
May 1989 Report No. STAN-CS-89-1259

Interior-Point Methods in Parallel Computation

bY

A. V. Goldberg, S. A. Plotkin, D. B. Shmoys, and 6 Tardos

Department of Computer Science

Stanford University

Stanford, California 94305

.

U n c l a s s i f i e d

SEC URITY C LASSIFIC ATIO N O F THIS PAG E
\

REPORT DOCUMENTATION PAGE
Form Ap p ro ve d

OMB No 0704-O 188

1 a REPO RT SEC URITY C LASSIFIC ATIO N 1 b RESTRIC TIVE MARKING S

2a SEC URITY C LASSIFIC A TIO N A UTHO RITY 3 DISTRIBUTIO N / AVAILABILITY O F REPO RT

.
2b DEC LASSIFIC ATIO N I DO WNG RADING SC HEDULE

q Unclassified: Distribution Unlimite

4 PERFO RMING O RG ANIZATIO N REPO RT NUMBER(S) 5 MO NITO RING O RG ANIZATIO N REPO RT NUMBER(S)

STAN-CS-89-1259

6.3 NAME O F PERFO RMING O RG ANIZATIO N 6b O FFIC E SYMBO L 7a NAME O F MO NITO RING O RG ANIZATIO N
(if applrcable)

Computer S c i e n c e Dept,
I I

fjc . ADDRESS (City, Stste , and ZIPCode) 7b ADDRESS (City, State, dnd ZIPCode)

Stanford University

Stanford, CA 94305
I

aIa NAME O F FUNDING / SPO NSO RING 8b O FFIC E SYMBO L 9 PRO C UREMENT INSTRUMENT IDENTIFIC ATIO N NUMBER

O RG ANIZATIO N

Partial: ONR
(If dpphcdbh?)

NO0014-88-K-0166

I
. I

8 c ADDRESS (City, Sta te , and ZIP Code) 10 SO URC E O F FUNDING NUMBERS

PRO G RAM PRO JEC T TASK WO RK UNIT

E LE M E N T N O N O NO ACCESSIO N NO

I
1 1 TITLE (Include Securrty C/dssrf\cdtron)

Interior-Point Methods in Parallel Computation

-
1,1 PERSO NAL AUTHO R(S)

Goldberg, Plotkin, Shmoys, and Tardos
-

1:Ia TYPE O F REPO RT 13b TIME C O VERED 14 DATE O F REPO RT (Year, Month, Day) 15 PAG E C O UNT

FRO M , TO -
1989, May 14

-

Ifj SUPPLEMENTA PY NO TA TIO N

-
17 C O SATI CO DES 18 SUBJEC T TERMS (Contrnue on reverse rf necessary and ldentrfy by block number)

FIELD G RO UP SUB-G RO UP
I I

-
19 Ab STRACT (Continue on reverse rf necessary and ld e ntrfy by block number)

In this paper we use interior-point methods for linear programming. cl~~vc~lopetl iI1 tII(l

contest of sequential computation, to obtain a parallel algorithm for t.he I>ip a rtite nla tc lrills

problem. Our algorithm runs in 0*(,/G) time ‘. Our results extend to the \velgllt,ed Ijip:\rt.it(>

matching problem and to the zero-one minimum-cost flow problem, yielding O’(filog C’)

algorithms’. This improvk previous bounds on these problems and illust.ratw the iln~~ort;\llc.t~

of interior-point methods in the contest of parallel algorithm design.

/ I
20 DlSTRl8UTlO N / A VA ILA BILITY O F A8STRACT 21 ABSTRAC T SEC URITY C LASSIFIC ATIO N

m UNCLASSIFIED/ UNLIMI~ED 0 SA ME A S RPT c] DTIC USERS 1

? 2a NA ME O F RESPO NSIBLE INDIVIDUAL 22b TELEPHO NE (Inc kd e Afed C o d e) 22~ OFFICE SYMBO L

Andrew Goldberg (415)723-2271
/
DD Form 1473, JUN 86 Previous edrtlons are obsolete SECURITY C LASSIFIC ATIO N O F :h,S PAGE- - -___

s/x OlOZ-LF-014-6603

Interior-Point Methods in Parallel Computation

Andre w V. Goldbwg”

Department’ of Computer Science

Stanford University

Stanford, CA 94305

Surge A . Plotki?zt

Department of Computer Science

Stanford University

Stanford, CA 94305

David B. Shmoys~

Depa.rtment of Mathematics

M.I.T.

Ca.mbriclge, MA 021:39

ha Tard 0.5s

Depaxtment of Mathematics

M.I.T.

~~‘a~mbriclge, MA OX39

a,ncl

Computer Science Department

Eijtv% University

h1clapest

May 19S9

*Research partially supported by NSF Presidential Young Investigator Grant CCR-885809’7, IBM Faculty De-

velopment Award, and ONR Contract N00014-88-k-0166.

+ Research partially supp orted by ONR Contract N00014-88-1X-0166.

:Research partially supported by an NSF Presidential Young Investigator award wit,h matching support, from

UPS, IBM, and Sun Microsyst,ems, by Air Force contract AFOSR-86-0078, as well as by the IBM award of the first

author.

SResearch partially supported by Air Force contract AFOSR-86-0078, as well as by the IBM award of the first.

0

Abstract

In this paper we use interior-point methods for linear programming, developed in t,he

contest of sequential computation, to obtain a parallel algorithm for t,he bipartite matching

problem. Our algorithm runs in 0*(,/E) time I. Our results extend to the weighted bipartite

matching problem and to the zero-one minimum-cost flow problem, yielding O*(filog C’)

algorithms?. This improvk’previous bounds on these problems and illustrates the importance

of interior-point methods in t#he contest of parallel algorithm design.

1 Introduction

In this paper we use interior-point methods for linear programming, developed in the contest,

of sequential computation, to obtain a parallel algorithm for the bipartite matching problem.

Although Karp, Upfal, and Wigderson [20] have shown that the bipart,ite ma,tching problem is

in RNC (see also [25]), this problem is not known to be in NC. Special cxes of t,he problem are

known to be in NC. Lev, Pippenger, and Valiant [23] gave an NC algorithm to find a perfect

matching in a regukr bipartite graph. (This algorithm is based on a sequential a~lgorithm of

Gabow a.nd Kariv [121; see also [.5] .) M-111 er and Naor [24] gave an NC a.lgorithm to find a perfect

matching in a. pla.na,r bipartite graph (if one esists) and other special cases are considered in [lci].

The previous best deterministic algorithm for the problem. due to Cioltlberg, Plotkin, and

Vaidya. [131, runs in O*(?z213) time. This algorithm is based on combinatoria.1 xlgorithms for the

maximum flow and bipartite matching problems [G, 7, 8, 14, 171 and on a paxallel connectivity

algorithm 1261. In this pa.per we describe an 0*(fi) algorithm for the bipa.rtite matching problem

that is based on an interior-point algorithm for linear programming and on Gabow’s a.lgorithm [ll]

for edge-coloring bipa.rtite graphs. For graphs of low-to-moderate density. this bound is better

than the best previous bound mentioned above.

The significa.nce of the bipa,rtite matching problem has been well-recognized in the contest of

sequential computation, combinatorics, and graph theory. More recently. the importa.nce of the

problem for pa.ra.llel computation has been recognized as well. The efficiency of several parallel

algorithms depends on the parallel complexity of the bipartite matching problem. For example,

Agga.rwa.1 a,nd Anderson [l] and Aggarwal, Anderson, and Kao [2] show, respectively, tha& an

NC a.lgorithm for bipartite matching implies NC algorithms for the problem of constructing a

depth-first search tree in undirected and directed graphs.

The results presented in this paper extend to the maximum-weight matching problem a.nd to

the zero-one minimum-cost flow problem. The resulting algorithms run in O*(filog C) time.

The previous best algorithm for the zero-one minimum-cost flow problem runs in O*((r~m)*i~ log C.l)

time [13]. The new algorithm is better for both the zero-one ma,simum flow and the zero-one

minimum-cost flow problems for all graph densities.

‘Throughout t,he paper, n and m denotes the number of nodes and edges of the input graph. An algorithtll runs

in O*(~(TL)) time if it runs in O(f(n.)logk(n)) time for some constant k.

2Throughout t,he pa1,er we assume that all cost,s and weights are integers in t-he range [-C. . C], where C > 1.

1

An interior-point algorithm works as follows. The algorithm starts with a point in the int.erior

of the feasible region of the linear program. In its ma,in loop, the algorithm moves from one

interior point to another, decreasing the value of a I)ote72ticr.l f:rr.nction at each it,eration. Whcm

this value is small enough, the algorithm termina.tes with an interior-point solution t,ha,t has a

nea,r-optimal value. The finish-zip stage of the algorithm converts this near-optimal solution into

a,n optimal basic solution.

Karmarka,r’s revolutionary paper [191 spurred the development of the area. of interior-point

linear programming algorithms, and many papers have followed his lead. Karmarkar’s a.lgorithm

runs in O(NL) iterations.3 Gonzaga [1.5] d’iscovered a simple variation of Karmarkar’s a.lgorithm

that uses an affine transformation instead of the projective transformation used by Iiarma,rkar.

Renegar [28] was the first to give a.n interior-point algorithm that runs in 0(fiL) iterations.

A different O(fiL)-itera.tion algorithm was developed by Ye [:33], which is a,n improvement of

Gonzaga.‘s algorithm (a similar algorithm is described in [lo]). Tlle matching algorithm discussed

in this paper is based on Ye’s linear programming algorithm. The fastest linear programming

algorithm currently known is due to Vaidya [32]. This algorithm is based on Renegar’s method

and terminates in the same number of iterations, but reduces the time per iteration using fast

matrix multiplication, rank-one updates, and careful balancing. See [30] for a. survey of the

interior-point algorithms.

Interior-point algorithms have proved to be a,n important t,ool for developing efficient sequential

algorithms for linear programming, its special cases, and quadratic programming (see e.y. [IS]).

In this paper we apply these tools in the context paxallel computation. For the purpose of parallel

computation, an important fact is that the running time of an iteration of an interior-point,

algorithm is dominated by the time required for matrix multiplication and inversion. Therefore,

an iteration of such an algorithm takes O(log3 N) time on a PRAM using N3 processors [26].

Roughly speaking, every fi iterations of an 0(fiL) ‘ti era.tion interior-point algorithm de-

crease the gap between the current value of the objective function a,nd the optimum va,lue by a

constant factor. The bipartite matching problem can be formulated as a. lineax program with an

integral optimum value. Therefore, the size of the masimum matching is known as soon as this

gap is below one. Furthermore, the gap between the value of an initial solution and the optima.1

value is at most N. In Section 3, we give such a formulation with N = O(m) and L = 0(log II).

This suggests that an interior-point algorithm can be used t.o find the value of the maximum

matching in a bipartite graph in O(Jmlogn) iterations, or 0*(fi) time. In this paper we

develop an algorithm running in this time bound that finds a maximum matching as well a.s its

value.

For this we need to overcome two difficulties. First, we need to find an initial interior point

with small potential function value, so that the number of iterations is small. The second diffi-

culty comes from the fact that standard implementa.tions of the finish-up stage of interior-point

algorithms either are inherently sequential or perturb the input problem to simplify the finish-

up stage, which makes L, and therefore the number of iterations of the main loop, superlinear.

3N and L denote the number of variables an d the size of the linear program. See Section 2 for formal definitions.

2

For the special case of the bipartite matching problem, we give a pa,rallel implementation of the

finish-up stage that runs in O(log2 n) time using m processors. This implement,a.tion is based on

Gabow’s edge-coloring algorithm [111.

Our techniques apply to the more general masimum-weight matching problem. The algorit.hm

and its analysis are only slightly more involved in this more general case. and for brevity, we foclls

on it. The results for bipartite matching are obtained as a simple corollary of the results for

weighted bipartite matching. The main loop of our masimum-weight matching algorithm runs in

O*(filogC) time, and the finish-up stage runs in O*(logC) time. Therefore, the algorithm runs

in O*(JmlogC) time. A sta,ndard reduction between the weighted matching and the zero-one

minimum-cost flow problems (see e.g. [4, 201) gives O*(Jmlog C) algorithms for these probleins.

This paper is organized as follows. Section 2 introduces definitions and terminology and

reviews Ye’s linear programming algorithm. Section 3 gives a linea,r programming formulation of

the bipartite matching problem that has an initial interior-point with a small potentia.1 functlion

value, and shows how to use the linear programming algorithm to obtain a near-optima.1 fractiona.

matching. Section 4 describes a parallel procedure that, in O*(logC) time, converts the near-

optimal fractional matching into a,n optimal zero-one matching. Section rj contains concluding

remarks.

2 Preliminaries

In this section we define the matching problem and the linear programming problem, and review

some fundamental facts about them. For a detailed treatment, see [27, 291. We also give a.11

overview of Ye’s algorithm.

The bipartite matching problem is to find a maximum cardinality matching in a bipartite

graph G = (V, E). The maximum-weight bipartite ,matching problem is defined by a bipartite

graph G = (V,E) and a weight function on the edges w : E ---+ R. The weight of a* ma.tching M

is CeEIVI w(e). The problem is to find a ma.tching with maximum weight.

We use the following notation and assumptions. G = (V, E) denotes the (bipartite) input

graph, n denotes the number of nodes in G, m denotes the number of edges in G, and C denot,es

the maximum absolute value of the weights of edges in G, which we assume to be integral. To

simplify the running time bounds, we assume, without loss of generality, that nz 2 n - 1 > 1,

a.nd C > 1. We denote the degree of a node v by n(v), and the set of edges incident to node 17 by

6(v). For a vector x, we let x(i) denote the ith coordinate of m. We use a CRCW PRAM [9] as

our model of parallel computation.

It is well known that the node-edge incidence matris of a bipartit.e gra#ph is totally unimodular.

Therefore, any optimal solution of the following linear program is the convex combination of

maximum-weight matchings, and hence the optimal value of this linear progra.m is equa,l to the

masimum weight of a matching.

Matching-l: maximize WV
subject to: CeCS(v) &I 5 17 for each v E ir,

f 2 0.

A feasible solution to the system of above linear inequalities is called a Jiactioncll mtrtchillg. W’c

denok an 0ptima.l solution of the linear program by f*.

Ye’s a.lgorithm handles linear programs in the following form:

Primal LP: minimize ctx

subject to: Ax = b,

x 2 0,

where.-4 is a ma’tris, and b, c and x are vectors of appropriate dimensions. We assume that the

ma.tris rl a(nd the vectors b and c are integral. We use N to denote the number of va,riables in the

linear programs we consider. A vector x is a feasible solution if it satisfies the constraints kc = b

a,nd x > 0. A feasible solution x is optimal if it minimizes the objective function value ctx, and is

a,n interioya poi72t if it is in the interior of the feasible region, i.e., if coordinat,es of x a,re positive.

The linea,r progra.mming duality theorem states that the minimum va.lue of the Prima.1 LP is

equal to the ma’ximum value of the following Dual LP:

Dual LP: ma,timize b%r

subject to: A% +.s = c,

s > 0:

where T a.nd s a,re the variables of the Dual LP, the dimension of r is equa,l to the dimension of b,

and the dimension of s is equal to the dimension of x. Feasible and 0ptima.l solutions and interior

points for the dual problem are defined in the same way as for the prima.1.

Let :c be a feasible solution to the Primal LP, and let (n, s) be a fea.sible solution to the Dua,l

LP. The value ctx is an upper bound, and btn is a lower bound, on the common optimal value of

the two problems. Hence the difference ctx - btn = stx measures how far the current solutions

are from being optimal. This quantity is called the duality gap.

Ye’s algorithm is based on algorithms of Gonzaga [15] and Todd and Ye [:31]. Freund [101

describes a very similar algorithm, and gives a detailed discussion of a good choice of q (defined

below). The algorithm is applied to a pair of primal and dual linear programs in the above form.

It starts with a vector (x0, ~0, so), where x0 and (~0, so) are interior points of the primal and dua.1

linear problems, respectively. At each iteration of the main loop, the algorithm moves either from

the current interior point of the primal problem to another interior point of the problem, or from

the current interior point of the dual problem to another interior point of the problem. Progress

is mea,sured by a, potential function

N

@(XT, s) = qlog(x%) - c log(x(i)s(i)) - N log 3’.

i = l

4

where q = ,V + &V. Each iteration reduces this potential function by a, constant.

The number of itera,tions of interior-point algorithms depends on a parameter L that is related

to the size of the input numbers. This parameter is often defined to be the total number of bits

in the binary description of all coefficients in A, b and c. We use a different definition [19, 321,

which leads to a much smaller value of L in the case of the bipartite matching problem. Let D(A)

denote Ohe maximum absolute value of a subdeterminant of A, and let B denote the ma.simum

a.bso1ut.e value of the coefficients of b and c. Then L is defined by

L = log D(A) + log N + log B.

With this definition, L = O(log(nC)) for linear program Matching-l.

\,\%en the value of the current feasible solution x is less then 2-L awa,y from the optima.1 value,

a sta,nclard (sequential) rounding procedure yields a,n optima,1 solution.

The following lemma is the ba.sis for the analysis of Ye’s algorithm.

Lemma 2 .1 [33] If we have an initial solution (‘x0, ~o,so) such that @(zo,so) 5 O(Ji\rL), then

after 0(JSL) iterations the duality gap T~.S < 2-L.

Proof’: Recall that the a.lgorithm decreases the potential function by a constant per iteration.

Thus after O(fiL) ‘t1 erations ia(z, s) < - fiL. The potential function can be rewritten as

follows:

f&x, s) = ~log(stm) + 5 log StZ N log N.
1=1

s(i)x(i) -

Note that the second term is minimized when the values of s(i)x(i) are the same for all i, and

therefore this term is at least N log N. Therefore, if the potential function value is at most -flL,

then J;\;log(slz) < -flL. Hence we have xt..s < 2-L. m

To obta,in an 0(JFL) bound on the number of iterations, one has to provide an initial solution

(x0, TO? SO) with @(x0, so) 5 flL. Consider the potential function @ written as in (1). It is easy

to find an initial solution for which the first term is bounded by O(JNL). The difficulty is t,o

gua,rantee that the second term is fairly close to the N log N lower bound. A good initial solution

is one where the terms s(i)z(i) a,re almost equal. As mentioned in [3], Ye proposed a way to

obta,in an equivalent formulation with such an initial solution. This uses the usual definition of

L, but ca.n also be shown to work for the definition of L that we use in this paper. In the nest

section Lve provide a slightly simplified construction for the bipartite ma.tching problem.

3 Finding a Near-Optimal Solution

In this section we show how to convert the Matching-1 linear program into a linear progra*m that

is in the form required by Ye’s algori thm and has a,n initial solution wi th small potential function

value. Then we show how to compnte a nea.r-optima.1 fractional matching from this initial solution.

We restate the ma.tching problem as follows:

lVIatcllirly-2: minimize -u+f f sz

subject to: c f(e)t(n-cl(v))g(v)-z = 1 forea.ch v~1/‘,

&S(v) (2)

ltf+ltgty = ntmtl, (*I

fJ,&Y 2 0,

where 1 denotes the vector all of whose coordinates are 1. We denote the objective function of this

linear program by c. The number of vaxiables in this linear program is m + n + 2 = N. We denote

a feasible solution to Matching- 2 by x = (f, g, y, z), and a feasible solution of the corresponding

dual problem by 7r a.nd .s? ivhere x(i) for i. = 1, . . . , n is the dual variable corresponding to the

primal constraint for node t:i, and ~(n + 1) is the dual variable corresponding to the constraint

(*). Note tl1a.t for this linear progra,m? L = O(log(nC)).

Intuitively, the tra.nsforma.tion works as follows. Variables g(vj are the slack variables intro-

duced to replace inequality consbraints by equality constraints. The positive multipliers (n - d(11))

scale the slack variables so that there is a fea.sible solution with all original and slack variables

equal. The coefficient of z in the objective function is large enough to guarantee tl1a.t z = 0 in

an optima.1 solution. The constraSint (*) does not affect the primal problem since y is not in the

objective function and. as we have just mentioned, in an optimal solution s = 0 and therefore

gtl + f’l 2 n is automatically satisfied. This constraint, however, allows us to obtain an initial

solution for the dual problem such tha,t the dual slack vaaiables corresponding to the primal vari-

ables f? 9 a,nd y axe roughly equal. A na.tural dual solution is to set the vector T to 0, and set

the dual slack variables equal to the primal objective coefficients. Even if this were feasible, the

coefficients axe very diRerent, (the coefficients of g are zero, the others are not), a.ncl so this is not

a good starting solution. However, by setting the coordinate of YT corresponding to the additional

constra.int to be a0 large negative number (while keeping the others equal to 0) the slacks (except

for the one corresponding to Z) are ma,de feasible, and roughly equal to the dual variable for (4).

The variable s is introduced to make it possible to have a starting primal solution with coordinates

of f, g a,nd y equal (for example, to 1). We choose the dual variable corresponding to (*j so tha.t

for the initial primal solution mentioned a.bove, t,he x(ijs(ij terms are all roughly equal. As we

shall see, this results in a small initial value of the second term of ip (written as in (1)).

We define initial primal and dual solutions as suggested by the a,bove discussion. The initial

primal solution ~0 is defined by

.f=1,g=l,y=172=n-1.

The initial dua.l solution (~0, so) is defined by

T(i) = 0,

~(n + 1) = -N*C,

for 1 5 i 5 72,

s(i) = c(i) + N*Ca(;) for 1 5 i 2 11’.

where n(1.) is the i-th coefficient of the equa,tion (*) in the definition of the Matching-2 LP.

The following two lemmas formalize the a,bove intuition.

Lemma 3.1 If (f,s, .3/. 5) is an optimal solution of bfatching-2, then f is an optimal solution to

Matching- 1.

Proof’: It suffices to show that every optimal solution to Matching-2 has z = 0. consider a feasible

point x1 = (fi, s/l, ~1, ~1) with ~1 # 0. Since fl satisfies Ce,-+~ fi(e) 5 1 + z1 for every node

~1, decrea.sing fl on some edges, by a total of at most zln, converts fl into a vector fz that is a

fractional matching. Note that any fractional matching f ca,n be extended to a feasible solution of

Matching-2. Let ~2 denote a, fea.sible solution extending f2. If we replace x1 by x2? the decrease in

the objective function value ca,used by the reduction in z is ~1 s > z~JYC. The increase due to

the cha.nge in f is bounded by ~lnC < ZINC. Therefore, the value ctx2 is smaller, which implies

that a.ny optimal solution must have z = 0. 1

Lemma 3.2 The vectors ;cg and (~0, so) are interior-point solutions of the primal and the dual

problems, respectively. The value of the potential function +(x0, SO) is at most O(J11’1og(nC>>.

Proof’: The first claim of the lemma is easy to verify. To verify the second claim, consider the

potential funct,ion written as in (1). The first term is at most O(filog(nC)). We show that the

second term is at most N log N + O(1). F’1rs we show that for every i, dx/(s(i)x(i)) 5 N +0(l).t

Recall that N = n + m + 2 and note that

SCJ’XO = nN2C + mN2C - dl + ‘zN”C’.

consider each type of va,riable separately.

l For variables .5(i) a.nd x(i) corresponding to Z, y, a.nd y, we get

sbx0/(s0(i)xo(i)) = n •j- m + ‘2 - $$ 5 iV f O(1).

l For variables s(i) and x(i) corresponding to f, we get

s~x~/(s~(i)x~(i)) = n + m + ‘2 -
~91 f nw(i) + mw(i) + 2w(i)

NW - w(2)
5 N + 0 (1).

Since log(1 f h.) 5 11 for h > -1, the above calculations imply that

s

c log
S&X()

< Nlog(N + O(1)) < NlogI\‘+ O(1).

i=l
so(i)xo(i) -

‘i

Now we acre ready to give the O*(filog C)-time algorithm to compute the weight of an

optimal matching and to find a nea.r-optin1a.l fractional matching. In the nest section we show

how to find a,n optimal matching.

The following lemma is based on the fact that the objective coefficient of z has been chosen

large enough to ensure that any near-optimal solution to hlntchi~,g-2 can be rounded to a nea,rby

feasible solution to Matching-l.

Lemma 3.3 A fractional bipartite matching with weight at most l/2 less than the weight of an

optimal matching can be computed in 0*(\/17LlogC) t ime on a PRAM with 7123 processors.

Proof‘: Lemmas 2.1 and 3.2 imply that, after 0(Jr\;log(nC)) = 0(filog(nC)) iterations of the

LP algorithm, we obtain a point (x, OTT, -5) with duality gap xt.s < l/-I-. Hence we have

where f* is an optimal solution to Matchillg-1. Since z > 0, this implies tha,t wtf* - atf 5 l/4.

As in Lemma 3.1, we can argue tha.t f can be converted to a feasible solution of the Mcitching-

1 problem by decreasing its value on some of the edges by a total of at most zn. Therefore,

wtf* 2 wtf - znC. From (3), this implies t1la.t zs 5 I/-k + znC. Thus,

11 - 1
z<

1

4C(P - I$ f n)
<-
4mc -

Now round all values of f and g down to ha.17e a common denominator 4nzC, snd denote the

rounded solution by fl, gl. Clearly, &f * - tL:t fl 2 l/4 + (naC)/(3r72C) 5 l/2. After the rounding,

we ha,ve:

The left-hand side is an integer multiple of (-2c’n~)-~ and z < (4Cm)-‘. This implies tl1a.t

c flk) t (12 - +))gl(v) < 1

eE6(u)

Hence, the resulting vector fi is a fractiona. makching whose weight is within l/2 of the optimum.

I

Corollary 3.4 A fractional bipartite matching with cardinality at most l/2 less than that of the max-

imum cardinality matching can be computed in 0*(Jmlog C’) time on a PRAM with m3 processors.

The cardinality of the maximum matching can be computed within the same bounds.

4 The Finish-Up Stage

In the previous section we have shown how to compute, in O*(filogC) time, a. fractional bipar-

tite matching with weight at most l/2 less than the optimum. In this section we give an 0*(log C)

algorithm for converting any such fractional matching into a masimum-weight matching. Note

that for the unweightecl bipartite matching, this algorithm runs in polylogarithmic time.

Let f be a fractional bipa.rt.ite ma.tching which has weight at most l/2 less than the masimum

weight. First we construct a fra,ctional ma.tching f’, such that the values of f’ have a. relatively

small common denominator tl1a.t is a. power of two and the weight of f’ differs from t,he maximum

weight by less than 1. Define 4 by-
4 = g-hP~l+1 .

By definition, 4 is an integer power of 2 and 4 = O(mC). Let f’ be the fract.ional ma,tching

obtained by rounding f down to the nea,rest multiple of l/4. Note that

Ill+ f -
mC

df’l < a =
mC 1

2pogmc1+1 < 2’

Therefore PCt f * - wt f’ < 1.

Nest we show how to construct from f’ a multi-graph that will allow us to find f’. Consider

a multi-graph G’ = (I -, E’) with the edge set containing 4 . f’(e) copies of e for every e E E,

and no other edges. The following lemma shows a relationship betweeng this multigraph and

masimum-weight matchings of G.

Lemma 4.1 For any coloring of the edges of G’ with A colors, there exists a color class which is a

maximum-weight matching of G.

Pr-oaf‘: The proof is by a simple counting argument. The sum of the weights of the color classes

is equal to Awtf > 4(zdf’ - 1). Since there are 4 color classes, at least one of them has weight

above wff* - 1. The claim follows from the integrality of 20. 1

The above lemma implies that, in order to find a maximum weight matching, it is sufficient to

edge-color G’ using 4 colors. Since G’ is a bipartite graph and its masimum degree is bounded

by 4, which is a power of 2, we can use a parallel implementation of Ga.bow’s algorithm [ll] to

edge-color G’ using 4 colors. However, G’ has O(mC) edges and therefore the algorithm uses

0 (n2C) processors. In order to reduce the processor requirement, we use a8 somewhat different

algorithm. The algorithm does not use an explicit representation of the multigraph, but rather

uses a weighted representation of a simple graph. A divide-and-conquer a.pproajch is then used to

split the (implicit) multigra.ph so that the bound on the maximum weight of an edge is halved,

and then recurses on the part with greater weight. A subroutine to find such a. partitioning is

also the basis of Ga,bow’s edge-coloring algorithm.

Figure 1 describes the algorithm to find a ma-*mum-weight matching given a near-optimal

fractional matching. The algorithm starts by rounding the fractional matching to a. small co~nmon

9

procedure Round(E, f);

;

t- ~[lognlC]+l .

- f rounded down to a common denominat,or of A;

d’ - A;

while c!’ > 1 do begin

Eo - {e 1 e E E, cl’ . f’(e) is odd};
(El, E-3) - Degree-Spfit(V, Eo);

Wl - w(El) ;

wz - w(&);

if WI 2 W:!

then begin

for e E El do f’(e) - f(e) + l/d’;
for e E Ez do f’(e) - f’(e) - l/d’;
end;

else begin

for e E E2 do f’(e) - f’(e) + l/d’;

for e E El do f’(e) - f’(e) - l/d’;
end;

d’ - d’/2;

end;

return ({e 1 f’(e) = 1))

end.

Figure 1: Rounding an approximate fractional matching to an optimal integral one

denominator as described above. Then it computes from the fractional matcliiug f’ with COI~I~OI~

denominator A? two fractional matchings fi and f2 such that f’ = i(Jr + fz) and both fi and fz
have common denominator A/2. This is accomplished with the help of the procedure Degree-split

that partitions the edges of a bipartite graph Ge = (V, Ee) into two classes Er and E2, so that

for every node ~1, the degree of v in the two induced subgraphs differs by at most one. Then

f’ is replaced by fi or f2 depending on which one has larger weight. This process is iterated

m%(W) t imes, until the current fractional matching is integral. This ma,tching has an integral

weight that is more than wt f* - 1, and therefore the matching is optima.1.

Lemma 4.2 The algorithm Round produces a maximum-weight matching.

Proof: Consider the parameter d’ used in the algorithm in Figure 1. Initially d’ = A. Note tha,t

after iteration i we have d’ = A/2’. We show by induction that after iteration i:

0 f’ is a fractional matching,

0 ?df > df* - 1,

l coordina,tes of f’ have common denominator cl’.

10

procedure Degree-SpZit(V, E);

Construct a new node set V’ by replacing each node ZI E V by an independent set of size [cl(~)/21 ;

For each node in V, assign its incident edges to nodes in V’, so that each node v in I,-’ has n(z,) 5 2;

Edge-color the resulting graph using two colors;

Return the edges of each color class;

end.

Figure 2: Splitting the maximum degree of the graph

Initially all three conditions are satisfied. -4ssuming that all three conditions are satisfied after

iteration i - 1, we prove that they rema,in satisfied after iteration i. Let dl and fi denote cl’ a,ntl

f’ before iteration i and let d2 and f2 denote d’ and f’ after iteration 2’. The last cla,im follows

from the fact that the coordinates of fi that are odd multiples of l/d1 are adjusted by l/d1 in

this iteration, and so all coordinates of f2 are even multiples of l/dl, and hence multiples of

l/d*. The second claim follows from the fact that the components of f2 that have been increased

correspond to edges of greater tota, weight than those that have been decreased. Now considex

the first claim. By the inductive a.ssumption, ‘&S(vJ fl(e) 5 1. By the definition of Procedure

Degree-v& ,&+) f2(4 I C&j(u) fi(4 + Wl 5 1-t l/4. 1-I owever, we have seen already that

f2 has a common denominator of d2. Ilencc. CeES(2,) f2(-)F is an integer multiple of l/d2 = ‘z/d1

and therefore at most one.

After log A iterations we construct an f’ that is integral and whose weight is above llTt f” - 1.
By the integrality of w, the set of edges where this f’ is 1 is the desired maximum-weight matching

of the input graph. 1

The Degree-Split procedure is described in Figure 2. The following two lemmas imply the

desired time bound.

Lemma 4.3 The procedure Degree-Split partitions the input graph into two graphs with disjoint

edge-sets, such that the degrees of any node c in the two graphs differ by at most one. The procedure

runs in O(log r~) time.

Proof: Observe that the graph constructed on V’ is bipartite, and the degree of a node is at most

two. Therefore the graph consists of paths and even cycles. Hence it can be two edge-colored in

O(log n) time using m processors [2 1, 221. The claim of the lemma follows from the fact that each

node v E V is an end point of at most one pa.t 11. 1

Lemma 4.4 The algorithm Round runs in O(log nlog nC’) time using m processors.

Proof: The number of iterations of the loop of the algorithm is O(logA) = O(log 72c’), because

d is halved at each iteration. The running time of each iteration is dominated by Degree-Split.

which takes O(logn) time by Lemma. 4.3. 1

11

Corollary 4.5 On unweighted bipartite matching problem, the algorithm Round runs in O(log’ 11)

time using m processors.

Theorem 4.6 A maximum-weight bipartite matching can be computed in O*(filog C) time using

m3 processors.

Proof: Immediate from Lemmas 3.3 and 4.4. 1

Corollary 4.7 A maximum cardinality bipartite matching can be computed in O*(fi) time using

?7z3 processors.

5 Conclusions

Interior-point methods have proved to be very powerful in the context of sequential computation.

In this pa.per we show how to aapply these methods to the design of parallel algorithms. We believe

that these methods will find more a,pplications in the context of parallel computa.t,ion, and would

like to mention the following two research directions.

One direction is to attempt to generalize our result to general linear progra,mming, showing

that any linear programming problem can be solved in O*(flL) time. This would require a8

parallel implementation of the finish-up stage of the algorithm that runs in O*(fiL) time. A

related question is whether the problem of finding a vertex of a polytope with objective function

value smaller than that of a given interior point of the polytope is P-complete.

The other direction of research is to attempt to use the special structure of the bipartite match-

ing problem to obtain an interior-point algorithm for this problem that finds an almost-optima.1

fractional solution in less that O*(Jm) t ime; an O*(l) bound would be especially int.eresting?

since in combination with results of Section 4 it would in KC.imply that bipartite ma,tching is

References

[I] A. Aggarwal and R. J. Anderson. A Random NC Algorithm for Depth First Search. In Proc.

19th ACM Symposium on Theory of Computing, pages 325-334, 1987.

[‘L] A. Agga.rwd, R. J. Anderson, and M. Y. Kao. Parallel Depth-First Search in Genera,1 Directed

Graphs. In Proc. 21st ACM Symposium on Theory of Cnmputing, page (to a.ppea.r), 1989.

[3] I(. M. Anstriecher and R. A. Bosch. Long Steps in an O(n3L) Algorithm for linear program-

ming. 1lnpublished manuscript, Yale School of Management, Yale University, 1919.

[-l] A. 1~. Chandra, L. Stockmeyer, and U. Vishkin. Constant depth reducibility. SIAL\I J.

C’omput., 13(2):423-439, May 1984.

[,5] R. Cole a,nd J. Hopcroft. On Edge Coloring Bipartite Graphs. SIA11/1 J. Comput., 11:54O--546,

1992.

[6] E. A. Dinic. Algorithm for Solution of a Problem of Maximum Flow in Netivorks with Power

Estimation. Soviet Math. Dokl., 11:1277-1280, 1970.

[7] S. Even and R. E. Tarjan. Network Flow and Testing Graph Connectivity. SlAhil J. Comput.,

J:*50T-.5lS, 1975.

[i’] L. R. Ford? Jr. and D. R. Fulkerson. Flows in Networks. Princeton Univ. Press, Princeton,

NJ., 1962.

[9] S.’ Fortune and J. Wyllie. Parallelism in Random Access Ma.chines. In Proc. l&h A CM

Sump. on Theory of Computing, pages 114-118, 1978.

[lo] R. M. Freund. Polynomial-Time Algorithms for Linear Programming Based only on Primal

Scaling and Projective Gradients of a Potential Function. Technical Report OR- 182-88,

Operations Research Center, M.I.T., 1988.

[ll] H. N. Ga,bow. Using Euler Partitions to Edge-Color Bipa,rtite Multi-graphs. Int. J. Comput.

I11f09’112. Sri., 5:345-3.55, 1976.

[12] H. N. Gabow and 0. Kariv. Algorithms for Edge-Coloring Bipartit,e Graphs and Multigraphs.

SIAiW .J. Conzput., 11:117-129, 1982.

[13] A. V. Goldberg, S. A. Plotkin, and P. M. Vaidya. Sublinear-Time Parallel Algorithms for

hlatching and Related Problems. In Proc. 29th IEEE Symp. on Found. of C’omp. Sci., pages

174-185,1988.

[lo] i-1. V. Goldberg and R. E. Tarjan. A New Approach to the Maximum Flow Problem. J.

.4ssoc. Conzput. iMach., 35:921-940, 1988.

[1.5] C. c’. Gonzaga. An Algorithm for Solving Linear Progra.mming in 0(1j3L) Operations. In

N. Megiddo, editor, Progress in Mathemr~tirnl Programming, pa.ges t-28. Springer Verlag,

Berlin, 1989.

[lci] D. Y. Grigoriev and M. Karpinski. The Matching Problem for Bipartite Graphs with Polvno-w
mially Bounded Permanents is in NC. In Proc. 28th IEEE Synap. on Foundations of Comp.

Sci., pages 166-172, 1987.

[17] J. E. Hopcroft and R. M. Karp. An n5/* Algorithm for Maximum Ma.tching in Bipartite

Graphs. SL4M J. Comput., 2:225-231, 1973.

[181 S. Ka#poor and P. M. Vaidya. Fast Algorithms for Convex Quadratic Programming and

Multicommodity Flows. In Proc. 18th ACM Symp. on Theory of Compwting, pages 147-lfj9,

1986.

13

[191 N. Karmarksr. A New Polynomial-Time Algorithm for Linear Programming. Combinatorirn.

4373-395, 1984.

[‘LO] R. M. Karp, E. Upfal, and A. Wigderson. Constructing a Maximum Matching is in Randotrl

NC. Combinatoriccc, 6:3.5--48. 1986.

[21] R. E. Ladner and M. J. Fischer. Parallel prefix computation. J. Assoc. Comp. Mach..

27:831-838, 1980.

[22] C. Leiserson and B. Maggs. Communication-efficient parallel graph algorithms. In Proc. of

International Conference on Parallel Processing, pages 861-868, 1986.

[23] G. F. Lev, N. Pippenger, and L. G. Valiant. A Fast Parallel Algorithm for Routing in

Permutation Networks. IFEE Trans. on Comput., C-30:93-100, 1981.

[24] G. L. Miller and J. Naor. Flow in Planar Graphs with Multiple Sources and Sinks. Un-

published Manuscript, Computer Science Department, Stanford University, Sta,nford, CA,

1989.

[25] Ii. Mulmuley, U. V. Vazirani, and V. V. Vazirani. Matching is as ea,sv as matrix inversion.

Combinatorics, pages 105-131, 1987.

[26] V. Pan and J. Reif. Efficient Pa.rallel Solution of Linear Systems. In Proc. 17th ACd/

Symposium on Theory of Comlmting, pa,ges 143-152, 1985.

[27] C. H. Papadimitriou and II;. Steiglitz. Combinatorial Optimization: Algorithms and Corn-

plexity. Prentice-Hall, Englewood Cliffs? NJ, 1982.

[28] J. Renegar. A Polynomia.1 Time Algorithm, Based on Newton’s Method, for Linear Program-

ming. Mathematical Programming, 40:.59-94, 1988.

[29] A. Schrijver. Theory of Linear clncl Irateger Programming. J. Wiley & Sons, 1986.

[30] M. J. Todd. Recent Developments and New Directions in Linear Programming. Technical

Report 829, School of Operations Research and Industrial Engineering, Cornell University.

1988.

[31] M. J. Todd and Y. Ye. A Centered Projective Algorithm for Linear Programming. Technical

Report 763, School of Operations Research and industrial Engineering, Cornell Universit,y,

1989.

[32] P. M. Vaidya. Speeding up Linear Progra,mming Using Fast Matrix Multiplication. Technical

Memorandum, AT&T Bell Lamboratories, Murray Hill, NJ, 1989.

[33] Y. Ye. An O(n3L) Potential Reduction -&lgorithm for Linear Programming. Unpublished

manuscript, The University of Iowa, 1989.

14

