
point a strictly complementary optimal solution can be identified easily.
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2.3 Summary of the theoretical results

Let us return to our general LO problem in canonical form

min
{
cTu : Au− z = b, u ≥ 0, z ≥ 0

}
(P)

max
{
bT v : AT v + w = c, v ≥ 0, w ≥ 0

}
, (D)

where the slack variables are already included in the problem formulation. In
what follows we recapitulate the results obtained so far.

• In §2.1 we have seen that to solve the LO problem it is sufficient to find a
strictly complementary solution to the Goldman-Tucker model

Au −τb −z = 0
−AT v +τc −w = 0
bT v −cTu −ρ = 0

v ≥ 0, u ≥ 0, τ ≥ 0, z ≥ 0, w ≥ 0, ρ ≥ 0.

• This homogeneous system always admits the zero solution, but we need a
solution for which τ + ρ > 0 holds.

• If (u∗, z∗) is optimal for (P ) and (v∗, w∗) for (D) then (v∗, u∗, 1, z∗, w∗, 0)
is a solution for the Goldman-Tucker model with the requested property
τ + ρ > 0. See Theorem 2.

• Any solution of the Goldman-Tucker model (v, u, τ, z, w, ρ) with τ > 0
yields an optimal solution pair (scale the variables (u, z) and (v, w) by 1

τ )
for LO. See Theorem 2.

• Any solution of the Goldman-Tucker model (u, z, v, w, τ, ρ) with ρ > 0
provides a certificate of primal or dual infeasibility. See Theorem 2.

• If τ = 0 in every solution (v, u, τ, z, w, ρ) then (P ) and (D) have no optimal
solutions with zero duality gap.

• The Goldman-Tucker model can be transformed into a skew-symmetric
self-dual problem (SP) satisfying the IPC. See §2.2.

• If problem (SP) satisfies the IPC then
– the central path exists (see Theorem 6);
– the central path converges to a strictly complementary solution (see

Theorem 7);
– the limit point of the central path is the analytic center of the optimal

set (see Theorem 8);
– if the problem data is integral and a solution on the central path with

a sufficiently small µ is given, then the optimal partition (see Corollary
3) and an exact strictly complementary optimal solution (see Lemma
6) can be found.

• These results give a constructive proof of Theorem 3.
• This way, as we have seen in §2.1, the Strong Duality theorem of linear

optimization (Theorem 4) is proved.
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The above summary shows that we have completed our project. The dual-
ity theory of LO is built up by using only elementary calculus and fundamen-
tal concepts of IPMs. In the following sections we follow this recipe to derive
interior point methods for conic and general nonlinear optimization.

In the rest of this section a generic IP algorithm is presented.

2.4 A general scheme of IP algorithms for linear optimization

In this section a glimpse of the main elements of IPMs is given. We keep on
working with our model problem (SP). In Sections 2.1 and 2.2 we have shown
that a general LO problem can be transformed into a problem of the form
(SP), and that problem satisfies the IPC. Some notes are due to the linear
algebra involved. We know that the size of the resulting embedding problem
(SP) is more than doubled comparing to the size of the original LO problem.
Despite the size increase, the linear algebra of an IPM can be organized so
that the computational cost of an iteration stays essentially the same.

Let us consider the problem (cf. page 8)

min

{
λϑ :

(
M r
−rT 0

)(
x
ϑ

)
+

(
s
ν

)
=

(
0
λ

)
;

(
x
ϑ

)
,

(
s
ν

)
≥ 0

}
, (SP)

where r = e−Me, λ = n+ 1 and the matrix M is given by (5). This problem
satisfies the IPC, because the all one vector (x0, ϑ0, s0, ν0) = (e, 1, e, 1) is a
feasible solution, moreover it is also on the central path by taking µ = 1. In
other words, it is a positive solution of the equation system(

M r
−rT 0

)(
x
ϑ

)
+

(
s
ν

)
=

(
0
λ

)
;

(
x
ϑ

)
,

(
s
ν

)
≥ 0(

x
ϑ

)(
s
ν

)
=

(
µe
µ

)
,

(50)

which defines the central path of problem (SP). As we have seen, for each
µ > 0, this system has a unique solution. However, in general this solution
cannot be calculated exactly. Therefore we are making Newton steps to get
approximate solutions.

Newton step

Let us assume that a feasible interior-point (x, ϑ, s, ν) > 0 is given.12 We
want to find the solution of (50) for a given µ ≥ 0, in other words we want to
determine the displacements (∆x,∆ϑ,∆s,∆ν) so that

12 Here we assume that all the linear equality constraints are satisfied. The resulting
IPM is a feasible IPM. In the literature one can find infeasible IPMs [93] that do
not assume that the linear equality constraints are satisfied.
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M r
−rT 0

)(
x+∆x
ϑ+∆ϑ

)
+

(
s+∆s
ν +∆ν

)
=

(
0
λ

)
;(

x+∆x
ϑ+∆ϑ

)
,

(
s+∆s
ν +∆ν

)
≥ 0; (51)(

x+∆x
ϑ+∆ϑ

)(
s+∆s
ν +∆ν

)
=

(
µe
µ

)
.

By neglecting the second order terms ∆x∆s and ∆ϑ∆ν, and the nonneg-
ativity constraints, the Newton equation system is obtained (cf. page 12)

−M∆x −r∆ϑ +∆s = 0
rT∆x +∆ν = 0
s∆x +x∆s = µe− xs

ν∆ϑ +ϑ∆ν = µ− ϑν.

(52)

We start by making some observations. For any vector (x, ϑ, s, ν) that satisfies
the equality constraints of (SP) we have

xT s+ ϑν = ϑλ. (53)

Applying this to the solution obtained after making a Newton step we may
write

(x+∆x)T (s+∆s) + (ϑ+∆ϑ)T (ν +∆ν) = (ϑ+∆ϑ)λ. (54)

By rearranging the terms we have

(xT s+ϑν) + (∆xT∆s+∆ϑ∆ν) + (xT∆s+ sT∆x+ϑ∆ν+ν∆ϑ) = ϑλ+∆ϑλ.

As we mentioned above, the first term in the left hand side sum equals to ϑλ,
while from (52) we derive that the second sum is zero. From the last equations
of (52) one easily derives that the third expression equals to µ(n+ 1)−xT s−
ϑν = µλ − ϑλ. This way the equation µλ − ϑλ = ∆ϑλ is obtained, i.e., an
explicit expression for ∆ϑ

∆ϑ = µ− ϑ

is derived. This value can be substituted in the last equation of (52) to derive
the solution

∆ν =
µ

ϑ
− ν − ν(µ− ϑ)

ϑ
,

i.e.,

∆ν =
µ(1− ν)

ϑ
.

On the other hand, ∆s can be expressed from the third equation of (52) as

∆s = µX−1e− s−X−1S∆x.

Finally, substituting all these values in the first equation of (52) we have
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M∆x+X−1S∆x = µX−1e− s− (µ− ϑ)r,

i.e., ∆x is the unique solution of the positive definite system13

(M +X−1S)∆x = µX−1e− s− (µ− ϑ)r.

Having determined the displacements, we can make a (possibly damped)
Newton step to update our current iterate:

x := x+∆x

ϑ := ϑ+∆ϑ = µ

s := s+∆s

ν := ν +∆ν.

Proximity measures

We have seen that the central path is our guide to a strictly complementary
solution. However, due to the nonlinearity of the equation system determining
the central path, we cannot stay on the central path with our iterates, even if
our initial interior-point was perfectly centred. For this reason we need some
centrality, or with other words proximity, measure that enables us to control
and keep our iterates in an appropriate neighbourhood of the central path. In
general this measure depends on the current primal-dual iterate x and s, and
a value of µ on the central path. This measure quantifies how close the iterate
is to the point corresponding to µ on the central path. We use δ(x, s, µ) to
denote this general proximity measure.

Let the vectors x̄ and s̄ be composed from x and ϑ, and from s and ν
respectively. Note that on the central path all the coordinates of the vector
x̄s̄ are equal. This observation indicates that the proximity measure

δc(x̄s̄) :=
max(x̄s̄)

min(x̄s̄)
, (55)

where max(x̄s̄) and min(x̄s̄) denote the largest and smallest coordinate of the
vector x̄s̄, is an appropriate measure of centrality. In the literature of IPMs
various centrality measures were developed (see the books [42, 45, 72, 93, 97]).
Here we present just another one, extensively used in [72]:

δ0(x̄s̄, µ) :=
1

2

∥∥∥∥∥
(
x̄s̄

µ

) 1
2

−
( µ
x̄s̄

) 1
2

∥∥∥∥∥ . (56)

Both of these proximity measures allow us to design polynomial IPMs.

13 Observe that although the dimensions of problem (SP) are larger than problem
(SP), to determine the Newton step for both systems requires essentially the same
computational effort. Note also, that the special structure of the matrix M (see
(5)) can be utilized when one solves this positive definite linear system. For details
the reader is referred to [5, 72, 93, 97].
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A generic interior point algorithm

Algorithm 1 gives a general framework for an interior point method.

Algorithm 1 Generic Interior-Point Newton Algorithm

Input:
A proximity parameter γ;
an accuracy parameter ε > 0;
a variable damping factor α;
update parameter θ, 0 < θ < 1;
(x̄0, s̄0), µ0 ≤ 1 s.t. δ(x̄0s̄0, µ0) ≤ γ.

begin
x̄ := x̄0; s̄ := s̄0; µ := µ0;
while (n+ 1)µ ≥ ε do
begin
µ := (1− θ)µ;
while δ(x̄s̄, µ) ≥ γ do
begin
x̄ := x̄+ α∆x̄;
s̄ := s̄+ α∆s̄;

end
end

end

The following crucial issues remain:

• choose the proximity parameter γ,
• choose a proximity measure δ(x, s, µ),
• choose an update scheme for µ and
• specify how to damp the Newton step when needed.

Our goal with the selection of these parameters is to be able to prove polyno-
mial iteration complexity of the resulting algorithm.

Three sets of parameters are presented, which ensure that the resulting
IPMs are polynomial. The proofs of complexity can, e.g., be found in [72].
Recall that (SP) admits the all one vector as a perfectly centred initial solution
with µ = 1.

The first algorithm is a primal-dual logarithmic barrier algorithm with full
Newton steps, studied e.g. in [72]. This IPM enjoys the best complexity known
to date. Let us make the following choice:

• δ(x̄s̄, µ) := δ0(x̄s̄, µ), this measure is zero on the central path;
• µ0 := 1;
• θ := 1

2
√
n+1

;

• γ = 1√
2
;

• (∆x̄,∆s̄) is the solution of (52);
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• α = 1.

Theorem 9 (Theorem II.52 in [72]). With the given parameter set the full
Newton step algorithm requires not more than⌈

2
√
n+ 1 log

n+ 1

ε

⌉
iterations to produce a feasible solution (x̄, s̄) for (SP) such that δ0(x̄s̄, µ) ≤ γ
and (n+ 1)µ ≤ ε.

The second algorithm is a large-update primal-dual logarithmic barrier al-
gorithm, studied also e.g. in [72]. Among our three algorithms, this is the most
practical. Let us make the following choice:

• δ(x̄s̄, µ) := δ0(x̄s̄, µ), this measure is zero on the central path;
• µ0 := 1;
• 0 < θ < n+1

n+1+
√
n+1

;

• γ =
√
R

2
√

1+
√
R

, where R := θ
√
n+1

1−θ ;

• (∆x̄,∆s̄) is the solution of (52);
• α is the result of a line search, when along the search direction the primal-

dual logarithmic barrier function

x̄T s̄

µ
− (n+ 1)−

n+1∑
i=1

log
x̄is̄i
µ

is minimized.

Theorem 10 (Theorem II.74 in [72]). With the given parameter set the
large-update primal-dual logarithmic barrier algorithm requires not more than

1

θ

2

1 +

√
θ
√
n+ 1

1− θ

4
 log

n+ 1

ε


iterations to produce a feasible solution (x̄, s̄) for (SP) such that δ0(x̄s̄, µ) ≤ τ
and (n+ 1)µ ≤ ε.

When we choose θ = 1
2 , then the total complexity becomesO

(
(n+ 1) log n+1

ε

)
,

while the choice θ = K√
n+1

, with any fixed positive value K gives a complexity

of O
(√
n+ 1 log n+1

ε

)
.

Other versions of this algorithm were studied in [66], where the analysis of
large-update methods was based purely on the use of the proximity δ0(x̄s̄, µ).

The last algorithm is the Dikin step algorithm studied in [72]. This is one
of the simplest IPMs, with an extremely elementary complexity analysis. The
prize for simplicity is that the polynomial complexity result is not the best
possible. Let us make the following choices:
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• δ(x̄s̄, µ) := δc(x̄s̄), this measure is always larger than or equal to 1;
• µ0 := 0, this implies that µ stays equal to zero, thus θ is irrelevant;
• γ = 2;
• (∆x̄,∆s̄) is the solution of (52) when the right-hand sides of the last two

equations are replaced by − x2s2

‖x̄s̄‖ and − ϑν
‖x̄s̄‖ , respectively;

• α = 1
2
√
n+1

.

Theorem 11 (Theorem I.27 in [72]). With the given parameter set the
Dikin step algorithm requires not more than⌈

2(n+ 1) log
n+ 1

ε

⌉
iterations to produce a feasible solution (x̄, s̄) for (SP) such that δc(x̄s̄) ≤ 2
and (n+ 1)µ ≤ ε.

2.5 *The barrier approach

In our approach so far we perturbed the optimality conditions for the primal
dual linear optimization problem to get the central path. In what follows
we show an alternative, sometimes more intuitive, sometimes more technical
route. Consider again the linear optimization problem in primal form:

min cTu

Au ≥ b (P)

u ≥ 0.

A standard convex optimization trick to treat inequalities is to add them to
the objective function with a barrier term:

min cTu− µ
n∑
i=1

lnui − µ
m∑
j=1

ln (Au− b)j , (PBar)

where µ > 0. The function − ln t is a barrier function. In particular it goes
to ∞ if t goes to 0, and for normalization, it is 0 at 1. If ui is getting close
to 0 then the modified objective function will converge to ∞. This way we
received an unconstrained problem defined on the positive orthant, for which
we can easily write the optimality conditions. The idea behind this method
is to gradually reduce µ and at the same time try to solve the unconstrained
problem approximately. If µ is decreased at the right rate then the algorithm
will converge to the optimal solution of the original problem.

The first order necessary optimality conditions for system (PBar) are:

ci − µ
1

ui
− µ

m∑
j=1

Aji
(Au− b)j

= 0, i = 1, . . . , n. (57)
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This equation yields the same central path equations that we obtained in
Definition 1. An identical result can be derived starting from the dual for of
the linear optimization problem.

A natural extension of this idea is to replace the − ln t function with an-
other barrier function. Sometimes we can achieve better complexity results by
doing so, see [63] (universal barrier), [9, 10, 87] (volumetric barrier), [66, 67]
(self-regular barrier) for details.

3 Interior Point Methods for Conic Optimization

3.1 Problem description

Conic optimization is a natural generalization of linear optimization. As we
will see, most of the results in §2.3 carry over to the conic case with some
minor modifications and the structure and analysis of the algorithm will be
similar to the linear case.

A general conic optimization problem in primal form can be stated as

min cTx

Ax = b (PCon)

x ∈ K,

where c, x ∈ RN , b ∈ Rm, A ∈ Rm×N and K ⊆ RN is a cone. The standard
Lagrange dual of this problem is

max bT y

AT y + s = c (DCon)

s ∈ K∗,

where y ∈ Rm, s ∈ RN and K∗ is the dual cone of K, namely K∗ ={
s ∈ RN : sTx ≥ 0, ∀x ∈ K

}
. The weak duality theorem follows without any

further assumption:

Theorem 12 (Weak duality for conic optimization). If x, y and s are
feasible solutions of the problems (PCon) and (DCon) then

sTx = cTx− bT y ≥ 0. (58)

This quantity is the duality gap. Consequently, if the duality gap is 0 for some
solutions x, y and s, then they form an optimal solution.

Proof. Let x, y and s be feasible solutions, then

cTx = (AT y + s)Tx = xTAT y + xT s = bT y + xT s ≥ bT y, (59)

since x ∈ K and s ∈ K∗ implies xT s ≥ 0.
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In order for this problem to be tractable we have to make some assumptions.

Assumption 13 Let us assume that K is a closed, convex, pointed (not con-
taining a line) and solid (has nonempty interior) cone, and that it is self-dual,
i.e., K = K∗.

Cones in the focus of our study are called symmetric.

Theorem 14 (Real symmetric cones). Any symmetric cone over the real
numbers is a direct product of cones of the following type:

nonnegative orthant: the set of nonnegative vectors, Rn+,
Lorentz or quadratic cone: the set Ln+1 = {(u0, u) ∈ R+ × Rn : u0 ≥ ‖u‖},

and the
positive semidefinite cone: the cone PSn×n of n × n real symmetric positive

semidefinite matrices.

The dimensions of the cones forming the product can be arbitrary.

Let us assume further that the interior point condition is satisfied, i.e., there
is a strictly feasible solution.14 The strong duality theorem follows:

Theorem 15 (Strong duality for conic optimization).
If the primal problem (PCon) is strictly feasible, i.e., there exists an x for
which Ax = b and x ∈ int (K), then the dual problem is solvable (the maximum
is attained) and the optimal values of the primal and dual problems are the
same.
If the dual problem (DCon) is strictly feasible, i.e., there exists a y for which
s = c − AT y ∈ int (K), then the primal problem is solvable (the minimum
is attained) and the optimal values of the primal and dual problems are the
same.
If both problems are strictly feasible then both are solvable and the optimal
values are the same.

Remark 1. In conic optimization it can happen that one problem is infeasible
but there is no certificate of infeasibility. Such problems are called weakly
infeasible. Also, even if the duality gap is zero, the minimum or maximum
might not be attained, meaning the problem is not solvable.

In what follows we treat the second order and the semidefinite cones sep-
arately. This simplification is necessary to keep the notation simple and to
make the material more accessible. Interested readers can easily assemble the
parts to get the whole picture.

First we introduce the following primal-dual second-order cone optimiza-
tion problems:

14 This assumption is not needed if K is the linear cone, Rn
+.
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min

k∑
i=1

ci
T
xi max bT y

k∑
i=1

Aixi = b Ai
T
y + si = ci, i = 1, . . . , k (SOCO)

xi ∈ Lni
, i = 1, . . . , k si ∈ Lni

, i = 1, . . . , k,

where xi, si, ci ∈ Rni , b, y ∈ Rm and Ai ∈ Rm×ni

, the number of cones is k
and the ith cone is of dimension ni.

The semidefinite optimization problem requires slightly different notation:

min Tr (CX) max bT y

Tr
(
A(i)X

)
= bi, i = 1, . . . ,m

m∑
i=1

A(i)yi + S = C (SDO)

X ∈ PSn×n S ∈ PSn×n,

where X,S,C,A(i) ∈ Rn×n, b, y ∈ Rm. For symmetric matrices U and V the
quantity Tr (UV ) is actually a scalar product defined on symmetric matrices,
and is identical to the sum of the componentwise products of the matrix
elements.

3.2 Applications of Conic Optimization

Let us briefly present three applications of conic optimization. For more details
see [3, 11, 88, 91] and the references therein.

Robust Linear Optimization

Consider the standard linear optimization problem:

min cTx (60)

aTj x− bj ≥ 0, ∀j = 1, . . . ,m,

where the data (aj , bj) is uncertain. The uncertainty is usually due to some
noise, or implementation or measurement error, and thus it is modelled by
Gaussian distribution. The level sets of the distribution are ellipsoids, so we
assume that the data vectors (aj ; bj) come from an ellipsoid. The inequalities
then have to be satisfied for all possible values of the data. More precisely,
the set off all possible data values is{(

aj
−bj

)
=

(
a0
j

−b0j

)
+ Pu : u ∈ Rm, ‖u‖ ≤ 1

}
, (61)

and the new, robust constraint is represented as the following set of infinitely
many constraints
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a0
j

−b0j

)
+ Pu

)T (
x
1

)
≥ 0, ∀u : ‖u‖ ≤ 1. (62)

This constraint is equivalent to(
a0
j

−b0j

)T (
x
1

)
≥ max
‖u‖≤1

{
−uTPT

(
x
1

)}
. (63)

The maximum on right hand side is the maximum of a linear function over a
sphere, so it can be computed explicitly. This gives a finite form of the robust
constraint: (

a0
j

)T
x− b0j ≥

∥∥∥∥PT (x1
)∥∥∥∥ . (64)

Introducing the linear equalities zj =
(
a0
j

)T
x − b0j and z = PT

(
x
1

)
this

constraint is a standard second order conic constraint. For more details on
this approach see [11].

Eigenvalue Optimization

Given the n× n matrices A(1), . . . , A(m) it is often required to find a nonneg-
ative combination of them such that the smallest eigenvalue of the resulting
matrix is maximal. The smallest eigenvalue function is not differentiable, thus
we could not use it directly to solve the problem. Semidefinite optimization
offers an efficient framework to solve these problems. The maximal smallest
eigenvalue problem can be written as

max λ
m∑
i=1

Aiyi − λI ∈ PSn×n (65)

yi ≥ 0, i = 1, . . . ,m.

See [2, 63, 65] for more details.

Relaxing Binary Variables

A classical method to solve problems with binary variables is to apply a con-
tinuous relaxation. Given the binary variables z1, . . . , zn ∈ {0, 1} the most
common solution is the linear relaxation z1, . . . , zn ∈ [0, 1]. However, in many
cases tighter relaxations can be obtained by introducing the new variables
xi = (2zi − 1) and relaxing the nonlinear nonconvex equalities x2

i = 1. Now
consider the matrix X = xxT . This matrix is symmetric, positive semidefinite,
it has rank one and all the diagonal elements are 1. By relaxing the rank con-
straint we get a positive semidefinite relaxation of the original optimization
problem. This technique was used extensively by Goemans and Williamson
[29] to derive tight bounds for max-cut and satisfiability problems. For a sur-
vey of this area see [51] or the books [11, 40].
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3.3 Initialization by Embedding

The key assumption for both the operation of an interior point method and
the validity of the strong duality theorem is the existence of a strictly feasible
solution of the primal-dual systems. Fortunately, the embedding technique we
used for linear optimization generalizes to conic optimization [26]. Consider
the following larger problem based on (PCon) and (DCon):

min (x̄T s̄+ 1)θ
Ax −bτ +b̄θ = 0

−AT y +cτ −c̄θ −s = 0
bT y −cTx +z̄θ −κ = 0
−b̄T y +c̄Tx −z̄T τ = −x̄T s̄− 1

x ∈ K, τ ≥ 0 s ∈ K κ ≥ 0,

(HSD)

where x̄, s̄ ∈ int (K), ȳ ∈ Rm are arbitrary starting points, τ, θ are scalars,
b̄ = b − Ax̄, c̄ = c − AT ȳ − s̄ and z̄ = cT x̄ − bT ȳ + 1. This model has the
following properties [19, 52].

Theorem 16 (Properties of the HSD model). System (HSD) is self-
dual and it has a strictly feasible starting point, namely (x, s, y, τ, θ, κ) =
(x̄, s̄, ȳ, 1, 1, 0). The optimal value of these problems is θ = 0, and if τ > 0 at
optimality then (x/τ, y/τ, s/τ) is an optimal solution for the original primal-
dual problem with equal objective values, i.e., the duality gap is zero. If τ = 0
and κ > 0, then the problem is either unbounded, infeasible, or the duality gap
at optimality is nonzero. If τ = κ = 0, then either the problem is infeasible
without a certificate (weakly infeasible) or the optimum is not attained.

Remark 2. Due to strict complementarity, the τ = κ = 0 case cannot happen
in linear optimization. The duality theory of conic optimization is weaker, this
leads to all those ill-behaved problems.

The importance of this model is that the resulting system is strictly feasible
with a known interior point, thus it can be solved directly with interior point
methods.

3.4 Conic Optimization as a Complementarity Problem

Second Order Conic Case

In order to be able to present the second order conic case we need to define
some elements of the theory of Jordan algebras for our particular case. All the
proofs, along with the general theory can be found in [22]. Here we include as
much of the theory (without proofs) as needed for the discussion. Our main
source here is [3].

Given two vectors u, v ∈ Rn we can define a special product on them,
namely:
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u ◦ v = (uT v;u1v2:n + v1u2:n). (66)

The most important properties of this bilinear product are summarized in the
following theorem:

Theorem 17 (Properties of ◦).

1. Distributive law: u ◦ (v + w) = u ◦ v + u ◦ w.
2. Commutative law: u ◦ v = v ◦ u.
3. The unit element is ι = (1; 0), i.e., u ◦ ι = ι ◦ u = u.
4. Using the notation u2 = u ◦ u we have u ◦ (u2 ◦ v) = u2 ◦ (u ◦ v).
5. Power associativity: up = u◦ · · · ◦u is well-defined, regardless of the order

of multiplication. In particular, up ◦ uq = up+q.
6. Associativity does not hold in general.

The importance of this bilinear function lies in the fact that it can be used to
generate the second order cone:

Theorem 18. A vector x is in a second order cone (i.e., x1 ≥ ‖x2:n‖2) if and
only if it can be written as the square of a vector under the multiplication ◦,
i.e., x = u ◦ u.

Moreover, analogously to the spectral decomposition theorem of symmetric
matrices, every vector u ∈ Rn can be written as

u = λ1c
(1) + λ2c

(2), (67)

where c(1) and c(2) are on the boundary of the cone, and

c(1)T c(2) = 0 (68a)

c(1) ◦ c(2) = 0 (68b)

c(1) ◦ c(1) = c(1) (68c)

c(2) ◦ c(2) = c(2) (68d)

c(1) + c(2) = ι (68e)

The vectors c(1) and c(2) are called the Jordan frame and they play the role of
rank one matrices. The numbers λ1 and λ2 are called eigenvalues of u. They
behave much the same way as eigenvalues of symmetric matrices, except that
in our case there is an easy formula to compute them:

λ1,2(u) = u1 ± ‖u2:n‖2 . (69)

This also shows that a vector is in the second order cone if and only if both
of its eigenvalues are nonnegative.

The spectral decomposition enables us to compute functions over the vec-
tors:
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‖u‖F =
√
λ2

1 + λ2
2 =
√

2 ‖u‖2 , (70a)

‖u‖2 = max {|λ1| , |λ2|} = |u1|+ ‖u2:n‖2 , (70b)

u−1 = λ−1
1 c(1) + λ−1

2 c(2), (70c)

u
1
2 = λ

1
2
1 c

(1) + λ
1
2
2 c

(2), (70d)

where u ◦ u−1 = u−1 ◦ u = ι and u
1
2 ◦ u 1

2 = u.
Since the mapping v 7→ u◦v is linear, it can be represented with a matrix.

Indeed, introducing the arrowhead matrix

Arr (u) =


u1 u2 . . . un
u2 u1

...
. . .

un u1

 , (71)

we have u◦v = Arr (u) v = Arr (u) Arr (v) ι. Another operator is the quadratic
representation, which is defined as

Qu = 2 Arr (u)
2 −Arr

(
u2
)
, (72)

thus Qu(v) = 2u ◦ (u ◦ v)−u2 ◦ v is a quadratic function15 in u. This operator
will play a crucial role in the construction of the Newton system.

Remember that second order cone optimization problems usually include
several cones, i.e., K = Ln1

× · · · × Lnk
. For simplicity let us introduce the

notation

A =
(
A1, . . . , Ak

)
,

x =
(
x1; . . . ;xk

)
,

s =
(
s1; . . . ; sk

)
, (73)

c =
(
c1; . . . ; ck

)
.

With this notation we can write

Ax =

k∑
i=1

Aixi, (74)

AT y =
(
A1T y; , . . . ;Ak

T
y
)
.

Moreover, for a partitioned vector u = (u1; . . . ;uk), Arr (u) and Qu are block
diagonal matrices built from the blocks Arr

(
ui
)

and Qui , respectively.
The optimality conditions for second order conic optimization are

15 In fact, this operation is analogous to the mapping V 7→ UV U for symmetric
matrices.
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Ax = b, x ∈ K
AT y + s = c, s ∈ K (75)

x ◦ s = 0.

The first four conditions represent the primal and dual feasibility, while the
last condition is called the complementarity condition. An equivalent form of
the complementarity condition is xT s = 0.

Now we perturb16 the complementarity condition to get the central path:

Ax = b, x ∈ K (76)

AT y + s = c, s ∈ K
xi ◦ si = 2µιi, i = 1, . . . , k,

where ιi = (1; 0; . . . ; 0) ∈ Rni . Finally, we apply the Newton method to this
system to get the Newton step:

A∆x = 0 (77)

AT∆y +∆s = 0,

xi ◦∆si +∆xi ◦ si = 2µιi − xi ◦ si, i = 1, . . . , k,

where ∆x = (∆x1; . . . ;∆xk) and ∆s = (∆s1; . . . ;∆sk). To solve this system
we first rewrite it using the operator Arr (): A

AT I
Arr (s) Arr (x)

∆y
∆x
∆s

 =

 0
0

2µι− x ◦ s

 , (78)

where ι = (ι1; . . . ; ιk). Eliminating ∆x and ∆s we get the so-called normal
equation:(

AArr (s)
−1

Arr (x)AT
)
∆y = −AArr (s)

−1
(2µι− x ◦ s). (79)

The coefficient matrix is a m × m. Unfortunately, not only this system is
not symmetric, which is a disadvantage in practice, but in general it can be
singular, even if x and s are in the interior of the cone K. As an example17

take A =
(
0,
√

3.69 + 0.7, 1
)
, K =

{
x ∈ R3 : x1 ≥

√
x2

2 + x2
3

}
. The points

x = (1; 0.8; 0.5) and s = (1; 0.7; 0.7; ) are strictly primal and dual feasible, but

AArr (s)
−1

Arr (x)AT = 0.

16 Our choice of perturbation might seem arbitrary but in fact this is the exact
analog of what we did for linear optimization, since the vector (1; 0) on the right
hand side is the unit element for the multiplication ◦. See §3.6 to understand
where the multiplier 2 comes from.

17 See [67, §6.3.1].
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To prevent singularity and to get a symmetric system we rewrite the orig-
inal optimization problem (SOCO) in an equivalent form. Let us fix a scaling
vector p ∈ int (K) and consider the scaled problem18

min
(
Qp−1c

)T
(Qpx) max bT y (SOCOscaled)(

AQp−1

)
(Qpx) = b

(
AQp−1

)T
y +Qp−1s = Qp−1c

Qpx ∈ K Qp−1s ∈ K

where p−1 is defined by (70c), and Qp is given by (72). The exact form of p
will be specified later. This scaling has the following properties:

Lemma 7. If p ∈ int (K), then

1. Qp and Qp−1 are inverses of each other, i.e., QpQp−1 = I.
2. The cone K is invariant, i.e., Qp (K) = K.
3. Problems (SOCO) and (SOCOscaled) are equivalent.

We can write the optimality conditions (75) for the scaled problem and perturb
them to arrive at the central path for the symmetrized system. This defines
a new Newton system: (

AQp−1

)
(Qp∆x) = 0 (80)(

AQp−1

)T
∆y +Qp−1∆s = 0,

(Qpx) ◦
(
Qp−1∆s

)
+ (Qp∆x) ◦

(
Qp−1s

)
= 2µι− (Qpx) ◦

(
Qp−1s

)
.

Using Lemma 7 we can eliminate the scaling matrices from the first two equa-
tions, but not the third one. Although rather complicated, this system is still
a linear system in the variables ∆x, ∆y and ∆s.

Before we can turn our attention to other elements of the algorithm we
need to specify p. The most natural choice, i.e., p = ι is not viable as it does
not provide a nonsingular Newton system. Another popular choice is the pair
of primal-dual HKM directions, i.e.,

p = s1/2 or p = x1/2, (81)

in which case
Qp−1s = ι or Qpx = ι. (82)

These directions are implemented as the default choice in the SOCO solver
package SDPT3. Finally, probably the most studied and applied direction is
the NT direction, defined as:

p =
(
Qx1/2 (Qx1/2s)

−1/2
)−1/2

=
(
Qs−1/2 (Qs1/2x)

1/2
)−1/2

. (83)

18 This scaling technique was originally developed for semidefinite optimization by
Monteiro [57] and Zhang [99], and later generalized for second order cone opti-
mization by Schmieta and Alizadeh [73].
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This very complicated formula actually simplifies the variables, since

Qpx = Qp−1s. (84)

The NT scaling is implemented in SeDuMi and MOSEK and is also available
in SDPT3.

We will now customize the generic IPM algorithm (see Algorithm 1 on
page 26) for second order conic optimization. Let µ = µ(x, s) be defined as

µ(x, s) =

k∑
i=1

xi
T
si

ni
. (85)

First let us define some centrality measures (see [3]). These measures are
defined in terms of the scaled variable w = (w1; . . . ;wk), where wi = Q

x
1/2
i
si.

δF (x, s) := ‖Qx1/2s− µι‖F :=

√√√√ k∑
i=1

(λ1(wi)− µ)
2

+ (λ2(wi)− µ)
2

(86a)

δ∞(x, s) := ‖Qx1/2s− µι‖2 := max
i=1,...,k

{|λ1(wi)− µ| , |λ2(wi)− µ|} (86b)

δ−∞(x, s) :=
∥∥(Qx1/2s− µι)−

∥∥
∞ := µ− min

i=1,...,k
{λ1(wi), λ2(w2)} , (86c)

where the norms are special norms defined in (70) for the Jordan algebra. We
can establish the following relations for these measures:

δ−∞(x, s) ≤ δ∞(x, s) ≤ δF (x, s). (87)

The neighbourhoods are now defined as

N (γ) := {(x, y, s) strictly feasible : δ(x, s) ≤ γµ(x, s)} . (88)

Choosing δ(x, s) = δF (x, s) gives a narrow neighbourhood, while δ(x, s) =
δ−∞(x, s) defines a wide one.

The results are summarized in the following theorem, taken from [3, 60].

Theorem 19 (Short-step IPM for SOCO). Choose19 γ = 0.088 and ζ =
0.06. Assume that we have a starting point (x0, y0, s0) ∈ NF (γ). Compute
the Newton step from the scaled Newton system (80). In every iteration, µ

is decreased to
(

1− ζ√
k

)
µ, i.e., θ = ζ√

k
, and the stepsize is α = 1. This

19 Any values γ ∈ (0, 1/3) and ζ ∈ (0, 1) satisfying

4(γ2 + ζ2)

(1− 3γ)2

(
1− ζ√

2n

)−1

≤ γ (89)

would work here.
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algorithm finds an ε-optimal solution for the second order conic optimization
problem (SOCO) with k second order cones in at most

O
(√

k log
1

ε

)
(90)

iterations. The cost of one iteration depends on the sparsity structure of the
coefficient matrix A. If all the data is dense then it is

O

(
m3 +m2n+

k∑
i=1

n2
i

)
. (91)

It might be surprising that the iteration complexity of the algorithm is in-
dependent of the dimensions of the cones. However, the cost of one iteration
depends on the dimension of the cones.

Although this is essentially the best possible complexity result for second
order cone optimization, this algorithm is not efficient enough in practice since
θ is too small. Practical implementations use predictor-corrector schemes, see
[67, 73, 77, 84] for more details.

Unlike the case of linear optimization, here we do not have a way to round
an almost optimal interior solution to an optimal one, we have to live with
approximate solutions.

Semidefinite optimization

Interior point methods for semidefinite optimization have a very similar struc-
ture to the methods presented so far. We will apply the Newton method to
the perturbed optimality conditions of semidefinite optimization.

The KKT optimality conditions for semidefinite optimization are:

Tr
(
A(i)X

)
= bi, i = 1, . . . ,m, X ∈ PSn×n

m∑
i=1

yiA
(i) + S = C, S ∈ PSn×n (92)

XS = 0.

Again, the first four conditions ensure feasibility, while the last equation is
the complementarity condition. The last equation can be written equivalently
as Tr (XS) = 0. Now we perturb the complementarity condition, this way we
arrive at the central path:

Tr
(
A(i)X

)
= bi, i = 1, . . . ,m, X ∈ PSn×n

m∑
i=1

yiA
(i) + S = C, S ∈ PSn×n (93)

XS = µI,
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where I is the identity matrix. Now we try to apply the Newton method
the same way we did for SOCO and LO, i.e., replace the variables with the
updated ones and ignore the quadratic terms. This way we get:

Tr
(
A(i)∆X

)
= 0, i = 1, . . . ,m

m∑
i=1

∆yiA
(i) +∆S = 0 (94)

X∆S +∆XS = µI −XS.

We want to keep the iterates X and S symmetric and positive definite, thus
we need ∆X and ∆S to be symmetric as well. However, solving (94) the
displacement ∆X is typically not symmetric, simply due to the fact that the
product of two symmetric matrices is not symmetric. Moreover, forcing the
symmetry of ∆X by adding ∆X = ∆XT as a new constraint will make the
problem overdetermined. Our first attempt at formulating the Newton system
fails spectacularly.

Scaling techniques for semidefinite optimization

The solution to the problem we encountered at the end of the previous section
is again to rewrite the optimality conditions (92) in an equivalent form and
use that system to derive the central path. This technique is called scaling
or symmetrization and there are many ways to rewrite the optimality condi-
tions, see [82] for a thorough review. This symmetrization replaces XS = µI
in (93) with 1

2 (MXS + SXM) = µM , where M might depend on X and
S, and can thus change from iteration to iteration. This choice defines the
Monteiro-Zhang family of search directions. The new symmetrized central
path equations are

Tr
(
A(i)X

)
= bi, i = 1, . . . ,m, X ∈ PSn×n

m∑
i=1

yiA
(i) + S = C, S ∈ PSn×n (95)

MXS + SXM = µM,

and the Newton system is

Tr
(
A(i)∆X

)
= 0, i = 1, . . . ,m

m∑
i=1

∆yiA
(i) +∆S = 0 (96)

MX∆S +M∆XS + S∆XM +∆SXM = 2µI −MXS − SXM.

The solution matrices ∆X and ∆S of this system are symmetric, thus we can
update the current iterates maintaining the symmetry of the matrices. Details
on how to solve this system can be found in [77].
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Some standard choices of the scaling matrix M are (see [82] for more
directions):

AHO scaling: The most natural choice, M = I. Unfortunately, the resulting
system will have a solution only if X and S are in a small neighbourhood
of the central path.

NT scaling: Probably the most popular choice,

M = S1/2
(
S1/2XS1/2

)−1/2

S1/2. (97)

This type of scaling has the strongest theoretical properties. Not surpris-
ingly, most algorithmic variants use this scaling. It also facilitates the use
of sparse linear algebra, see [77].

HKM scaling: In this case M = S or M = X−1. Typically, these scalings
are somewhat faster to compute than the NT scaling, but certain large
portions of the theory (such as [67]) are only developed for NT scaling.

Proximity measures

Let µ be defined as µ = µ(X,S) := Tr(XS)
n for the rest of this section. Now we

need to define some centrality measures similar to (56) and (86). The most
popular choices for semidefinite optimization include

δF (X,S) :=
∥∥∥X1/2SX1/2 − µI

∥∥∥
F

=

√√√√ n∑
i=1

(
λi(X1/2SX1/2)− µ

)2
(98a)

δ∞(X,S) :=
∥∥∥X1/2SX1/2 − µI

∥∥∥ = max
i

∣∣∣λi(X1/2SX1/2)− µ
∣∣∣ (98b)

δ−∞(X,S) :=

∥∥∥∥(X1/2SX1/2 − µI
)−∥∥∥∥

∞
:= max

i

(
µ− λi(X1/2SX1/2)

)
,

(98c)

see [59] and the references therein for more details. For strictly feasible X and
S, these measures are zero only on the central path. Due to the properties of
norms we have the following relationships:

δ−∞(X,S) ≤ δ∞(X,S) ≤ δF (X,S). (99)

The neighbourhoods are defined as

N (γ) := {(X, y, S) strictly feasible : δ(X,S) ≤ γµ(X,S)} . (100)

Choosing δ(X,S) = δF (X,S) gives a narrow neighbourhood, while δ(X,S) =
δ−∞(X,S) defines a wide one.
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A short-step interior point method

The following theorem, taken from [59], summarizes the details and the com-
plexity of a short-step interior point algorithm for semidefinite optimization.
Refer to Algorithm 1 on page 26 for the generic interior point algorithm.

Theorem 20 (Short-step IPM for SDO). Choose20 γ = 0.15 and ζ =
0.13. Assume that we have a starting point (X0, y0, S0) ∈ NF (γ). We get the

Newton step from (96). In every iteration, µ is decreased to
(

1− ζ√
n

)
µ, i.e.,

θ = ζ√
n

, and the stepsize is α = 1. This algorithm finds and ε-optimal solution

for the semidefinite optimization problem (SDO) with an n dimensional cone
in at most

O
(√

n log
1

ε

)
(102)

iterations. If all the data matrices are dense21 then the cost of one iteration
is O

(
mn3 +m2n2 +m3

)
.

Remark 3. Depending on the magnitude of m compared to n any of the three
terms of this expression can be dominant. The problem has O

(
n2
)

variables,

thus m ≤ n2. If m is close to n2 then the complexity of one iteration is O
(
n6
)
,

while with a much smaller m of order
√
n the complexity is O

(
n3.5

)
.

Although this algorithmic variant is not very efficient in practice, this is still
the best possible theoretical complexity result. Practical implementations usu-
ally use predictor-corrector schemes, see [77] for more details.

As we have already seen with second order conic optimization, it is not
possible to obtain an exact solution to the problem. All we can get is an
ε-optimal solution, see [68] for detailed complexity results.

3.5 Summary

To summarize the results about conic optimization let us go through our
checklist from §2.3.

• We showed that the duality properties of conic optimization are slightly
weaker than that of linear optimization, we need to assume strict feasibility
(the interior point condition) for strong duality.

20 Any values γ ∈ (0, 1/
√

2) and ζ ∈ (0, 1) satisfying

2(γ2 + ζ2)

(1−
√

2γ)2

(
1− ζ√

n

)−1

≤ γ (101)

would work here.
21 The complexity can be greatly reduced by exploiting the sparsity of the data, see

[77] and the references therein.
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• We embedded the conic optimization problems (PCon) and (DCon) into
a strictly feasible self-dual problem (HSD). From the optimal solutions of
the self-dual model we can
– derive optimal solutions for the original problem, or
– decide primal or dual infeasibility, or
– conclude that no optimal primal-dual solution pair exists with zero

duality gap.
• If a strictly feasible solution exists (either in the original problem or in the

self-dual model) then
– the central path exists;
– the central path converges to a maximally (not necessarily strictly)

complementary solution;
– the limit point of the central path is not necessarily the analytic center

of the optimal set (only if the problem has a strictly complementary
solution).

• Due to the lack of a rounding scheme we cannot get exact optimal solu-
tions from our algorithm and thus cannot use the algorithm to get exact
solutions.

3.6 *Barrier functions in Conic Optimization

Interior point methods for conic optimization can also be introduced through
barrier functions in a similar fashion as we did in §2.5 for linear optimization.
However, the barrier functions for conic optimization are more complicated
and the discussion is a lot more technical, much less intuitive.

A suitable logarithmic barrier function for a second order cone is

φ(x) = − ln
(
x2

1 − ‖x2:n‖22
)

= − lnλ1(x)− lnλ2(x), (103)

assuming that x is in the interior of the second order cone. We can see that
when the point x is getting close to the boundary, then at least one of its
eigenvalues is getting close to 0 and φ(x) is diverging to infinity. For the
optimality conditions of this problem we will need the derivatives of the barrier
function φ(x):

∇φ(x) = −2
(x1;−x2:n)T

x2
1 − ‖x2:n‖22

= −2
(
x−1

)T
, (104)

where the inverse is taken in the Jordan algebra. The multiplier 2 appears
due to the differentiation of a quadratic function, and it will also appear in
the central path equations (76).

For the cone of positive semidefinite matrices we can use the barrier func-
tion

φ(X) = − ln det(X) = −
n∑
i=1

lnλi(X), (105)
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which has the derivative

∇φ(X) = −
(
X−1

)T
. (106)

Having these functions we can rewrite the conic optimization problem (PCon)
as a linearly constrained problem

min cTx+ µφ(x)

Ax = b, (PCon-Barrier)

where µ ≥ 0. The KKT optimality conditions for this problem are the same
systems as (76) and (93) defining the central path, thus the barrier approach
again provides an alternative description of the central path. For more details
on the barrier approach for conic optimization see, e.g., [4].

4 Interior Point Methods for Nonlinear Optimization

First we will solve the nonlinear optimization problem by converting it into
a nonlinear complementarity problem. We will present an interior point al-
gorithm for this problem, analyze its properties and discuss conditions for
polynomial complexity. Then we present a direct approach of handling non-
linear inequality constraints using barrier functions and introduce the concept
of self-concordant barrier functions.

4.1 Nonlinear Optimization as a Complementarity Problem

Let us consider the nonlinear optimization problem in the form

min f(x) (NLO)

gj(x) ≤ 0, j = 1, . . . ,m

x ≥ 0,

where x ∈ Rn and f, gj : Rn → R, are continuously differentiable convex
functions. We will use the notation g(x) = (g1(x); . . . ; gm(x)). The KKT op-
timality conditions for this problem are

∇f(x) +

m∑
i=1

∇gj(x)yj ≥ 0

gj(x) ≤ 0

x, y ≥ 0 (107)(
∇f(x) +

m∑
i=1

∇gj(x)yj

)T
x = 0

g(x)T y = 0.



IPMs for NLO 45

Introducing

L(x, y) := f(x) + g(x)T y (108a)

F (x̄) :=

(
∇xL(x, y)
−g(x)

)
(108b)

x̄ :=

(
x
y

)
(108c)

we can write the nonlinear optimization problem as an equivalent nonlinear
complementarity problem:

F (x̄)− s̄ = 0

x̄, s̄ ≥ 0 (109)

x̄s̄ = 0.

4.2 Interior point methods for nonlinear complementarity
problems

In this section we derive an algorithm for this problem based on [70].
Let us now simplify the notation and focus on the nonlinear complemen-

tarity problem in the following form:

F (x)− s = 0 (NCP)

x, s ≥ 0

xs = 0,

where x, s ∈ Rn, F : Rn → Rn. After perturbing the third equation (the
complementarity condition) we receive the equations for the central path.
Note that the existence of the central path requires stronger assumptions
than in the linear or conic case, see [25] and the references therein for details.

F (x)− s = 0

x, s ≥ 0 (110)

xs = µe,

where µ ≥ 0 and e is the all one vector. We use the Newton method to solve
this system, the corresponding equation for the Newton step is:

F ′(x)∆x−∆s = 0 (111)

s∆x+ x∆s = µe− xs,

where F ′(x) is the Jacobian of F (x). In general, the point x+∆x is not feasible,
i.e., F (x+∆x) ≥ 0 and/or x+∆x ≥ 0 is not satisfied, thus we will need to use
a stepsize α > 0 and consider a strictly feasible x(α) := x+ α∆x as the new
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(primal) iterate. The new dual iterate will be defined as s(α) = F (x+ α∆x).
Note that unlike in linear and conic optimization, here s(α) 6= s+ α∆s.

The algorithm is structured analogously to the generic structure of IPMs
presented as Algorithm 1. All we need to do is to specify the details: the
proximity measure δ(x, s), the choice of stepsize α and the update strategy of
µ.

The proximity measure

There are several variants in existing implementations. The most important
ones are

δ2(x, s) = ‖xs− µe‖2 (112a)

δ∞(x, s) = ‖xs− µe‖∞ (112b)

δ−∞(x, s) =
∥∥∥(xs− µe)−

∥∥∥
∞

:= max
i

(µ− xisi) , (112c)

where µ = xT s/n. This enables us to define a neighbourhood of the central
path:

N (γ) = {(x, s) strictly feasible : δ(x, s) ≤ γµ} , (113)

where γ ∈ (0, 1).

Choosing the stepsize α

For nonlinear optimization problems the stepsize is chosen using a line-search.
We want to get a large step but stay away from the boundary of the feasible
set. Let αmax be the maximum feasible stepsize, i.e., the maximal value of α
such that x+ α∆x ≥ 0 and F (x+ α∆x) ≥ 0.

We are looking for a stepsize α < αmax such that

• (x(α), s(α)) is inside the neighbourhood N (γ), and
• the complementarity gap x(α)TF (x(α)) is minimized.

In some practical implementations α = 0.95αmax (or α = 0.99αmax) is
used as the stepsize, enhanced with a safeguarded backtracking strategy. The
extra difficulty with general nonlinear optimization problems is that the line-
search can get stuck in a local minimum, thus some globalization scheme is
needed. Such ideas are implemented in the IPOPT solver [90].

Updating µ

Usually we try to decrease µ at a superlinear rate, if possible. In short-step

methods, µ is changed to µ
(

1− ζ√
n

)
after every iteration, i.e., θ = ζ√

n
in the

general IPM framework on page 26. ζ is a constant depending on the neigh-
bourhood parameter γ and the smoothness of the mapping F . The smoothness
is quantified with a Lipschitz constant L in Assumption 21.
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Complexity of IPM for NCP

Now assume that the Jacobian F ′(x) of F (x) is a positive semidefinite matrix
for all values of x. Then problem (NCP) is called a monotone nonlinear com-
plementarity problem. If the original nonlinear optimization problem (NLO) is
convex, then this always holds. To be able to prove polynomial convergence of
IPMs for convex nonlinear problems we need to control the difference between
s(α) = F (x(α)) and s+ α∆s. We assume a smoothness condition [8]:

Assumption 21 Consider the nonlinear complementarity problem (NCP).
Assume that F (x) satisfies the scaled Lipschitz property, i.e., for any x > 0,
h ∈ Rn, satisfying |hi/xi| ≤ β < 1, there exists a constant L(β) > 1 such that

‖x · (F (x+ h)− F (x)− F ′(x)h)‖1 ≤ L(β)hTF ′(x)h. (114)

The complexity result is summarized in the following theorem:

Theorem 22 (Complexity of short-step IPM for monotone NCP).
Assume that F (x) is a monotone mapping satisfying the scaled Lipschitz prop-
erty. The proximity measure is based on the 2-norm and assume that a strictly
feasible starting point in N2(γ) with xT s/n ≤ 1 is available.

The Newton step is computed from (111). If γ and ζ are chosen properly,
then α = 1 is a valid stepsize, i.e., no line-search is necessary.

This algorithm yields an ε-complementary solution for (NCP) in at most

O (
√
nL log(1/ε)) iterations.

Explicit forms of the constants and detailed proofs can be found in [8]. The
cost of one iteration depends on the actual form of F (x). It includes computing
the Jacobian of F at every iteration and solving an n×n linear system. When
full Newton steps are not possible,22 then finding αmax and determining the
stepsize α with a line-search are significant extra costs.

4.3 Initialization by Embedding

Interior point methods require a strictly feasible starting point, but for non-
linear optimization problems even finding is feasible point is quite challenging.
Moreover, if the original problem has nonlinear equality constraints which are
modelled as two inequalities then the resulting system will not have an interior
point solution. To remedy these problems we use a homogeneous embedding,
similar to the ones presented in §2.2 and §3.3. Consider the following system
[7, 8, 96]:

22 This is the typical situation, as in practice we rarely have explicit information on
the Lipschitz constant L.
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νF (x/ν)− s = 0 (NCP-H)

xTF (x/ν)− ρ = 0

x, s, ν, ρ ≥ 0

xs = 0

νρ = 0.

This is a nonlinear complementarity problem similar to (NCP). The properties
of the homogenized system are summarized in the following theorem.

Theorem 23. Consider the nonlinear complementarity problem (NCP) and
its homogenized version (NCP-H). The following results hold:

1. The homogenized problem (NCP-H) is an (NCP).
2. If the original (NCP) is monotone then the homogenized (NCP) is mono-

tone, too, thus we can use the algorithm presented in §4.2.
3. If the homogenized (NCP) has a solution (x, s, ν, ρ) with ν > 0 then

(x/ν, s/ν) is a solution for the original system.
4. If ν = 0 for all the solutions of (NCP-H) then the original system (NCP)

does not have a solution.

4.4 *The barrier method

An alternative way to introduce interior point methods for nonlinear optimiza-
tion is to use the barrier technique already presented in §2.5 and §3.6. The
basic idea is to place the nonlinear inequalities in the objective function inside
a barrier function. Most barrier function are based on logarithmic functions.

The nonlinear optimization problem (NLO) can be rewritten as

min f(x)− µ
m∑
j=1

ln(−gj(x))− µ
n∑
i=1

ln(xi). (115)

If xi or −gj(x) gets close to 0, then the objective function grows to infinity.
Our goal is to solve this barrier problem approximately for a given µ, then
decrease µ and resolve the problem. If µ is decreased at the right rate and the
approximate solutions are good enough, then this method will converge to an
optimal solution of the nonlinear optimization problem. See [63] for details on
the barrier approach for nonlinear optimization.

5 Existing software implementations

After their early discovery in the 1950s, by the end of the 1960s IPMs were
sidelined because their efficient implementation was quite problematic. As
IPMs are based on Newton steps, they require significantly more memory
than first order methods. Computers at the time had very limited memory.
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Furthermore, the Newton system is inherently becoming ill-conditioned as
the iterates approach the optimal solution set. Double precision floating point
arithmetic and regularization techniques were in their very early stage at that
time. Solving large scale linear systems would have required sparse linear
algebra routines, which were also unavailable. Most of these difficulties have
been solved by now and so IPMs have become a standard choice in many
branches of optimization.

In the following we give an overview of existing implementations of interior
point methods. See Table 1 for a quick comparison their features. The web
site of the solvers and the bibliographic references are listed in Table 2.

Solver License LO SOCO SDO NLO

CLP barrier open source X QO
LIPSOL open source X
GLPK ipm open source X
HOPDM commercial X QO X
MOSEK barrier commercial X X X
CPLEX barrier commercial X X23

XPRESS barrier commercial X QO
CSDP open source X X
SDPA open source X X
SDPT3 open source X X X
SeDuMi open source X X X
IPOPT open source X24 X25 X
KNITRO commercial X24 X25 X
LOQO commercial X24 X25 X

Table 1. A comparison of existing implementations of interior point methods.

5.1 Linear optimization

Interior point algorithms are the method of choice for large scale, sparse,
degenerate linear optimization problems. Solvers using the simplex method
are usually not competitive on those problems due to the large number of

23 CPLEX solves second-order conic problems by treating them as special (noncon-
vex) quadratically constrained optimization problems.

24 In theory all NLO solvers can solve linear optimization problems, but their effi-
ciency and accuracy is worse than that of dedicated LO solvers.

25 LOQO does solve second-order conic optimization problems but it uses a different
approach. It handles the constraint x1 − ‖x2:n‖2 ≥ 0 as a general nonlinear
constraint, with some extra care taken due to the nondifferentiability of this
form. In a similar way, other IPM based NLO solvers can solve SOCO problems
in principle.
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CLP [24], http://www.coin-or.org/Clp
LIPSOL [100], http://www.caam.rice.edu/∼zhang/lipsol
GLPK [28], http://www.gnu.org/software/glpk
HOPDM [15], http://www.maths.ed.ac.uk/∼gondzio/software/hopdm.html
MOSEK [6], http://www.mosek.com
CPLEX [12], http://www.ilog.com
XPRESS-MP [41], http://www.dashoptimization.com
CSDP [13], http://projects.coin-or.org/Csdp
SDPA [95], http://homepage.mac.com/klabtitech/sdpa-homepage
SDPT3 [86], http://www.math.nus.edu.sg/∼mattohkc/sdpt3.html
SeDuMi [76], http://sedumi.mcmaster.ca
IPOPT [90], http://projects.coin-or.org/Ipopt
KNITRO [14], http://www.ziena.com/knitro.htm
LOQO [89], http://www.princeton.edu/∼rvdb/loqo

Table 2. Availability of implementations of IPMs.

pivots needed to get to an optimal solution. However, interior point methods
still do not have an efficient warm start strategy, something simplex based
methods can do naturally, so their use for branch-and-bound type algorithms
is limited.

IPMs have also been implemented in leading commercial packages, usually
together with a simplex based solver. Comprehensive surveys of implementa-
tion strategies of IPMs can be found in, e.g., [5, 36]. For a review on the
strengths and weaknesses of interior point methods versus variants of the
simplex method see [43].

Linear optimization problems with up to a million variables can be
solved routinely on a modern PC. On larger parallel architectures, linear and
quadratic problems with billions of variables have been solved [34].

5.2 Conic optimization

Interior point methods are practically the only choice for semidefinite opti-
mization, most of the existing general purpose solvers fall into this category,
only PENSDP26 being a notable exception. Also, PENSDP is the only solver
that can handle nonlinear semidefinite problems and it is also the only com-
mercial SDO solver (at least at the time this chapter is written).

The implementation of IPMs for conic optimization is more complicated
than that for linear optimization, see [13, 77, 83] for more details.

Unfortunately, commercial modelling languages do not support SDO, thus
limit its use in the commercial sector. Second order conic optimization is in
a slightly better situation, since it is easily formulated, but there are only
very few specialized solvers available. Only very few solvers can solve prob-

26 [49], http://www.penopt.com/pensdp.html
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lems including both second order and semidefinite constraints, currently only
SeDuMi and SDPT3. Both of these packages run under Matlab.

There are two open source modelling languages that support conic opti-
mization: Yalmip27 and CVX28. Both of these packages are written in Matlab.

5.3 Nonlinear optimization

There are literally hundreds of solvers available for nonlinear optimization and
only a small fraction of those use interior point methods. On the other hand,
arguably, the most powerful, robust solvers are actually based on interior point
methods, IPOPT, KNITRO and LOQO being the most successful ones. These
are all general use nonlinear optimization solvers, they can handle nonconvex
problems as well (yielding a locally optimal solution). Some codes have been
specialized for optimization problems with complementarity constraints. The
best known variant is IPOPT-C [71], an extension of IPOPT.

The implementation of these methods poses further challenges, see [90] for
details.

6 Some open questions

Interior point algorithms have proved to be very successful methods for linear
and nonlinear optimization, especially for large-scale problems. The “interior-
point revolution” [92] has completely changed the field of optimization. By
today, the fundamental theoretical questions regarding complexity and con-
vergence of interior point methods have been addressed, see also [62] for a
recent survey. Most importantly, we know that results about the iteration
complexity of these methods cannot be improved further, see [21] for details
on the worst-case complexity of interior point methods.

6.1 Numerical behaviour

Current research is focusing on efficient implementations of the methods. Due
to the ill-conditioned nature of the Newton system in the core of IPM meth-
ods, people are looking for ways to improve the numerical behaviour of the
implementations. Some notables results are included in [31, 78, 79]. Most of
these ideas are implemented in leading interior point solvers.

6.2 Rounding procedures

Iterates of interior point methods stay inside the set of feasible solutions, while
with a linear objective, the optimal solution is on the boundary of the feasible

27 [50], http://control.ee.ethz.ch/∼joloef/yalmip.php
28 [38, 39], http://www.stanford.edu/∼boyd/cvx
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set. Rounding procedures try to jump from the last iterate of the IPM to an
optimal solution on the boundary. This theory has been well-developed for
linear optimization and linear complementarity problems [56, 72]. For conic
optimization, the mere existence of such a method is an open question. In
general we cannot expect to be able to get an exact optimal solution, but
under special circumstances we might be able to get one.

6.3 Special structures

Exploiting sparsity has always been one of the easiest ways to improve the
performance of an optimization algorithm. With the availability of efficient
sparse linear algebra libraries and matrix factorization routines, general (un-
structured) sparsity seems to have been taken care of. On the other hand,
sparse problems containing some dense parts pose a different challenge [30].
Moreover, even very sparse semidefinite optimization problems lead to a fully
dense Newton system, which puts a limit on the size of the problems that can
be solved.

There are several other special types of structures that cannot be fully
exploited by current implementations of interior point methods. This limits
the size of the problems that can be solved with IPMs. At the same time it
offers a wide open area of further research.

6.4 Warmstarting

A serious deficiency of interior point methods is the lack of an efficient warm-
starting scheme. The purpose of a warm-start scheme is to significantly reduce
the number of iterations needed to reoptimize the problem after changes to
the data (constraints are added or deleted, numbers are changed). Despite
numerous attempts (see [33, 35, 98]), none of the methods are particularly
successful.

If the change in the problem data is small enough then simplex based
methods can very quickly find a new optimal solution. If the change is large
(hundreds or thousands of new constraints are added) then interior point
methods have a slight edge over first order methods.

6.5 Parallelization

With the general availability of inexpensive multiple core workstations and
distributed computing environments, parallelization of optimization algo-
rithms is more important than ever. Most developers are working on a
parallelized version of their codes. Some success stories are reported in
[13, 34, 44, 61].
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