Yurii Nesterov and Arkadii Nemirovskii

Interior-Point Polynomial Algorithms in Convex Programming

Society for Industrial and Applied Mathematics **Siam** Philadelphia

Contents

PrefaceviAcknowledgmentsiz				
	1.1	Subject	1	
	1.2	Essence of the approach	1	
	1.3	Motivation	4	
	1.4	Overview of the contents	6	
	1.5	How to read this book	9	
2	Self-concordant functions and Newton method			
	2.1	Self-concordant functions	11	
	2.2	Damped Newton method	15	
	2.3	Self-concordant barriers	32	
	2.4	Self-concordance and Legendre transformation	43	
	2.5	Universal barrier	50	
3	Pat	h-following interior-point methods	57	
	3.1	Self-concordant families	58	
-	3.2	Barrier-generated path-following method	65	
	3.3	Method of centers	80	
	3.4	Dual parallel trajectories method	86	
	3.5	Primal parallel trajectories method	93	
4	Pot	ential reduction interior-point methods	101	
	4.1	Conic formulation of convex program	102	
	4.2	Duality for conic problems	103	
	4.3	Karmarkar method for nonlinear problems	110	
	4.4	Projective method and linear-fractional problems	121	
	4.5	Primal-dual potential reduction method	137	
5	How to construct self-concordant barriers			
	5.1	Operations with convex sets and barriers	148	
	5.2	Barrier calculus	174	
	5.3	Barriers for two-dimensional sets	190	

v

	$\begin{array}{c} 5.4 \\ 5.5 \end{array}$	Barriers for multidimensional domains	192 202	
6	Applications in convex optimization 21			
-	6.1	Preliminary remarks	217	
	6.2	Quadratically constrained quadratic problems	220	
	6.3	More of structured nonlinear problems	229	
	6.4	Semidefinite programming	235	
	6.5	Extremal ellipsoids	248	
7	Var	iational inequalities with monotone operators	273	
	7.1	Preliminary remarks	273	
	7.2	Self-concordant monotone operators and Newton method	278	
	7.3	Path-following method	290	
	7.4	Inequalities with linear operators. Reducibility to linear case $\ .$	303	
8	Acc	eleration for linear and linearly constrained quadratic		
problems				
	8.1	Introduction and preliminary results	315	
	8.2	The main inequality	323	
	8.3	Multistep barrier methods	326	
	8.4	Conjugate-gradient-based acceleration	346	
AĮ	Appendix 1			
Aŗ	Appendix 2			
Bibliography comments				
Bi	bliog	graphy comments	379	
		graphy comments graphy	379 387	