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Abstract: This work is a supplement to the work of Sneddon on axisymmetric Boussinesq problem in 1965 in 

which the distributions of interior-stress fields are derived here for a punch with general profile. A novel set of 

mathematical procedures is introduced to process the basic elastic solutions (obtained by the method of Hankel 

transform, which was pioneered by Sneddon) and the solution of the dual integral equations. These processes 

then enable us to not only derive the general relationship of indentation depth D and total load P that acts on 

the punch but also explicitly obtain the general analytical expressions of the stress fields beneath the surface of 

an isotropic elastic half-space. The usually known cases of punch profiles are reconsidered according to the 

general formulas derived in this study, and the deduced results are verified by comparing them with the 

classical results. Finally, these general formulas are also applied to evaluate the von Mises stresses for several 

new punch profiles. 
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1  Introduction 

Sneddon [1] obtained a seminal and compact solution 

of the displacement–load relationship for the 

axisymmetric Boussinesq problem [2–5] involving a 

punch with an arbitrary profile. However, he did not 

present the interior-stress fields. As one special subclass 

of contact mechanics [6–9], this subject is characterized 

as an isotropic half-space that is vertically indented 

by a rigid punch (frictionless), and the surface-stress 

distribution and contact area are unknown. 

In 1904, Huber [10, 11] first derived the full stress 

fields in the case of a spherical punch that was 

approximated using a paraboloid with revolution  

 21

2
z r , where the axis of revolution coincided with  

the z-axis. Later, Love employed the potential theory  

to solve cases of flat-ended [12] and conical [13] indenter. 

All these three special cases of punch profiles were 

reconsidered by Harding et al. [14–16], who used the 

more concise methods of the Hankel transform and 

the theory of dual integral equations. Following the 

establishments and availability of fundamental solutions 

for the governing equations of elasticity [17–21] and 

the development of diverse mathematical methods 

[22–27], the more complicated cases of punch pro-

files [28, 29] are studied. In particular, the form of 

axisymmetric punch  2nz Ar  (n = 0, 1, 2, 3, …) was 

separately considered by Shtaerman (the English 

language version of the results were edited in Gladwell’s  

book [23]) and Deich [30], and the form 




 2

0

n

n

z Ar   

was studied by Deresiewicz [31]. The case of  nz Ar  

(n = 0, 1, 2, 3, …) was addressed by Lure and  
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Nomenclature 

a   Contact radius 

A   Shape parameter of the indenter 

D   Indentation depth 

,E v   Young’s modulus and Poisson ratio 

( )g x   Displacement function of the surface of a  

  half-space 

  ( )
n

H f x    Hankel transform of order n of function  

     ( )f x  

( )
n

J x  Bessel function of the first kind with order n 

k   Shape parameter of the indenter that indicates 

  the times of the power function 

,m n  Shape parameters of the indenter that indicates 

  the times of the power function in the form 

  of m/n 

P   Total load acting on the punch 

0
p   Peak Hertzian contact pressure 
 

R   Radius of a spherical indenter 

r
u ,

z
u  Elastic displacement in two directions 

z , r ,  Cylindrical coordinates in the spatial domain

( )z r   Profile function of the indenter 

 ,  Lame constant     / (1 )(1 2 )Ev v v , 

     / 2(1 )E v  

   Hankel-transformed variable with respect

  to r 

 ( )  Undetermined function involving the effect

  of load and profile of the punch 

   Normalized parameter used in relationship 

  r a  

 ( )x  Beta function 

( )x  Gamma function 


rr

,  ,
zr

,
zz

  Four elastic-stress components 

   Inclination angle of the conical indenter 

  

 

Shtaerman (the English language version of the results 

were edited in Gladwell’s book [23]), where the 

relationships of P–a (contact radius) –D and surface  

stress were obtained. The case of 





0

n

n

z Ar  was also  

investigated by Galin (the English language version 

of the results were edited in Gladwell’s book [23]). 

Furthermore, the case of  nz Ar  (n = 1.5, 2.5, 3.5, …) 

was considered by Woirgard et al. [32]. Significantly, 

the milestone work for the arbitrary profile of a punch 

was accomplished by Sneddon [1] in 1965. Additionally, 

without solving the field equations of elasticity but by 

employing the methods of cumulative superposition 

and conservation integrals, Hill and Storakers [33] 

obtained the results similar to those by Sneddon [1]. 

Furthermore, the equivalent results were obtained 

using the method of dimensionality reduction used 

by Geike [34] and Popov [35]. Recently, the Hertzian 

contact theory and the superposition-principle method 

have been employed by Willert et al. [36], who 

presented the stress characteristics in a contact plane. 

Regrettably, except for the known expressions of 

load P, indentation depth D, and normal surface stress 

obtained from the aforementioned studies, the explicit 

and concise formulas of interior-stress fields have not  

been integrally derived. These subjects may either 

have not been pursued, only a speculative sketch 

was presented, the implicit expressions were given, 

the mathematical procedures were quite complicated, 

or simply a few special cases of punch profiles were 

considered.  

In the present study, the relationships of D, a, and 

P and the full components of the interior stresses are 

derived for the more general profile of a punch, i.e., 

 /m nz Ar  (m = 0, 1, 2, 3, ...; n = 1, 2, 3, ...)      (1) 

which can be reduced to not only the known cases 

(m/n = 0, 1, 1.5, 2, 2.5, 3.5, 4, 4.5, ...) but also some 

particular cases such as 4/3, 5/6, and 2/3 that cannot 

be dealt using parameter n only. The consideration of 

this form also comes from some engineering appli-

cations, e.g., the minimum dumping profile (4/3) of a 

carrier as it moves in a fluid medium. 

Methodologically, the basic solutions by Sneddon 

[21], the theory of dual integral equations [37], and 

the boundary conditions adopted in the present work 

are the same as those used by Sneddon [1] except  

for the whole mathematical procedures. Sneddon [1] 
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applied a critical relationship of the property on the  

Hankel transform of, i.e.,      
1

1

1 d
( );

d
xH g x

x x
  

   0
( );H g x , to deal with the arbitrary profile of a  

punch. Instead of utilizing such complicated formula 

with its cumbersome derivations, a novel set of simpler 

and more ingenious mathematical methods are 

employed in the present study for this special issue, 

which enable us to directly obtain results similar to 

those by Sneddon [1] and to further fully obtain the 

interior-stress fields. 

The general expressions of indentation depth D, 

normal surface stress, total load P, and all the interior- 

stress components are derived for the punch profile 

of  /m nz Ar  in this study. In particular, the common 

cases of m = 0 (m/n = 0) (flat-ended), m/n = 1 (conical), 

m/n = 2 (spherical), and m/n = k of the punch profiles 

are re-deduced in the current derivations. Finally, the 

von Mises stresses for the cases of punch profiles m/n = 

1, 4/3, 2, 4 are computed according to the explicit and 

analytical expressions of the interior-stress components 

in the present work.  

2  General solutions of the axisymmetric- 

Boussinesq problems 

2.1 Basic solution 

According to the general solutions of the equilibrium 

equations of elasticity in cylindrical coordinates, 

which were solved and summarized by Sneddon [21], 

the expressions of the interior-stress fields indented 

by a given axisymmetric profile of a punch can be 

logically obtained. To more easily solve the current 

problem, these solutions are modified into the form 

 ( )  (the detailed derivations are presented in the 

Appendix). Then, the non-zero components of the 

displacements and stresses can be expressed as follows: 

   
  

      
1

0

1
, e ;

2

z

a
z

z
u r z H r

a

    
  

      

(2) 

 

 
  

       
2

1

,

e ;
2 2

r

z
a

u r z

H z r
a

      
   

   
(3)

 

 
   

           
0

,

2 1
1 e ;

2

zz

z
a

r z

H z r
a a





     
  

   
(4)

 

 

 

 
 

 





 
     

   
       

0

2
1

,

2 1
e ;

2

2
e ;

2

z
a

z
a

r z

H r
a

H z r
r a









   
  

       
   

   

(5) 

 
   

 
 

 





           
   

       

0

2
1

,

2 1
1 e ;

2

2
e ;

2

rr

z
a

z
a

r z

H z r
a a

H z r
r a







     
  

       
   

   

(6) 

     
  

    
1 2

2
, e ;

2

z
a

zr

z
r z H r

a

  
   

 
     (7)

 

where  ( )  denotes the function that reflects the effect 

of the load and punch profile (as expressed in Eq. (A6) 

in the Appendix). λ and μ are the Lame constants, 

and a is the radius of the contact area. Further, 

        
         0, ; , dn nH f z r f z J r

a
   (8) 

where operator [ ]
n

H  represents the Hankel transform 

of order n of function ( , )f z , and ( )
n

J  is the Bessel 

function of the first kind of order n. 

2.2 Indentation depth D(a), normal surface stress, 

and total load P 

By combining the aforementioned solutions (as 

expressed in Eqs. (2)–(7)) with certain necessary 

boundary conditions, the related axisymmetric 

Boussinesq problem can be accordingly re-solved. 

The boundary conditions investigated in the present 

study can be expressed [1] as follows: 

        , 0
z

u r a z D z r            (9) 

    , 0 0
zz

r a z             (10)

 where D denotes the indentation depth and z(r) is a 
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function of the punch profile. 

By substituting Eq. (1) and the boundary conditions 

of Eqs. (9) and (10) into Eqs. (2) and (4) respectively, 

the following equations can be obtained: 

   
          

  1 /
0

0
, 0 d ,m n

z

r
u r z J D Ar r a

a

   

(11) 

   
 

 
           0

0

2
, 0 d 0,

2
zz

r
r z J r a

a a

      
 

(12) 

If the normalized relationship of r a  is considered, 

Eqs. (11) and (12) can be reduced to the well-known 

dual integral equations as follows: 

     

   

 



     

    




/1
0

0

0
0

d , 1

d 0,

m n
J D A a

J

      

    
 (13) 

The solution of Eq. (13) was obtained by Sneddon 

[37]: 

 
     

 

     


 
  
   

  
1 1 1

0 0 02 2

d2 d
cos sin d

π 1 1

g u u
tg tu t t

u

(14) 

where functions of ( )g  and ( )g tu  in the condition are 

expressed as 

     
/m n

g D A a            (15) 

    
/m n

g tu D A atu            (16) 

By substituting Eqs. (15) and (16) into Eq. (14), 

function  ( )  can be pre-digested as 

 

 

 

     




              


1
2

0

π
2 2 1

sin , cos sin d
2 2

m m n

n n

A

D n m
a t t t

A n

(17) 

The abovementioned processes represent the 

classical steps in solving this type of problems by 

employing the Hankel transform [1, 14–16, 21, 32].  

However, no attempt can be found in the known 

literature in which Eq. (17) is further transformed 

into a manageable form. In the present study, the 

existing integral relationship [38] is    

      1 2sin d sin cos ( 1) sin dk k kx x x x k x x x k k x x x    

(18) 

Then, the integral term of Eq. (17) can be transformed 

into: 

 
     




  





  
   

  





1

0

1

2 2 0

sin d

sin1
cos sin d

m n

n

m n

n

t t t

m n m m n
t t t

n n

 

(19) 

Therefore, Eq. (17) can be rewritten as 

       
 

   
 

1
1

2
sin

π
C nD

C
m

     (20) 

where 

 


   
  

 
1 2

2 1
,

π 2 2

m

n
m m nA n m

C a
nn

     (21) 

     


 
1

0
sin d

m n

nt t t         (22) 

where  ( )  denotes the beta function. 

The obtainment of Eq. (20) is the key step in this 

derivation. These processes are completely different 

from the corresponding procedures employed by 

Sneddon [1, 14–16, 21] and Woirgard et al. [32], which 

either greatly blocked the derivation of expressions of 

the interior stresses [1], limited the general discussions 

of the punch profiles [14–16, 21], or complicated the 

expressions of the interior-stress fields [32]. 

Once the explicit expression of function  ( )  has 

been obtained, all the components of the displacements 

and stresses in Eqs. (2)–(7) can be subsequently com-

puted. However, substituting Eq. (20) into the basic 

solutions of Eqs. (2)–(7) would lead to extremely com-

plicated forms of integral equation, which make them 

even impossible to calculate. In fact, the form  ( )  

can be simplified by considering the circumstance  

of a normal surface stress on the contact periphery. 

Substituting Eq. (20) into Eq. (12) yields: 
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 
 

 
 



      
 





                 1
1 0

0

, 0

2 2
sin d

2 π

zz r z

C nD r
C J

a m a

 

(23) 

Simultaneously, two types of axisymmetric punch 

profiles should be respectively addressed: (a) m ≠ 0 

(m/n ≠ 0) and (b) m = 0 (m/n = 0). Furthermore, as we 

can observe in the following, the inter-relationships 

of indentation depth D, normal surface stress  (0
zz

 

 , 0)r a z , and total load P can be derived as the 

obtainment of simplified expression  ( ) .  

(a) m ≠ 0 (m/n ≠ 0)  

Obviously, the case of m ≠ 0 (m/n ≠ 0) corresponds 

to the incomplete contact problem, which means that 

the normal surface stress on the periphery of the contact 

region is assumed to be zero, i.e.,    ( , 0) 0
zz

r a z , 

when adhesion is not considered. Therefore, by setting 

r = a in Eq. (23), we can obtain: 

 

 
 

   

 



    
    






 

 
  

  
       

 



1

1 0
0 0

1
0

0

, 0

d sin d2
0

22
+ sin d

π

zz

m n

n

r a z

C t t t J

C nDa
J

m

   

(24) 

We note that the known results of the integral 

equations [38] are 

     


 00
sin d 0t J ,     1t        (25) 

   


  00
sin dJ              (26) 

Thus, we obtain the following limitation: 

 12
0

π
C nD

m
              (27) 

Therefore, the indentation depth produced by 

axisymmetric punch profile  /m nz Ar (m = n = 1, 2, 

3, ...) can be obtained as 

   
  

 

2 1
,

2 2 2

m

n
A m n n m

D a
n n

         (28) 

Moreover, by introducing Eq. (27) back into 

Eq. (23), the normal surface stress can be reduced 

and calculated as 

 




 





1

1

2 2
2

2

, 0 = d
21

m n

n

rzz
a

CE t
r z t

av r
t

a

,   0 r a  (29) 

where Lame constants λ and μ are replaced by Young 

modulus E and Poisson’s ratio v according to the 

following relationships [11]: 

  


 
=

1 1 2

Ev

v v
, 

 
=

2 1+

E

v
        (30) 

Then, total load P can be obtained from Eq. (29), i.e.,  

       
  20

2
2π , 0 d ,

1

a

zz

E am
P r z r r D r a

v m n
    

(31) 

Additionally, if Eq. (28) is substituted into Eq. (31), 

the dependence of applied load P on contact radius a 

only can be expressed as  


  

    2

2 1
,

2 21

m n

n
E Am n m

P a
n nv

      (32) 

Finally, function  ( )  in Eq. (20) can be simplified 

using Eq. (27) 

      
1

C              (33) 

(b) m = 0 (m/n = 0) 
This case actually illustrates that the flat-ended punch 

and the corresponding normal surface stress on the 

periphery of the contact region can be obtained by 

setting m = 0 and r = a in Eq. (23): 

     
  

   
 

 
  

 flat-ended

00

4
, 0 sin d

2 πzz

D
r a z J

a

(34) 

From Eq. (26), we have 

     flat-ended , 0
zz

r a z          (35) 

This mathematical result reflects the physical 

phenomenon that indicates that the pressure is infinite 

at the edge of the complete contact area. The pressure 

within the contact area can be obtained by substituting 
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m = 0 into Eq. (23): 

  
 

 
flat-ended

2 2 2

1
, 0

π1
zz

E D
r z

v a r
,  0 r a   (36) 

Then, the total load can be expressed as 

   

   


flat-ended flat-ended

0

2

2π , 0 d

2
,

1

a

zzP r z r r

EDa
r a

v



    (37) 

The results of Eqs. (36) and (37) are identical with 

the known expressions provided by Sneddon [15]. 

Finally, the expression for function  ( )  in Eq. (20) 

for a flat-ended punch (A = 0, m = 0) can be calculated as
 

    flat-ended 2 sin

π
D

          (38) 

2.3 Interior-stress field 

From simplified function  ( )  expressed in Eq. (33) 

and from Eq. (38), the interior-stress fields indented by 

the punch profile  /m nz Ar  can be easily calculated 

from basic solutions of Eqs. (2)–(7). The special case 

of m = 0 (m/n = 0) will be discussed later (in Section 3). 

Here, the general stress expressions in the case where 

m ≠ 0 (m/n ≠ 0) are investigated, which can be integrated 

by substituting Eq. (33) into Eqs. (4–7): 

   


 
    

   


1
0 1 11
1 0 12 0

1 2
, = 2 d

21

m n

n
a vCE z

r z vI I I t t
a r rv

(39) 

   


 
    

   


1
0 0 1 11
1 2 0 12 0

2 1
, = d

21

m n

n
rr

a vCE z z
r z I I I I t t

a a r rv

(40) 

 



 

1
11
22 0

, = d
21

m n

n
zr

CE z
r z I t t

a av
       (41) 

 
  

     


1
0 01
1 22 0

, = d
21

m n

n
zz

CE z
r z I I t t

a av
    (42) 

where 

   


   
     

  1

0
, , exp sin d

z
p q a
q p

r
I r z t J t

a
  (43) 

In particular, the expressions on surface z = 0 for 

 0 r a  are 

 

 







 
             
  


2 2 2

1
1

2 2 22
2

2

, 0

1 2 1
d

2 1 21

m n

n

r

a

r z

E v C a t t n a
t

a v m nv r rr
t

a

(44) 

 

 







 
             
  


2 2 2

1
1

2 2 22
2

2

, 0

1 2 2
d

2 1 21

rr

m n

n

r

a

r z

E v C v a t t n a
t

a v m nv r rr
t

a

 

(45) 

 










1

1

2 2
2

2

, 0 = d
21

m n

n

rzz
a

CE t
r z t

av r
t

a

      (46) 

  , 0 =0
zr

r z                 (47) 

Those at the surface for r a  are expressed as 

     
 

 
    


1

2 2

1 2
, 0 = , 0

1 2
rr

E v C a n
r z r z

m nv r
     

(48) 

     , 0 = , 0 =0
zr zz

r z r z           (49) 

The stresses on the axial direction r = 0 are 

expressed as 

   

 
 

   

 
        

 
1 1

21

2 2 2 2 20 02 2 2

0, 0,

2 d 1 2 d
41

rr

m m

n n

r z r z

C aE t t
z t v t

v z a tz a t

(50) 

 
 

  
   


2

1
1

2 2 2 2 2 2 20

2
0, = d

21

m

n

zz

CE t az
r z a t

v z a t z a t
 (51) 

   0, =0
zr

r z             (52) 

Finally, the expressions at original point r = z = 0 

for m n  are 

 
 

 
     

 
1

2

1 2
( 0, 0 ) ( 0, 0 )

1 4
rr

E v C n
z r zr

v a m n
  

(53) 
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  
  


1

2
0, 0

21
zz

CE n
r z

a m nv
       (54) 

   0, 0 =0
zr

r z              (55) 

For m n , 

              0, 0 = 0, 0 = 0, 0
rr zz

r z r z r z   

(56) 

   0, 0 =0
zr

r z                (57) 

3 Results of the special profiles of a punch 

The four special cases of punch profile, namely, m/n = 

0 (m = 0), m/n = 1, m/n = 2, and m/n = k, which have 

been studied using other mathematical procedures 

[10–16, 21, 23, 32], are reconsidered according to the 

abovementioned general formulas, and the re-deduced 

results are verified by comparison with the classical 

results. Furthermore, the distributions of the von Mises 

stresses for some new cases of punch profiles (such 

as 4/3) will be presented. 

3.1 Flat-ended cylindrical punch m/n = 0 (m = 0) 

The expressions for the normal surface stress and total 

load indented by this flat-ended cylindrical punch 

have been derived and verified in Section 2, and the 

distributions of the interior-stress fields in an isotropic 

half-space can be easily obtained by substituting Eq. (38) 

into Eqs. (2) and (4)–(7). Thus, 

 
          

 0
0

2 1
, = sin e d

π 2

z

a
z

D z r
u r z J

a a

   
  

       

(58) 

 






  
    

             




0

0
1

1

4
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2 π

                sin e d (59)
z

a

r
J

a aD
r z
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J
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



 


     


 

 

 






            
             




0

0
1
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1
4

, =
2 π
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z r
J

a a aD
r z

z r
J

r a a



   


     


 

 

       
    12 0

4
, =  sin e d

2 π

z

a
zr

Dz r
r z J

a a

      
 

    

(61) 

    



             



 0
0

4
, 1

2 π

            sin e d (62)
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z

a

D z r
r z J

a a a


    
 

 

 

If the notations adopted in the aforementioned 

formulas are used to perform the following 

replacements, 

D ;   p ; z

a
; 

r

a
       (63) 

then Eqs. (58)–(62) can be found to be identical to the 

corresponding expressions provided by Sneddon [21]. 

3.2 Conical punch (m/n = 1) 

For the case of the conical punch shown in Fig. 1, all 

the stress information involving this punch profile can 

be computed when its shape parameters (  cotA  

and m/n = 1) are substituted into Eqs. (28), (29), (32), 

and (39)–(42). The expression of the indentation depth 

can be obtained as follows: 


π cot

2

a
D


             (64) 

The normal surface stress is expressed as 

     
    2

cot
, 0 = arc cos h

21
zz

E a
r z

rv
   (65) 

Then, the total load contains: 






2

2

π cot

21

E a
P

v
            (66) 

 

Fig. 1 Conical rigid punch. 
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and the components of the interior stresses are 

expressed as 

 
 





  
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, = 1 cos e d

1 2

z

a
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(69) 

 
             02 0

,

cot 1 cos
1 e d

1 2

zz
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a

r z

E z r
J

v a a





    


      

(70) 

The results of Eqs. (64)–(66) are consistent with 

those of the classical formulas in Refs. [1, 23, 39]. The 

expressions of the interior stresses in Eqs. (67)–(70) 

are identical to those given by Sneddon [16, 21] if the 

following notation substitutions are performed:

 

 cota ;   p ; z

a
; 

r

a
      (71) 

We need to note that the functions of the above-

mentioned two punch profiles (flat-ended and conical) 

are expanded into a combination of polynomials of 

 




 
0

( ) n

n
n

g A in Refs. [15, 16, 21, 32], which are 

completely different from the adopted method in the 

current study. 

3.3 Approximated spherical punch (m/n = 2) 

Actually, the original contact problem studied by Hertz 

[6] was induced by an approximate spherical punch 

where the shape parameters of this punch profile 

could be expressed as  /m nz Ar  (A = 1/2R, m/n = 2). 

By combining this expression with Eq. (28), the 

indentation depth in this case can be obtained. 


2a

D
R

                  (72) 

The total load can be derived from Eq. (32), 




3

2

4

31

E a
P

Rv
               (73) 

The interior-stress components can be calculated by 

substituting these shape parameters into Eqs. (39)–(57). 

Thus, we have: 

   


 
  
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(74) 
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 (75) 

  


 
1

1

22 0

2
, d

π1
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r z I t t
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        (76) 

    
   


1

0 0

1 22 0

2
, = d

π1
zz

E a z
r z I I t t

R av
      (77) 

where ( , , )p

q
I r z t  is expressed similar to that in Eq. (43).

 The expressions on surface z = 0 for  0 r a  are

   

              
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(79) 

  
  



2
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2
, 0 1

π1
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E a r
r z
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   , 0 0
zr

r z              (81) 

On surface z = 0 for r a , the expressions are 
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      
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 (82) 

       , 0 , 0 0
zr zz

r z r z         (83) 

On the r = 0 axis, the expressions are  
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2
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r z
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   0, 0
zr

r z                (86) 

At original point r = z = 0, 

      
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 2

2 1 2
0, 0 = 0, 0 =

π 21
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E a v
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  
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 2

2
0, 0

π1
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E a
r z
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    0, 0 0
zr

r z              (89) 

Obviously, the particular components of the stresses 

on surface z = 0, axial r = 0, and original point z = r = 0 

as expressed in Eqs. (78)–(89) agree with the results 

by Huber [10] (Huber’s results also presented by 

Hills et al. [11]), which assumes that the peak contact 

pressure is involved as follows: 


0 2

2

π1

E a
p

Rv
            (90) 

Unfortunately, we fail to reduce the integral 

expressions of Eqs. (74)–(77) to the corresponding 

Huber forms [10] (Huber’s results also presented in 

Hills [11] where u2 should be corrected to u). However, 

the numerical solutions of Eqs. (74)–(77) are obtained 

and compared with the values of the Huber analytical 

expressions, as shown in Fig. 2. 

3.4 Punch in the form of a paraboloid with 

revolution m/n = k 

In the present work, the widely used formulas of  

the inter-relationships between indentation depth D,  

 

Fig. 2 Numerical comparisons of the interior-stress distributions based on the general formulas in Eqs. (74)–(77) and the classical 

formulas of Huber [10] (Huber’s results are also presented by Hills et al. [11]). For fewer calculation, the common part (–p0, as expressed 

in Eq. (90)) is excluded from these expressions, and some parameters, namely, R = a = 1 and v = 0.3, are set. 
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contact radius a, and total load P are discussed in 

detail. With the exception of the more general work 

of Sneddon [1], the classical solutions of Galin (the 

English language version of the results were edited in 

Gladwell’s book [23]) for monomial punch  kz Ar  

are reduced from the derived formulas here. 

According to the relationship between the gamma 

and beta functions, we have: 




          

                  

2 1

2 1
, 2

2 2 2

m n

n
n m m m m

n m n n n
 (91) 

The indentation depth is calculated from Eq. (28): 


       

        
      

2 1

2
2 2

m n m

n n
Am m m

D a
n n n

     (92) 

By substituting m/n = k into the abovementioned 

expression, Eq. (92) can be reduced to the following: 

 


             

2

1

22
2

k kk
D Ak k a         (93) 

Similarly, for the total load in Eq. (32), the following 

equation is obtained: 

 


       
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  (94) 

When m/n = k, 

 


             
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2
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   (95) 

Combining Eq. (93) and Eq.(94) yields  
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When m/n = k 

 

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  (97) 

Notably, Eqs. (93), (95), and (97) agree with the 

results of Galin (the English language version of the 

results were edited in Gladwell’s book [23]). 

3.5 Application of the general results to six sample 

punches 

As previously mentioned, the four special known 

cases of punch profiles (m/n = 0, 1, 2, k) have been 

reconsidered using the derived formulas in Section 2. 

Furthermore, some new cases of punch profiles that 

have not been investigated elsewhere are investigated 

here according to these general formulas.  

To facilitate the comparison with the classical 

solutions, six examples of punch profiles (m/n = 1/4, 

1/2, 1, 4/3, 2, 4) are considered, as shown in Fig. 3(a). 

To illustrate the differences in the stress states arising 

from the shape effect, a unified indentation depth 

(D = 1, reduced unit) is set, and the related parameters 

are calculated and listed in Table 1. 

By substituting the related parameters (Table 1) 

into Eqs. (28), (29), and (32), the normal surface stress, 

indentation depth, and total load of these six punch 

profiles can be calculated. They are graphically shown 

in Figs. 3(b)–3(d), respectively. 

Moreover, the distributions of the interior stresses 

indented by the four punch profiles (m/n = 1, 4/3, 2, 4) 

are numerically computed by substituting the parameters 

(Table 1) into Eqs. (39)–(57). The contour plots of the 

von Mises stresses can then be illustrated, as shown 

in Fig. 4. 

4 Conclusions 

The present work explicitly provides the analytical 

expressions of the stress fields beneath the surface of 

an isotropic elastic half-space involving axisymmetric 

punch profile  /m nz Ar , (m = 0, 1, 2, 3, ...; n = 1, 2, 3, ...). 

This is the main contribution of the current research.   

The methods adopted in this study for the 

axisymmetric Boussinesq problem are the Hankel 

transform and the theory of dual integral equations, 

which have been pioneered by Sneddon and then 

developed to solve the related problems. However, 

its core mathematical procedures have hardly been 

improved when the distributions of the interior-stress 

fields were derived. For example, the boundary 

condition of the z-displacement component was 
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processed in similar forms of  ( )g A  by Sneddon, 

  ( )g A B  by Sneddon, and   ( ) ng A B  by 

Woirgard for three different punch profiles, which either 

limited the general discussion of the punch profile or 

led to extremely implicit and complicated expressions 

of the interior-stress fields. Instead of using form  

 




 
0

( ) n

n
n

g A , the basic elastic solutions were first  

re-written in the form  ( ) (as expressed in Eqs. (2)–(7). 

Then, the solution of the dual integral equations was 

transformed into a manageable form (as shown in  

Eq. (20) by using Eq. (18). The process finally obtained  

not only these known results but also the explicit and 

concise formulas of the interior-stress fields for the 

more general punch profiles (especially for the case 

of m/n = 4/3, which has not been reported in the 

literature).  

The other main method of the potential theory is 

also used for this issue, which is based on the Abel 

integral equation in which the normal pressure should 

be first deduced. Then, it is considered as a known 

precondition to derive the distribution of the interior- 

stress fields.  

Irrespective of which of the abovementioned two 

 

Fig. 3 (a) Generatrix of the six types of axisymmetric punch profiles. Note that the exact expression of spherical punch 21 1z r    is 

replaced by its first-order expansion form, namely, 20.5z r , in the Hertz contact theory. (b) Distributions of the normal surface stresses 

produced by unified indentation depth D = 1 (reduced unit) acting on these six punch profiles where the infinite values at the original 

point for the cases of z = r1/4, z = r1/2, and z = r are omitted. (c, d) Variations in contact radius a, and total load P as indentation depth D

varies from zero to one (reduced unit). 

Table 1 Parameters of the six punch profiles under unified indentation depth D = 1 (reduced unit). (The values of contact radius a are 

rounded off according to Eq. (28)).  

D = 1 z = r1/4 z = r1/2 z = r z = r4/3 z = 0.5r2 z = r4 

A 1 1 1 1 0.5 1 

m/n 1/4 1/2 1 4/3 2 4 

a 0.55 0.58 0.64 0.66 1 0.78 

C1 1 / 2π   1 / π  2 / π  8 / 3π  4 / π  8 / π  
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methods is applied, the direct connection between 

the basic solutions and function of the punch profile 

has not been established. This problem is re-solved by 

the current study. The key point is that the expressions 

of the stress components need to be rewritten in the 

form of  ( )  (as expressed in Eqs. (2)–(7)) and then to 

simplify the expression of  ( )  based on the boundary 

conditions. To our knowledge, this is the first time 

that such method has been used for this type of 

problem. 
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Appendix  

Derivations of the displacement and stress com-

ponents in the form ( )   

The z-displacement component is derived as an example, 

and the other five expressions can be easily obtained 

using similar procedures. The expressions are presented 

in Ref. [21] (as shown in P454-(17), P457-(27)): 

       
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2
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   
   

, e zB
G z z  

  
         (A2) 

where   should be corrected to  , and D should be 

replaced by B, which actually is not an arbitrary 

constant but an undetermined parameter of  . The 

second partial derivative of (A2) is expressed as 

     
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Substituting Eqs. (A2) and (A3) into Eq. (A1) yields 

the following z-displacement component: 

   
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By considering relationship   a , Eq. (A4) becomes 
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If we introduce
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Equation (A5) can be expressed as  
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(A7) 

By applying the operator adopted by Sneddon [21], 

we have 
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Thus, the z-displacement component can be finally 

expressed as 
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(A9) 

Similarly, by combining Eq. (A2) in the present 

study with the general expressions, namely, Eqs. (16), 

(18), (19), (21), and (22) in Chapter 10 of the Sneddon’s 

book [21], i.e., 

     
    



 2

10

d ,
, = d

dr

G z
u r z J r

z
    (A10) 

     

     


   


    

 





  



3

30

2
0

d ,
, = 2

d

d ,
3 4 d

d

zz

G z
r z

z

G z
J r

z

  (A11) 

       

     



 
     

  
  





 
 

 








3
2

030

2
1

0

d , d ,
, = d

d d

2 d ,
d

d

G z G z
r z J r

z z

G z
J r

r z

   

(A12) 

 
       

     



 
      

  
  





 
   

 








3
2

030

2
1

0

,

d , d ,
2 d

d d

2 d ,
d

d

rr r z

G z G z
J r

z z

G z
J r

r z

    

(A13) 

 
       




       

  
   

 


2
2 2

120

,

d ,
2 , d

d

zr r z

G z
G z J r

z

     

(A14) 

the other five components of Eqs. (3)–(7) can 

bealogously obtained. 


