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Abstract: We present new interior regularity criteria for suitable weak solutions of the
3-D Navier-Stokes equations: a suitable weak solution is regular near an interior point
z if either the scaled L p,q

x,t -norm of the velocity with 3/p + 2/q ≤ 2, 1 ≤ q ≤ ∞, or the
L p,q

x,t -norm of the vorticity with 3/p + 2/q ≤ 3, 1 ≤ q < ∞, or the L p,q
x,t -norm of the

gradient of the vorticity with 3/p + 2/q ≤ 4, 1 ≤ q, 1 ≤ p, is sufficiently small near z.

1. Introduction

We continue our study in [10] of the regularity problem for suitable weak solutions
(u, p) : � × I → R

3 × R of the three-dimensional incompressible Navier-Stokes
equations (NS)

{
ut − �u + (u · ∇)u + ∇ p = f

div u = 0 in � × I. (1)

Here � is either a domain in R
3 or the 3-dimensional torus T

3, I is a finite time inter-
val, u(x, t) is the velocity field and p(x, t) is the pressure. We also denote the vorticity
field by w = curl u. By suitable weak solutions we mean functions which solve (1) in
the sense of distributions and satisfy some integrability conditions and the local energy
inequality (for details, see Definition 2.1 in Sect. 2). For a point z = (x, t) ∈ R

3 × R

we denote

Bx,r = {y ∈ R
3 : |y − x | < r}, Qz,r := Bx,r × (t − r2, t).

A solution u is said to be regular at z ∈ �× I if u ∈ L∞(Qz,r ) for some Qz,r ⊂ �× I ,
r > 0. Otherwise it is singular at z (see [2, p. 780]).

Although the existence of weak solutions was proved by Leray and Hopf [17, 11] in
R

3 and domains, it is not known whether the solution stays regular for all time even if all
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the data are smooth. One type of condition ensuring regularity involves zero-dimensional
integrals,

‖u‖L p,q (�×I ) < ∞,
3

p
+

2

q
= 1, 3 ≤ p ≤ ∞, (2)

where

‖u‖L p,q (�×I ) = ‖u‖Lq
t L p

x (�×I ) = ∥∥ ‖u(x, t)‖L p
x (�)

∥∥
Lq

t (I ). (3)

These integrals have zero dimension if one assigns the dimensions 1, 2, and −1 to x , t
and u. This is related to the scaling property of solutions of (NS): The map

{u(x, t), p(x, t)} → {λu(λx, λ2t), λ2 p(λx, λ2t)} (λ > 0), (4)

sends a solution of (NS) to another solution, with a new force λ3 f (λx, λ2t).
The first contributions in this direction, concerning uniqueness and regularity of weak

solutions, were made by [20, 31, 32, 15] when 3/p + 2/q < 1. The borderline cases
3/p + 2/q = 1, 3 < p ≤ ∞, for different types of domains were later proved by [8,
33, 9, 37]. See [38, 34, 4] for results in the setting of Lorentz spaces. The endpoint case
(p, q) = (3,∞) was recently resolved [7] (also see the references in [34, 7] for earlier
results in subclasses). Similar regularity criteria have been established near the boundary
[36, 12, 28].

In a series of papers [21]–[24], Scheffer began to study the partial regularity the-
ory for (NS). His results were further generalized and strengthened in Caffarelli-Kohn-
Nirenberg [2], which proved that the set S of possible interior singular points of a suitable
weak solution is of one-dimensional parabolic Hausdorff measure zero, i.e. P1(S) = 0
(the estimate of the Hausdorff measure was improved by a logarithmic factor in [5]).
The key to the analysis in [2] is the following regularity criterion: there is an absolute
constant ε > 0 such that, if u is a suitable weak solution of (NS) in � × I and if for an
interior point z ∈ � × I ,

lim sup
r→0+

1

r

∫
Qz,r

|∇u(y, s)|2 dyds ≤ ε, (5)

then u is regular at z. See [18] for a simpler proof and [16] for more details. See [27, 29]
for extensions when z lies on a flat or curved boundary.

The objective of this paper is to present new sufficient conditions for the regularity
of suitable weak solutions to (NS) in the interior, in terms of the smallness of the scaled
L p,q -norm of the velocity, vorticity or the gradient of the vorticity. We obtained such
results in terms of the velocity either in the interior or on a flat boundary in [10]. We
will assume that the force f belongs to a parabolic Morrey space M2,γ , for some γ > 0,
equipped with the norm

‖ f ‖2
M2,γ (�×I ) = sup

Qz,r ⊂�×I, r>0

1

r1+2γ

∫
Qz,r

| f |2 dz′. (6)

(This space is trivial if γ > 2, and it contains L
5

2−γ (� × I ) for γ ≤ 2.)
Suitable weak solutions will be defined in Definition 2.1 of Sect. 2.
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Theorem 1.1 (Regularity Criteria). Suppose the pair (u, p) is a suitable weak solution
of (NS) in �× I with force f ∈ M2,γ (�× I ) for some γ > 0. Suppose z = (x, t) ∈ �× I
and Qz,r ⊂ � × I . Then u is regular at z if one of the following conditions holds, for
a small constant ε > 0 depending only on p∗ (or p, p�), q, and γ (but independent of
‖ f ‖M2,γ

).

(i) Velocity criteria. u ∈ L p∗,q
loc near z and

lim sup
r→0+

r
−( 3

p∗ + 2
q −1) ‖u − (u)r‖L p∗,q (Qz,r )

≤ ε, (7)

where (u)r (s) = 1
|Br |

∫
Br

u(y, s)dy, for some p∗, q satisfying

1 ≤ 3/p∗ + 2/q ≤ 2, 1 ≤ p∗, q ≤ ∞. (8)

The same result holds if u − (u)r is replaced by u in (7).
(ii) Velocity gradient criteria. ∇u ∈ L p,q

loc near z and

lim sup
r→0+

r−( 3
p + 2

q −2) ‖∇u‖L p,q (Qz,r ) ≤ ε, (9)

for some p, q satisfying

2 ≤ 3/p + 2/q ≤ 3, 1 ≤ q ≤ ∞. (10)

(iii) Vorticity criteria. w = curl u ∈ L p,q
loc near z and

lim sup
r→0+

r−( 3
p + 2

q −2) ‖w‖L p,q (Qz,r ) ≤ ε, (11)

for some p, q satisfying

2 ≤ 3/p + 2/q ≤ 3, 1 ≤ q ≤ ∞, (p, q) 
= (1,∞). (12)

(iv) Vorticity gradient criteria. ∇2u ∈ L p�,q
loc near z and

lim sup
r→0+

r
−( 3

p� + 2
q −3) ‖∇w‖

L p�,q (Qz,r )
≤ ε, (13)

for some p�, q satisfying

3 ≤ 3/p� + 2/q ≤ 4, 1 ≤ q, 1 ≤ p�. (14)

Furthermore, for p� > 1, ∇w can be replaced by curl w.

Comments for Theorem 1.1.

1. The region defined by (8) corresponds to the union of II and III in Fig. 1, including
all borderlines. The region defined by (10) corresponds to IV, including all border-
lines. The region defined by (12) also corresponds to IV, but without the corner point
(1/p, 1/q) = (1, 0). The region defined by (14) corresponds to V, including all
borderlines.
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Fig. 1. Regularity Criteria

2. In (8), the lower bound 1 ≤ 3/p∗ + 2/q is only to ensure a non-positive exponent of
r in (7). The true limit is the upper bound 3/p∗ + 2/q ≤ 2. Similar comments apply
to (10), (12) and (14).

3. The quantities in (7), (9), (11) and (13) are zero-dimensional, and are invariant under
the scaling (4). Such quantities are useful in the regularity theory for (NS), see e.g. [2].

4. In [10], the authors obtained Theorem 1.1 (i) only for region II, without the borderline
q = 2 (but the result is also valid on a flat boundary of �). Theorem 1.1 (i) extends
it to region III, and in particular includes the point (1/p, 1/q) = (1/3, 1/2). It does
not further assume the smallness of the pressure, in contrast to, e.g., Theorem 2.2.
Special cases (1/p, 1/q) = (1/3, 1/3) and (1/2, 0) were obtained in [39] and [30],
respectively.

5. Theorem 1.1 (ii) contains the special case (p, q) = (2, 2) of [2].
6. Theorem 1.1 (iii) contains the special case (p, q) = (2, 2) of [39].

Theorem 1.1 implies many known regularity criteria. Some of them are summarized
below. For simplicity we assume f = 0. The Lorentz space L(p,∞) for p < ∞ is defined
with the norm ‖v‖L(p,∞) = supσ>0 σ |{|v| > σ }|1/p.

Corollary 1.2. Let u be a weak solution of (NS) in �× I with f = 0 and Qz0,r0 ⊂ �× I
for some r0 > 0. Then u is regular at z0 if one of the following conditions holds.

(i) Zero-dimensional integrals of u [8, 33, 9, 37]. If

u ∈ L p,q(Qz0,r0),
3

p
+

2

q
= 1, 3 < p ≤ ∞, (15)

or u ∈ L3,∞(Qz0,r0) and ‖u‖L3,∞(Qz0,r0 ) is sufficiently small.

(ii) Lorentz spaces [38, 13, 34, 4]. If u is in L(q,∞)((t0 − r2, t0); L(p,∞)(Bx0,r )) with
3/p + 2/q = 1, 3 < p < ∞, and ‖u‖

L(q,∞)
t L(p,∞)

x (Qz0,r )
is sufficiently small.
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(iii) Zero-dimensional integrals of ∇u [1].

∇u ∈ L p,q(Qz0,r0),
3

p
+

2

q
= 2,

3

2
< p ≤ ∞,

or ∇u ∈ L3/2,∞(Qz0,r0) and ‖∇u‖L3/2,∞(Qz0,r0 ) is sufficiently small.
(iv) Zero-dimensional integrals of w = curl u [3].

w ∈ L p,q(Qz0,r0),
3

p
+

2

q
= 2,

3

2
< p ≤ ∞, (16)

or w ∈ L3/2,∞(Qz0,r0) and ‖w‖L3/2,∞(Qz0,r0 ) is sufficiently small.

Comments for Corollary 1.2.

1. To prove Corollary 1.2 using Theorem 1.1, we need to show that u is suitable under
the corresponding assumptions. It suffices to show that |u|2|∇u| ∈ L1

t,x , which jus-
tifies the integration by parts and thus one can prove the local energy inequality. In
fact, it is enough to show u ∈ L4

t,x since
∫∫ |u|2|∇u|dz ≤ ‖u‖2

L4 ‖∇u‖L2 .

For (i), it follows from ‖u‖2
L4 ≤ ‖u‖L p,q ‖u‖2/q

L2,∞ ‖u‖3/p
L6,2 .

For (ii), since 3 < p < ∞, one can choose p1,q1 so that

q1 < q, p1 < p, 1/p1 + 1/q1 ≤ 1/2, 3/p1 + 1/q1 ≤ 1.

That is, (1/p1, 1/q1) lies in region V of Fig. 2 of [10]. By the imbedding of L(p,∞) ⊂
L p1 and L(q,∞) ⊂ Lq1 , we have u ∈ L p1,q1 . Interpolating with u ∈ L2,∞ ∩ L6,2, we
get u ∈ L4

t,x .

For (iii), we have
∫∫

|u|2|∇u|dz ≤ ‖u‖2/q

L2,∞
x,t

‖u‖3/p

L6,2
x,t

‖∇u‖L p,q
x,t

.

For (iv), since ‖∇u‖L p,q (Qr ) ≤ C‖w‖L p,q (Q2r ) + C‖u‖L p,q (Q2r ) (see Remark 3.7), it
follows from (iii).

2. Strictly speaking, one also needs to show that p ∈ L3/2 so that (u, p) is suitable. But
this has already been done [35, 18]. By [18, Lem. 3.4], one has ∇ p ∈ L5/3

t L15/14
x (Qr )

for every weak solution in Qr . Let p̃(x, t) = p(x, t) − �
∫

Br
p(x, t) dx . The new pair

(u, p̃) is suitable since the local energy inequality (22) remains the same if one
replaces p by p̃, and p̃ ∈ L5/3

t,x (Qr ) by Poincaré inequality.
3. We now complete the proof of Corollary 1.2. For (ii), since 3 < p < ∞, one can

choose q2 < q, p2 < p, and 3/p2 + 2/q2 = 2. Being small in L(q,∞)
t L(p,∞)

x (Qz0,r )

implies smallness in the scaled norm 1
r Lq2 L p2(Qr ) by imbedding. Then one applies

Theorem 1.1. For the rest, one imbeds L p,q to L p2,q for some suitable p2 < p.
4. Corollary 1.2 (i) is due to several authors, already quoted above. Theorem 1.1 does

not imply the end point case u ∈ L3,∞(Qz0,r0) without smallness assumption, for
which see [7].

5. For Corollary 1.2 (ii), [38] proved regularity for small u in the classes L(q,∞)
t L p

x (Qr )

with 3 < p < ∞, [13] in the class L∞
t L(3,∞)

x (see [14] for improvement), [34] in

the classes L(q,∞)
t L(p,∞)

x (� × I ) with 3 < p < ∞, [4] in the classes L(q,∞)
t L(p,∞)

x

with 3 < p < ∞ and the classes L(p,∞)
x L(q,∞)

t with 3 ≤ p < ∞. It follows from
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these results, in particular, that u is regular at z0 if it satisfies, for θ ∈ [0, 1] and some
ε = ε(θ) > 0,

lim
r→0

ess sup
Qz0,r

|t − t0|θ/2 |x − x0|1−θ |u(x, t)| ≤ ε. (17)

Our Theorem 1.1 does not cover the endpoint cases p = 3,∞, except the cases
θ = 0, 1 in (17) when suitability is assumed.

6. Corollary 1.2 (iii) was proved in [1] for the cases 3/2 < p < ∞. The endpoints
p = 3/2 and p = ∞ were not obtained in [1]. The p = 3/2 case without the
smallness assumption follows from [7] and imbedding.

7. Corollary 1.2 (iv) was proved in [3, Prop. 2]. The main result in [3, Th. 1] shows
regularity near z0 assuming only two components of the vorticity belonging to L p,q

x,t .
Again, the p = 3/2 case without the smallness assumption follows from [7] and
Remark 3.7.

A major motivation for the study of such regularity criteria is to improve the partial
regularity result of [2]. For example, Constantin [6] proved, when � = T

3, the existence
of suitable weak solutions satisfying

∇w ∈ L4/3−ε(� × I ), ∀0 < ε  1. (18)

Note that the integral
∫∫ |∇w|4/3−εdz has dimension 1 + 3ε. Combining this estimate

with Theorem 1.1 (iv), we find that the parabolic Hausdorff dimension of the singu-
lar set S of u is at most one. This is slightly weaker than the CKN theorem that the
one-dimensional parabolic Hausdorff measure of S is actually zero. Note that Scheffer
[25, 26] constructed examples satisfying the local energy inequality and their dimen-
sions of singular sets are arbitrarily close to one. Thus the CKN result is optimal for
functions satisfying only the local energy inequality. However, the proof of (18) uses the
equation for the vorticity, which may not be satisfied by Scheffer’s examples. Therefore
there might be hope to prove other a priori estimates for w and thus improve the partial
regularity.

The rest of this paper is organized as follows. In Sect. 2 we introduce some scaling
invariant functionals, recall the notion of suitable weak solutions and a regularity crite-
rion involving the scaled norms of velocity and pressure. In Sect. 3 we establish some
estimates regarding the velocity, pressure and vorticity, and prove Theorem 1.1.

We finally correct a typo in Lemma 15 of [10]: In the second line from the bot-
tom of p. 615 and the third line of p. 616, the function C(r) should be replaced by
Ĉ(r) = r−2

∫
Qr

|u − 1
|Qr |

∫
Qr

u|3dz.

2. Preliminaries

In this section we introduce the notation, review suitable weak solutions, and recall a
regularity criterion involving scaled norms.

We start with the notation. Let � be either an open domain in R
3 or the 3-dimen-

sional torus T
3, and I be a finite time interval. By N = N (α, β, . . .) we denote a

constant depending on the prescribed quantities α, β, . . ., which may change from line
to line. For 1 ≤ q ≤ ∞, W k,q(�) denote the usual Sobolev spaces, i.e. W k,q(�) =
{ f ∈ Lq(�) : Dα f ∈ Lq(�), 0 ≤ |α| ≤ k}. We denote by �

∫
E f the average of f

on E ; i.e., �
∫

E f = ∫
E f/|E |. For a function f (x, t), E ⊂ � and J ⊂ I , we denote

‖ f ‖L p,q (E×J ) = ‖ f ‖Lq L p(E×J ) = ∥∥ ‖ f ‖L p(E)

∥∥
Lq (J )

.
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Next, we define several scaling-invariant functionals similar to those in [2, 18, 16,
27]. For a suitable weak solution (u, p) and z = (x, t) ∈ � × I , let

A(r) := sup
t−r2≤s<t

1

r

∫
Bx,r

|u(y, s)|2 dy, E(r) := 1

r

∫
Qz,r

|∇u(y, s)|2 dy ds,

C(r) := 1

r2

∫
Qz,r

|u(y, s)|3 dy ds, C̃(r) := 1

r2

∫
Qz,r

|u(y, s) − (u)r (s)|3 dy ds,

D(r) := 1

r2

∫
Qz,r

|p(y, s)| 3
2 dy ds,

where (u)r (s) = 1
|Bx,r |

∫
Bx,r

u(·, s)dy. Let p, q and p∗ be numbers satisfying

3

p
+

2

q
= 3, 1 ≤ q ≤ ∞,

1

p∗ = 1

p
− 1

3
. (19)

Recall w = ∇ × u is the vorticity field of u. We define

G̃(r) := 1

r
‖u(y, s) − (u)r (s)‖Lq

s L p∗
y (Qz,r )

, G1(r) := 1

r
‖∇u(y, s)‖Lq

s L p
y (Qz,r )

,

W (r) := 1

r
‖w(y, s)‖Lq

s L p
y (Qz,r )

.

When 1 ≤ q ≤ 2, we also define

W1(r) := 1

r
‖∇w(y, s)‖

Lq
s L p�

y (Qz,r )
, W̃1(r) := 1

r
‖curl w(y, s)‖

Lq
s L p�

y (Qz,r )
,

where p� is the number satisfying, for p, q as in (19),

3

p�
+

2

q
= 4,

1

p
= 1

p�
− 1

3
, 1 ≤ p� ≤ 3

2
. (20)

We now define suitable weak solutions for the (NS).

Definition 2.1. Suppose that f belongs to the parabolic Morrey space M2,γ (� × I )
for some γ ∈ (0, 2]. A pair (u, p) is a suitable weak solution to the Navier-Stokes
equations (1) in � × I with force f if the following conditions are satisfied:

(a) The functions u : � × I → R
3 and p : � × I → R satisfy

u ∈ L∞(I ; L2(�)) ∩ L2(I ; W 1,2(�)), p ∈ L
3
2 (� × I ). (21)

(b) u and p solve (1) in � × I in the sense of distributions.
(c) u and p satisfy the local energy inequality

∫
�

|u(x, t)|2 φ(x, t) dx + 2
∫ t

t0

∫
�

∣∣∇u(x, t ′)
∣∣2

φ(x, t ′) dx dt ′

≤
∫ t

t0

∫
�

(
|u|2 (∂tφ + �φ) + (|u|2 + 2p)u · ∇φ + 2 f · uφ

)
dx dt ′ (22)

for all t ∈ I = (t0, t1) and all nonnegative functions φ ∈ C∞
0 (� × I ). ��
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In this definition we impose no initial or boundary condition for u.
The main difference between suitable weak solutions and Leray-Hopf weak solu-

tions (see [2, p.779]) is the additional condition of the local energy inequality (22). The
existence of suitable weak solutions is proved in [22, 2]. Definition 2.1 is the slightly
modified version used in [18]. As remarked in [2, p. 823], it is an open question if all
weak solutions are suitable.

Next we recall a local regularity criterion, which is a refined version of [2, Prop. 1],
and is formulated in the present form with f = 0 in [19, 18], and proved with nonzero
f ∈ M2,γ in [16, Prop. 2.8].

Theorem 2.2. There exists ε > 0 depending only on γ > 0 (and independent of
‖ f ‖M2,γ

), and r0 > 0 depending on ‖ f ‖M2,γ
, such that if (u, p) is a suitable weak

solution of (NS) with f ∈ M2,γ , then u is regular at z = (x, t) ∈ � × I if

C(r) + D(r) < ε for some r ∈ (0, r0). (23)

An important feature of (23) is that it requires only one r , not infinitely many r . We
will prove our regularity criteria based on this theorem. For our proof in the next section,
in order to get (23), it suffices to assume γ > −1. The assumption γ > 0 is made in
order to apply Theorem 2.2.

3. Local Interior Regularity

In this section, we present the proof of Theorem 1.1. Through the entire section, we
assume (u, p) is a suitable weak solution in � × I . Without loss of generality, we
assume z = (0, 0) and Qr = Q(0,0),r ⊂ � × I . By Hölder inequality, it suffices to
consider borderline exponents, i.e., those exponents p, p∗, p� and q satisfying (19) and
(20). Denote mγ = ‖ f ‖M2,γ

.

Lemma 3.1. Suppose Q2r ⊂ � × I and 0 < r ≤ m−1/(1+γ )
γ . Then

A(r) + E(r) ≤ N [1 + C(2r) + D(2r)].
Proof. By choosing suitably localized φ in the local energy inequality (22), we get

A(r) + E(r) ≤ N

(
C

2
3 (2r) + C(2r) +

1

r2
‖u‖L3(Q2r )

‖p‖
L

3
2 (Q2r )

+ r
∫

Q2r

| f |2dz′
)

which is bounded by N [1 + C(2r) + D(2r) + r2(γ +1)m2
γ ]. ��

Lemma 3.2. Suppose u ∈ L p∗,q(Qr ) with 3/p∗ + 2/q = 2, 1 ≤ q ≤ ∞, then

C̃(r) ≤ N A
1
q (r)E1− 1

q (r)G̃(r).

Proof. Let α = (2p∗ −3)/3p∗ and β = 1/p∗. Note 1/3 = α/2+β/6+ (1−α−β)/p∗.
Using the Hölder inequality and Sobolev imbedding, we obtain

‖u − (u)r‖L3(Br )
≤ N ‖u‖α

L2(Br )
‖u − (u)r‖β

L6(Br )
‖u − (u)r‖1−α−β

L p∗
(Br )

≤ N ‖u‖α
L2(Br )

‖∇u‖β

L2(Br )
‖u − (u)r‖

1
3

L p∗
(Br )

,
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where we used 1 − α − β = 1/3. Raising to the third power, integrating in time and
dividing both sides by r2, we get

C̃(r) ≤ N

r2

∫ 0

−r2
‖u‖3α

L2(Br )
‖∇u‖3β

L2(Br )
‖u − (u)r‖L p∗

(Br )
dt

≤ N

r2 r
3
2 α A

3
2 α(r)

(∫ 0

−r2
‖∇u‖2

L2(Br )
dt

) 3β
2

(∫ 0

−r2
‖u − (u)r‖q

L p∗
(Br )

dt

) 1
q

,

which equals N A
1
q (r)E1− 1

q (r)G̃(r). ��
Lemma 3.3. Suppose 0 < 2r ≤ ρ and Qρ ⊂ � × I . Then

C(r) ≤ N

(
r

ρ

)
C(ρ) + N

(ρ

r

)2
C̃(ρ).

Proof. This follows from the Hölder inequality:

C(r) ≤ N

r2

∫
Qr

(
|(u)ρ |3 + |u − (u)ρ |3

)
dz′ ≤ N

(
r

ρ

)
C(ρ) + N

(ρ

r

)2
C̃(ρ).

��
Lemma 3.4. Suppose 0 < 2r ≤ ρ and Qρ ⊂ � × I . Then

D(r) ≤ N
(ρ

r

)2
(C̃(ρ) + ρ

3
2 (γ +1)m

3
2
γ ) + N

(
r

ρ

)
D(ρ). (24)

Proof. Let φ(x) ≥ 0 be supported in Bρ with φ = 1 in Bρ/2. The divergence of (1)
gives −�p = ∂i∂ j

(
ui u j

) − ∇ · f in the sense of distributions. Let

p1(x, t) :=
∫

R3

1

4π |x − y|
{
∂i∂ j

[
(ui − (ui )ρ)(u j − (u j )ρ)φ

] − ∇ · ( f φ)
}
(y, t)dy

and p2(x, t) := p(x, t) − p1(x, t). Due to div u = 0, �p2 = 0 in Bρ/2. By the mean
value property of harmonic functions,

1

r2

∫
Br

|p2| 3
2 dx ≤ Nr

ρ3

∫
Bρ/2

|p2| 3
2 dx ≤ Nr

ρ3

∫
Bρ

|p| 3
2 dx +

Nr

ρ3

∫
Bρ

|p1| 3
2 dx .

By Calderon-Zygmund and potential estimates,

r

ρ3

∫
Bρ

|p1| 3
2 dx ≤ 1

r2

∫
Bρ

|p1| 3
2 dx ≤ N

r2

∫
Bρ

∣∣u − (u)ρ
∣∣3 +

Nρ9/4

r2

( ∫
Bρ

| f |2dx
) 3

4 .

Adding these estimates, integrating in time, and using
∫ 0
−r2

ρ9/4

r2

( ∫
Bρ

| f |2dx
) 3

4 dt ≤
Nr−3/2m3/2

γ ρ3+3γ /2, we get

1

r2

∫
Qr

|p| 3
2 dz′ ≤ 1

r2

∫
Qr

|p1| 3
2 + |p2| 3

2 dz′ ≤ RHS of (24).

��
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Now we are ready to prove Theorem 1.1 (i).

Proof of Theorem 1.1 (i). It suffices to prove the borderline cases 3/p∗ + 2/q = 2 and
1 ≤ q ≤ ∞. The other cases follow by Hölder inequality. Suppose 0 < 4r ≤ ρ. By
Lemmas 3.2 and 3.4, and by Lemma 3.3, we get

C(r) + D(r) ≤ N

(
r

ρ

)(
C

(ρ

2

)
+ D

(ρ

2

))
+ N

(ρ

r

)2
(

C̃
(ρ

2

)
+ ρ

3
2 (γ +1)m

3
2
γ

)

≤ N

(
r

ρ

)(
C

(ρ

2

)
+ D

(ρ

2

))
+ N

(ρ

r

)2

×
(

A
1
q

(ρ

2

)
E1− 1

q

(ρ

2

)
G̃

(ρ

2

)
+ ρ

3
2 (γ +1)m

3
2
γ

)
.

Suppose ρ ≤ m−1/(γ +1)
γ . By Lemma 3.1,

N
(ρ

r

)2
A

1
q

(ρ

2

)
E1− 1

q

(ρ

2

)
G̃

(ρ

2

)
≤ N

(ρ

r

)2
(1 + C(ρ) + D(ρ)) G̃(ρ).

Combining the above estimates, we obtain

C(r) + D(r) ≤ N2

((
r

ρ

)
+

(ρ

r

)2
G̃(ρ)

)
(C(ρ) + D(ρ))

+ N2

(ρ

r

)2
(

G̃(ρ) + ρ
3
2 (γ +1)m

3
2
γ

)
.

Choose θ ∈ (0, 1/4) so that N2θ < 1/4. We fix r0 < min{1, 1
mγ

, 1
mγ

( εθ2

8N2
)2/3}1/(γ +1)

such that G̃(r) < θ2

1+8N2
min{1, ε} for all r ≤ r0, where ε is the constant in Theorem

2.2. Replacing r and ρ by θr and r , respectively, we get

C(θr) + D(θr) ≤ 1

2
(C(r) + D(r)) +

ε

4
, ∀r < r0.

By iteration,

C(θkr) + D(θkr) ≤ 1

2k (C(r) + D(r)) +
ε

2
, ∀r < r0.

Thus, for k sufficiently large, C(θkr) + D(θkr) ≤ ε, from which z is a regular point due
to Theorem 2.2.

The last statement of Theorem 1.1 (i), that one can replace u − (u)r by u, is because
‖u − (u)r‖L p∗,q ≤ N ‖u‖L p∗,q . ��

The following modification of Lemma 3.2 is all that is needed to prove Theorem 1.1
(ii).

Lemma 3.5. Suppose 0 < 2r ≤ ρ and Qρ ⊂ � × I . Then

C̃(r) ≤ N A1/q(r)E1−1/q(r)G1(r). (25)
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Proof. The proof is similar to that of Lemma 3.2. When 1 ≤ p < 3, using the same
exponents α = 1 − 1/p and β = 1/p − 1/3, we have

‖u − (u)r‖3
L3(Br )

≤ N ‖u‖3α
L2(Br )

‖u − (u)r‖3β

L6(Br )
‖u − (u)r‖3(1−α−β)

L p∗
(Br )

≤ N ‖u‖2/q
L2(Br )

‖∇u‖2−2/q
L2(Br )

‖∇u‖L p(Br ) .

If p = 3 (and q = 1), by Gagliardo-Nirenberg and Poincaré inequalities,

‖u − (u)r‖3
L3(Br )

≤ N ‖u − (u)r‖2
L2(Br )

‖∇u‖L3(Br )
+

N

r3/2
‖u − (u)r‖3

L2(Br )

≤ N ‖u‖2
L2(Br )

‖∇u‖L3(Br )
.

Integrating in time and applying the Hölder inequality, we get (25). ��

Proof of Theorem 1.1 (ii). The proof is the same as that for Theorem 1.1 (i): we only
need to replace Lemma 3.2 by Lemma 3.5, and replace the quantity G̃(r) by G1(r). ��

The next lemma shows that the gradient of the velocity can be controlled by the
vorticity. This is the key to Theorem 1.1 (iii).

Lemma 3.6. Suppose 0 < 2r ≤ ρ and Qρ ⊂ � × I . Suppose ∇u ∈ L p,q
x,t (Qρ) with

3
p + 2

q = 3 and 1 ≤ q < ∞. Then

G1(r) ≤ N
(ρ

r

)
W (ρ) + N

(
r

ρ

) 3
p −1

G1(ρ). (26)

Furthermore, if p = 3 (so q = 1), then

G1(r) ≤ N
(ρ

r

)
W (ρ) + N

(
r

ρ

)
G1(ρ) + g(u; r), (27)

where g(u; r) → 0 as r → 0.

Proof. Choose a standard cut off function φ supported in Bρ such that φ = 1 in B3ρ/4.
Define

v(x, t) :=
∫

R3
∇x

1

4π |x − y| × w(y, t)φ(y)dy, h = u − v.

Note that �x h(x, t) = 0 in B3ρ/4.
We give the proof of (26) first. By the mean value property of harmonic functions,

for each fixed time t ,

‖∇h‖L p(Br ) ≤ N

(
r

ρ

)3/p

‖∇h‖L p(Bρ/2) ≤ N

(
r

ρ

)3/p (
‖∇u‖L p(Bρ) + ‖∇v‖L p

)
.

On the other hand, due to Calderon-Zygmund estimates, for each fixed time,

‖∇v‖L p ≤ N ‖w‖L p(Bρ) .
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Combining these estimates, we obtain

‖∇u‖L p(Br ) ≤ ‖∇v‖L p(Br ) + ‖∇h‖L p(Br ) ≤ N ‖w‖L p(Bρ) + N

(
r

ρ

) 3
p ‖∇u‖L p(Bρ) .

Taking Lq -norm in time and dividing both sides by r , we get (26).
To prove (27), set p = 3 (so q = 1), use the above estimate for ∇v, and modify the

estimate for ∇h as follows:

‖∇h‖L3(Br )
≤ ‖∇h − (∇h)r‖L3(Br )

+ ‖(∇h)r‖L3(Br )
. (28)

The second term in (28) is just Nr |(∇h)r |. For the first term in (28), use the Poincaré-
Sobolev inequality, the mean-value property, and an interior estimate:

‖∇h − (∇h)r‖L3(Br )
≤ N

∥∥∥∇2h
∥∥∥

L3/2(Br )
≤ N

(
r

ρ

)2 ∥∥∥∇2h
∥∥∥

L3/2(Bρ/2)

≤ N

(
r

ρ

)2

‖∇h‖L3(Bρ) ≤ N

(
r

ρ

)2

[‖∇u‖L3(Bρ) + ‖∇v‖L3(Bρ)]

≤ N

(
r

ρ

)2

‖∇u‖L3(Bρ) . (29)

Combine this estimate with the above estimate for ‖∇v‖L3 , divide by r , and integrate
in time to get

G1(r) ≤ N
ρ

r
W (ρ) + N

r

ρ
G1(ρ) + N

∫ 0

−r2
|(∇h)r |dt. (30)

Since h (and hence ∇h) is harmonic in B3ρ/4, (∇h)r = (∇h)ρ/2, and so

|(∇h)r | = |(∇h)ρ/2| ≤ N

ρ
‖∇h‖L3(Bρ/2)

.

Thus

g(u; r) := N
∫ 0

−r2
|(∇h)r |dt ≤ N

ρ

∫ 0

−r2
‖∇u‖L3(Bρ) dt.

Since ∇u ∈ L3,1(Qρ), we have g(u, r) → 0 as r → 0, and so (30) yields (27). ��
Remark 3.7. By similar argument, if w = curl u ∈ L p,q

loc near z, then so is ∇u, since
‖∇u‖L p,q (Qr ) ≤ N‖w‖L p,q (Qρ) + N‖u‖L p,q (Qρ) if 0 < r < ρ ≤ 2r .

Proof of Theorem 1.1 (iii). It suffices to prove the borderline cases 3/p + 2/q = 3 and
1 < p ≤ 3. The other cases follow by Hölder’s inequality. If p < 3, we use the esti-
mate (26), and if p = 3, we use the refined estimate (27). Choose θ ∈ (0, 1/4) so that if
p < 3, then Nθ3/p−1 < 1/2, where N is the constant in (26), and if p = 3, Nθ < 1/2,
where N is the constant from (27). Replace r, ρ by θr and r , respectively. Note that
G1(r) is finite by Remark 3.7. The estimate (26) (p < 3) or (27) (p = 3) then implies

G1(θr) ≤ N

θ
W (r) +

1

2
G1(r) +

{
0 if p < 3

Ng(u; θr) if p = 3 .
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Choose r0 so that supr<r0
W (r) < θε

8N , and (if p = 3) g(u; r0) < ε
8N , where ε is the

constant in Theorem 1.1 (ii). Then for r ≤ r0, we have

G1(θr) ≤ 1

2
G1(r) +

ε

4
.

Iterating this estimate, we obtain, for all r ≤ r0,

G1(θ
kr) ≤ 1

2k
G1(r) +

ε

2
. (31)

Choose an integer k0 ≥ 3 + supθr0<r<r0
log2

G1(r)
ε

. Then G1(r) ≤ ε for r < θk0r0. The
regularity of u at z = (0, 0) now follows from Theorem 1.1 (ii). ��

In the next lemma, we show that vorticity and the gradient of velocity can be con-
trolled by the gradient of vorticity in scaled norms, which is the key for Theorem 1.1
(iv).

Lemma 3.8. Suppose 0 < 2r ≤ ρ and Qρ ⊂ � × I . Suppose 1 ≤ q ≤ 2, and p, p�

satisfy (19) and (20). If ∇w ∈ L p�,q
x,t (Qρ), then

W (r) ≤ N
(ρ

r

)
W1(ρ) + N

(
r

ρ

) 3
p −1

W (ρ). (32)

Furthermore, if 1 ≤ q < 2, we have

G1(r) ≤ N
(ρ

r

)
W̃1(ρ) + N

(
r

ρ

)3/p

G1(ρ) + g(u; r) (33)

with g(u; r) → 0 as r → 0.

Proof. Statement (32) follows from Sobolev imbedding:

‖w‖L p(Br ) ≤ ∥∥(w)ρ
∥∥

L p(Br )
+

∥∥w − (w)ρ
∥∥

L p(Bρ)

≤ N

(
r

ρ

) 3
p ‖w‖L p(Bρ) + N ‖∇w‖

L p�
(Bρ)

.

Taking the Lq norm in time and dividing both sides by r , we get (32).
The proof of (33) is similar to that of the second part of Lemma 3.6. Choose a standard

cut off function φ supported in Bρ such that φ = 1 in B3ρ/4. Define 2-tensors

V (x, t) :=
∫

R3
∇x

1

4π |x − y| (curl w(y, t)) φ(y)dy, H := ∇u − V .

Note that since ∇ · u = 0, −�u = curl w, and so �x H(x, t) = 0 in B3ρ/4. Potential
estimates give, if p� > 1, (i.e. q < 2),

‖V ‖L p ≤ N ‖curl w‖
L p�

(Bρ)
.
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The same estimate as in (29) gives

‖H − (H)r‖L p(Br ) ≤ N

(
r

ρ

) 3
p� ‖H‖L p(Bρ)

≤ N

(
r

ρ

) 3
p� [

‖∇u‖L p(Bρ) + ‖curl w‖
L p�

(Bρ)

]
.

Using 1
r ‖(H)r‖L p(Br ) = Nr

3
p −1|(H)r | = Nr

3
p −1|H |r=0 together with the last two

estimates, we find (33) with

g(u; r) := Nr
3
p −1

(∫ 0

−r2
(|H |r=0)

q dt

)1/q

.

Now arguing as in the proof of Lemma 3.6,

g(u; r) = Nr
3
p −1

(∫ 0

−r2
|(H)ρ/2|qdt

)1/q

≤ Nr
3
p −1

ρ3/p

(∫ 0

−r2
(‖∇u‖L p(Bρ))

qdt

)1/q

,

and since ∇u ∈ L p,q(Qρ), we have g(u, r) → 0 as r → 0. ��

Proof of Theorem 1.1 (iv). It suffices to prove the borderline cases 3/p� + 2/q = 4. The
other cases follow by Hölder inequality. We also assume z = (0, 0).

We first consider 1 < q ≤ 2. Let ε be the constant in Theorem 1.1 (iii) and we
suppose W1(r) ≤ ε/4 for any r < r0. Our assertion follows a procedure similar to the
proof in Theorem 1.1 (iii). Since 3

p − 1 > 0 in (32), we replace r and ρ by θr and
r , respectively, after choosing θ ∈ (0, 1/2) appropriately, and then iterate (32). This
procedure leads to the conclusion that W (θkr) < ε/2 for r < r0 and k sufficiently large,
and so W (r) < ε for r < θkr0. Theorem 1.1 (iii) then implies the regularity.

For 1 ≤ q < 2, we can use (33) instead. Arguing just as in the second part of the
proof of Theorem 1.1(iii), we conclude that G1(r) can be made small enough to apply
Theorem 1.1(ii), provided W̃1(r) ≤ W1(r) can be made arbitrarily small. ��
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