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Interlaminar Stresses in Composite Laminates Under
Out-of-Plane Shear/Bending

Taehyoun Kim* and Satya N. Atlurif
Georgia Institute of Technology, Atlanta, Georgia 30332

An approximate method is developed to investigate the interlaminar stresses near the free edges of beam-type
composite laminate structures subjected to out-of-plane shear/bending. The method is based upon admissible
function representations for in-plane stresses that contain a linear variation in the longitudinal direction.
Closed-form solutions of all stress components are sought by minimizing the complementary energy with respect
to the unknown functions. The resulting solutions satisfy the stress equilibrium, compatibility, and all of the
boundary conditions. Numerical examples are given for both cross-ply and angle-ply laminates. It is found that
interlaminar stresses under the shear/bending, particularly those for angle-ply laminates, may exhibit substan-
tially different characteristics than under uniaxial loading or under pure bending.

Nomenclature
b = half-laminate width
/i, /2 = unknown functions for the ply stresses cr22

and o\2
g(k) = unknown function for the ply stress an in

the fcth ply
h = laminate thickness
h{k\ h2

k} = unknown functions for the strain en in the
&th ply

L = laminate length
AW 1,2,3 = eigenvalue solutions to the characteristic

equation (64)
n = total number of plies
P(XI) - arbitrary loading distributed in the

longitudinal direction x\ (force/unit area)
Sjj = ply compliances
/(Ar) = thickness of the fcth ply
V - applied out-of-plane shear per unit width or

laminate volume (force/unit width)
X[ = longitudinal coordinate
x2 = transverse coordinate
x2 = normalized transverse coordinate
AT3 = out-of-plane coordinate with origin at the

bottom of each ply
ci i» €22* €33 = normal strains
723, To, 712 = shear strains
^23, v\3, ^12 = poisson ratios
Hc = complementary energy
HC = complementary energy defined by Eq. (58)
a/y = far-field stresses
at = companion stresses
£ = longitudinal location of shear load

Introduction

I N the past, there has been a great deal of research on the
behavior of interlaminar stresses near free edges of com-

posite laminates. The most frequently studied are the inter-
laminar stresses at the straight edges under uniaxial loading or
pure bending. The methods employed vary from finite differ-
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ences1"4 and finite elements5'8 to eigenfunction expansions.9*10

Another group of methods makes use of assumed equilibrated
stress representations and the use of the principle of minimum
complementary energy to satisfy compatibility.11"13 This tech-
nique particularly allows a simple and efficient yet accurate
tool for estimating the interlaminar stresses. Most recently,
the method was generalized by accounting for the mismatches
in Poisson's ratios and the coefficients of mutual influences
that may further exist between different plies in the through-
thickness direction.14 Generally, it is known that the stresses
under either type of loadings, uniaxial tension or pure bend-
ing, are known to share similar characteristics.

Investigations of other types of loadings have been rela-
tively rare. Tang15 predicted interlaminar stresses of uniformly
loaded rectangular composite plates analytically but ignored
the longitudinal variation in the boundary-layer part of the
solution. Murthy and Chamis8 examined interlaminar stresses
under various loadings such as in-plane and out-of-plane
shear/bending and torsion, using a three-dimensional finite
element method. The characteristics that typify the stresses,
particularly under out-of-plane shear/bending, however, were
not clearly pointed out, and some of the results need compari-
sons with other analyses. Kassapoglou13 added the effects of
the out-of-plane shear to his closed-form solutions for com-
bined extension/bending loading. The formulation, although
accurate for plates that are homogeneously anisotropic, does
not adequately model the mismatches between the laminate
and the individual laminae properties.

In this paper, interlaminar stresses near straight free edges
of beam-type composite laminate structures under out-of-plane
shear/bending are investigated using an approximate method
based on equilibrated stress representations and the use of the
principle of minimum complementary energy. The present
analysis is different from the previous assumed stress methods
in that it includes the longitudinal degrees of freedom in the
stress distributions, which adds much to the complexity of the
formulation. As a result, the unknowns in the resulting stress
expressions are obtained by solving an eigenvalue problem
whose coefficients are not constants but may depend on the
shear loading location. Numerical results are given for both
cross-ply and angle-ply laminates that are cantilevered at one
end and subjected to a concentrated out-of-plane shear load at
three different locations. It is found that, unlike uniaxial
tension or pure bending, the combined shear/bending gener-
ally creates interlaminar stresses of different shapes and mag-
nitudes as the relative amounts of shear and bending change.
It is also found that the stress shapes do not exhibit either
exact symmetries or antisymmetries in the transverse direction
as they would under uniaxial loading or pure bending.
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Fig. 1 Ply coordinate system.

Stress Equilibrium Equations
Consider, for example, a composite laminate that is

cantilevered at one end and subjected to an out-of-plane shear
load V (force/unit width) concentrated at x\ = % (see Fig. 1).
The laminate consists of n plies and can have general unsym-
metric layups. It is assumed that the width (2b) of the beam is
small compared with its length, and the shear load is dis-
tributed uniformly over the width. It is also assumed that local
constraining effects in the vicinity of the root of the cantilever
can be ignored. For convenience, the following transforma-
tions are introduced for the width coordinate x2:

b — x2x2 = — —* for x2 > 0 (1)

x2 = for

Both the free edges at x2 = ± b are then defined by x2 = 0. The
local vertical coordinate x3 is defined as being zero at the
bottom of each ply. For a geometrically linear theory, the
stress equilibrium equations (a/y>7 = 0), in the absence of body
forces, have the form

1 dai2 dg13 _
h dx2 dx3 ~

1 3022 d(723 _ Q

h dx2 dxi

_

h dx2

#033

(2)

(3)

(4)

where minus and plus signs are used for the positive and
negative x2, respectively. Assuming that the laminate has ef-
fective length of £, the traction boundary conditions that must
be enforced in the complementary energy principle are

(7 = 1, 2, 3)

(7 = 1,2,3)

(5)

(6)

It is seen that since all of the three equilibrium equations are
coupled, at least three stresses need to be known a priori to
obtain the remaining components.

Far-Field Stress Shapes
In the present analysis, any stress component is assumed to

consist of two parts, namely, the far-field stress a// and the
companion stress off.

= Oi + (7)

By definition, only the far-field stresses should exist in the
central region of the laminate away from the free edges. On

the contrary, both components are expected to exist near the
free edges to meet the traction free boundary conditions (6).

According to the classical laminate plate theory (CLPT) or
the first-order shear deformation theory, the in-plane far-field
stress components in the /rth ply can be expressed as16

- V[(Xl - 0 - (*i -

• V[(Xl - {) - (*! -

V[(Xl - f ) - (*!

(8)

(9)

(10)

where the coefficients A$k\ B$k\ and C\k) are obtained for a
unit moment Mx = 1 and with all other moments equal to
zero, and

0 if 0
Xi - £ if (11)

It is emphasized that any higher order shear deformation
theories can also be invoked, but only the zeroth- and first-or-
der theories are considered in the present analysis.

The remaining far-field stress components, i.e., the out-of-
plane stress components due to the in-plane gradient field are
obtained by integrating the stress equilibrium equations (2-4)
with the previous expressions for aff, d^p, and d$. Treating
the applied shear as an impulse load at x\ = £, one can sum-
marize those components as

) = - (Elf*

[k)xl) • V(xl - £)<- !>

- V[\ - (x, - S)<®\ (12)

V[\ - (x, - f )(«] (13)

(14)

where
0 if 0 < xi <

if (15)

and

- £}(-1) = $(*! - £) (impulse function a t -X i = (•) (16)

(17)

(18)j'rw + cpt»
i = 1 2
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Fig. 2 033 at first interface; [90/0]ss, near positive free edge.
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* /
/ = 1 \ (19)

In the previous equations, D^k\ E&k\ and F^k\ which represent
unknown integration constants, have been defined such that
the out-of-plane stresses satisfy the traction boundary condi-
tions on the top and bottom surfaces of the laminate and are
continuous at all ply interfaces. That is,

and

<j<J)(jc3 = /(D) = o (top surface) (j = 1, 2)
6$>(jc3 = fW) = V(Xl - £)<-!> (top surface)

W(*3 = 0) = 0 (bottom surface) (j = 1, 2, 3)

= l ,2 ,3 , A: = 1,2, . . . , /z - 1)

(20)

(21)

Companion Stress Shapes
The in-plane parts of the companion stresses (72

C
2 and af2, in

the boundary region, are assumed as follows:

(22)

(23)/2(*Z>

where f\(x2) and /2(x2) are unknown functions of the nondi-
mensional coordinate x2 and will be determined from the
principle of minimum complementary energy. {Note that
f\(x2) and f2(x2) are left as undetermined functions in the
assumed equilibrated solutions a/J [see Eqs. (51-56)]). With
at® and a*® defined as Eqs. (9) and (10), the previous expres-
sions for the companion in-plane stresses guarantee global
equilibrium of total in-plane stresses. Although the in-plane
shear stress (23) satisfies the tip boundary condition (5), there
exists a restraint in Eq. (22) that the transverse normal stress
<722 should also vanish at the tip of the laminate. According to
Rose and Herakovich,14 this is a valid expression not account-
ing for the local mismatches in Poisson's ratios. The boundary
conditions (6) require

/2(0)=-1

lim/i(fe) = 0

Iim/2(x2) = 0

(24)

(25)

The second conditions in Eqs. (24) and (25) insure that the
companion parts are zero far away from the free edges. The
previous in-plane components and all other out-of-plane com-
ponents that follow will be made to satisfy the global equi-
librium automatically. No functional form is assumed for the
in-plane stress afl9 but as will be seen later, it can be invoked
from a compatibility equation.

The first of the out-of-plane companion stresses, a23, is
obtained directly by integrating the second equilibrium equa-
tion (3) as

± '

) • V[\ - <xi -

V[(Xl - {) - to -

(26)

where the plus and minus signs are for the positive and nega-
tive x2, respectively, and

GP • - E(^'w + ViB^w2) (27)
/= 1

Once again, the integration constant G^ has been defined so
as to satisfy the traction free boundary conditions on the top

and bottom surfaces and the stress continuity at all ply inter-
faces. Also, vanishing of a2

c
3 at the free edges requires

(28)

Next, to obtain a3
c
3 one has to know the first term in the

third equilibrium equation (4). This can be done by taking a£3
from the first equilibrium equation (2) as

(29)

where the two integrals include appropriate constants to sat-
isfy stress continuity at each ply interface. Since no impulse is
expected in aft, one can assume

(30)

where g has yet to be determined. Hence, upon substituting
the expression (30) and differentiating Eq. (29) with respect to
*i, one obtains for the fcth ply

dx{

V[\ - (Xl - (31)

It is noted that since the derivatives of any out-of-plane stress
with respect to JCi are also continuous at each ply interface, the
integral in Eq. (31) must contain appropriate constants to
satisfy this continuity. Finally, upon substituting Eqs. (26) and
(31) into the last equilibrium equation (4) and integrating with
respect to *3, one obtains

V(Xl -

2
2

*hfi*

V[\-

1 «,„

where

V{(Xl - 0 - (AT, - ?)<»]

+ 2 + -6

(32)

(33)

(34)

Again, the double integral term in the previous equation must
contain appropriate constants to satisfy stress continuity at
each ply interface.

Previously, it was suggested that at least three stress compo-
nents should be known to solve the coupled stress equilibrium
equations (2-4). So far, a22, a^, and a^ have been assumed
implicitly in terms of three unknowns/i, /2, and g. Although
all of these functions may be obtained from the principle of
minimum complementary energy, by which the compatibility
is optimized, it is the purpose of the present study to reduce
the number of unknowns to a minimum. This can be done by
resorting to compatibility requirements in advance. The com-
patibility equations in the rectangular coordinate are

327i2
3jc?

(35)
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8x28x3

'8x18x3

(36)

(37)

The various stress and strain components are related through
the following stress-strain relations:

en
£22
£33
723

713

712

(*) S\\ S\2 <Si3 0 0 5i6

Si2 -$22 $23 0 0 $26

Si 3 $23 £33 0 0 £36

0 0 0 ^44 545 0

0 0 0 045 S55 0
Si 6 ^26 ^36 0 0 $66

(A:) 0\\

022

033

<723

<7l3

0\2

(A:)

(38)

To eliminate, for example, g(x2, x^), and to obtain an in terms
of /i and /2, one can make use of the last compatibility
equation (37). For this purpose, all of the terms involving
singular functions will be dropped for the sake of brevity by
limiting the region of interest strictly to 0 < x<%. Dropping
the singular terms does not affect the result of the analysis for
it was already postulated that OH would not contain any singu-
larities and vanish for x\ > J. Thus, by combining Eq. (37),
the stress-strain relations (38), and Eqs. (26) and (31), one gets

± S n

8X18X3

(39)

Hence, upon integrating with respect to x3 twice, one gets

V
2 6

i C,

(40)

The unknown functions /i,'*' and h^ are obtained by matching
the far-field value of the strain eff. That is,

ejf = Urn e(,?

(41)

(42)

1, oo)

Hence, one obtains

h\k\X,, x2) = (S

V(Xl -

with
lim q{k\x2) = 0

(43)

(44)

With q(k\ q2
k\ Jp\ Kkk\ Lkk\ and Mjf* still undetermined, aft

is obtained via

(45)

The two unknown functions q^ and q2® must now be deter-
mined such that the previous expression satisfies the tip
boundary condition aftOfi = £ ) = 0. This can be best achieved
by defining these functions as the equal and negative of the
coefficients of the first-order and constant terms in Eq. (45)
that do not vanish at the tip. Unfortunately, the nonvanishing
quadratic and cubic terms cannot be eliminated since q{®
represents at best a coefficient of a first-order x3 term. There-
fore, to have a valid solution for aft, it is necessary to drop
these higher-order terms that do not vanish at the beam end.
Returning to the original region of interest 0 <*!<£, the
resulting expression for aft(A:) then becomes

c(Ar)

||/, • (BP

(46)

With aft obtained as just shown, one can now identify g(x2,
A:3) by comparing Eq. (30) with Eq. (46). The final expression
for <73

C
3 then becomes

-D

- (x, - •

V[(Xl - {) - <x, -

where

(47)

(48)

(49)

Finally, the last companion part a£3 is obtained from Eq. (29):

cW /
^/,- G^
on \

24

(50)
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Total Stress Field— Summary
So far, all of the stress components have been found. The

far-field components are given in Eqs. (8-10) and Eqs. (12-14).
The companion parts are given in Eqs. (22), (23), and (26) and
Eqs. (46), (47), and (50). The total stress field including the
far- field and companion parts can be summarized as follows:

(k) _

V[(Xl - & - (Xl - (51)

(52)

r£> = I _ R (*) , SIL t P(k) . £$ f0M. , ^iL fL
L 3 sfr ' 3 + s<?/2g3 + stf>/*2

=F 2

- (x, -

(53)

(54)

(55)

(56)
where

P2
k\x3) s

+

The previous stress field, although satisfying equilibrium and
traction boundary conditions completely, still has undeter-
mined functions f\(x2) and f2(x2). These will be determined
from the principle of the minimum complementary energy.
Thus, the geometric compatibility conditions are realized in a
weak form.

From these equations, it is clear that the out-of-plane shear/
bending will in general create interlaminar stress fields that are
neither symmetric nor antisymmetric about the vertical middle

plane defined by x2 = 0. As will be seen later, for a given
laminate structure these departures from complete symmetries
or antisymmetries largely depend on the ratio between the
amount of shear load and bending load at the location of
interest.

Energy Minimization
The two unknown functions fi(x2) and/2(jc2) are determined

by minimizing the complementary energy nc expressed as

A : = l
-

v *
TTudA (57)

where S is the ply compliance matrix defined by Eq. (38), and
T represents the surface traction force. The first integral in the
right hand side represents total strain energy expressed in
terms of a given stress field, and the second integral is the
work done by the surface traction at the boundary. It will turn
out that only the first integral is necessary in the minimization
procedure since the second integration contributes only to the
particular solutions of f\ and /2, which are not of concern
here. Also, only the companion stress parts ac will be needed
in the formulation since the far-field stresses do not affect the
unknown functions. Thus, a new complementary energy to be
minimized can be written as

(58)

(all on one curve)

0.2 0.4 0.6 0.8

Fig. 3 023 at first interface; [90/0]55*, near positive free edge.
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0.008
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0.002

0.000
0.2 0.4 0.6 0.8 1

Fig. 4 ffi3 at first interface; [90/0]ss, near positive free edge.
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-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
X 2 /h

Fig. 5 (733 at first interface; [ ± 45]55, entire transverse region.

0.020

0.015

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
X2 /h

Fig. 6 023 at first interface; [ ± 45]ss, entire transverse region.

where

i/W p£

o Jo
(59)

Note that the energy formulation defined by Eq. (58) includes
only a half of the region of the laminate, either Q<x2^b
or - b < x2 < 0. There are three types of integrals in Eq. (59):
energy terms resulting from bending V(x\ — £), energy terms
resulting from shear V, and terms that represent couplings
between bending and shear. These integrals are polynomials in
£ and proportional to £3, £, and £2, respectively. By an order
of magnitude analysis it can be shown that the shear energy
terms and energy terms representing couplings between shear
and bending are of higher orders than the bending energy
terms. Using standard arguments of calculus of variation, the
minimization of Eq. (58) in terms of the two unknowns f\ and
/2 leads to

_^1 (. J¥L\ _ JL (J**L\ — =
d*2 \df'{) d*2 \df{) + 3/! ~

d/2'

_
3/2

(60)

(61)

After substituting the expressions for the companion stresses
and performing the differentiations, one obtains a set of two
ordinary differential equations as follows:

-^1+7? • •",.4 +*M -JTJ '

d£ (62)

+ ̂ /a + *.- + * + *» + *u/.-0 (63)

where the coefficients Rf represent ratios between various
integrals defined in Eq. (59).

The general solutions to the previous system of differential
equations are sought by assuming f\ =/!em*2 and /2 =/2^m*2

and substituting them into Eqs. (62) and (63). For a valid set
of solutions, the two resulting expressions must vanish simul-
taneously. This leads to a sixth-order characteristic equation
of the form

m a\m2 + aQ = 0 (64)

which is cubic in m2; The three coefficients in the previous
equation are given as

(65)

Out of the six possible values for m, only those with negative
real parts should be used for/! and/2 since a positive real part
implies growing exponentials with x2. Hence, the general solu-
tions are of the form

*7 + *1 ~

- m^2 c m 2̂ c m3*2 (66>

To determine S/ and 5/, first Eq. (66) is substituted into Eqs.
(62) and (63) to yield

^=-Rsm*+R™m2++RRlom•+*„ (/ = l* 2> 3) (6?)

Next, substituting Eq. (66) into the boundary conditions (6)
yields

-1 = Si + S2 + S3

- 1 = Sl + 52 + S3 (68)
0 = Siml

The previous six equations in Eqs. (67) and (68) can be solved
for the corresponding S/ and 5, for a given AW/.

The two unknowns/i and/2 are in general functions of £.
According to the order of magnitude analysis, however, the
actual solutions should not change significantly with the shear
load location. In fact, for most of the composite laminates
investigated, the roots of the characteristic equation (64) were
found to be almost identical to those of the pure bending
problem.

Special Case—Cross-Ply Laminate
The solution simplifies significantly for a cross-ply laminate

since there is no in-plane shear stress ai2 in this case. As a
result, /2 does not exist and

(69)

(70)

(71)

The differential equation for f\ is

which has the solution
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with

and

"*1,2 =

m^
m2 - m2-

(72)

(73)

It is noted that, for a cross-ply laminate, the exact symmetry
and antisymmetry of the out-of-plane stresses in the transverse
direction will be recovered.

Application to Arbitrary Loading
For an arbitrary loading P(XI) that is distributed over

0 < x\ < L , the stress field can be found by the principle of
superposition:

, x3) = /, j = 1, 2, 3)
(74)

Here, pW represents a stress component in the &th ply at (xl9
x2, #3) due to a unit shear load at x\ = £. The various F-f* have
been obtained in Eqs. (51-56) with unit shear load V - 1. With
the exception of impulse terms in cr33, the superposition inte-
gral (74) is actually performed over only x\ < £ < L since any
stress component created outside of the unit impulse shear is
zero. The impulse terms in a33, when integrated, give rise to the
new boundary traction condition on the top surface, <r$(x3 =
tW) = P(XI). If one considers only the bending energy in carry-
ing out the eigenvalue problem (64), /i and/2 can be obtained
by applying a unit bending moment instead of an impulse
load. In this case, the superposition integral (74) leads to a
stress field that can be represented by the same equations, Eqs.
(51-56), with vfa-ty-n, y[i-(Xl-^]9 and V[(xi-&
- (xi - £}(1)] replaced by the distributed load P(XI), the shear
resultant V(xi)9 and the moment resultant MX(XI), respec-
tively. Otherwise, it is necessary to include /i, /2, and their
derivatives within the integral to evaluate Eq. (74) numerically.

Results and Discussion
The approximate method outlined in the previous sections

has been applied to a cross-ply and an angle-ply laminate with
graphite/epoxy [90/0]55 and [ ± 45]5S lay-up, respectively. The
material properties of each ply are

En = 138 X 106 kN/m2

E22 = E33 = 14.5 x 106 kN/m2

GIZ = G13 = G23 = 5.86 x 106 kN/m2

"12 = Vi3 = "23 = 0.21

t =0.135 mm (ply thickness)

The length chosen for both laminates is 300 mm. The width is
assumed to be large enough not to introduce any interferences
between the stress fields near the free edges. The laminate
beam is cantilever ed at x\ = 0, and under a positive shear load
V = 10 N/m at an arbitrary longitudinal location £. In all of
the cases investigated, the stresses are calculated at the loca-
tion x\ = 0.05 L. Stress calculations are repeated three times
for £ = L, 0.3 L, and 0.1 L to show the effects of changing
loading points. All of the stress components are normalized by
the magnitude of d^ (x3 = 0), the far-field normal stress at the
bottom of the top ply at x\ - 0.05 L. It is mentioned that, for
the laminates chosen in this paper, the eigenvalues of/! and/2
did not change significantly within the shear loading region
investigated.

The first case is [90/0] 5S. Figures 2-4 represent normalized
interlaminar stresses near the positive free edge (x2 > 0) at the
bottom of the top ply. The magnitudes of the far-field stress
for the three loading locations considered are 454.3, 95.6, and

23.9 kPa, respectively. All interlaminar stresses are seen to
have the same order of magnitude. In particular, the shear
stress a13 in orthotropic laminates is caused by the longitudinal
gradient of the in-plane stress an that has an order of magni-
tude of V/h. Figure 2 does not exactly show stress singularity
in (733 that is expected from exact analysis, but it does not pose
serious limits from a practical point of view. Except for <7i3, all
of the three different loading points investigated have little
effects on the stresses. This is due to the absence of the
in-plane shear stress o\2 that would affect other stress compo-
nents through its gradients. For the same reason, a33 and a13
have complete symmetries about the vertical middle plane

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
X2 /h

Fig. 7 cri3 at first interface; [ ± 45]ss, entire transverse region.
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Fig. 8 eras at x2 = 0.05; [ ± 45]ss, entire through-thickness region.

-0.015 -0.01 0.005 0.005
a /a

23 1 loo

Fig. 9 ff23 at X2 = 0.05; [ ± 45)55-, entire through-thickness region.
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13 l ie

Fig. 10 <ri3 at Jc2 = 0.05; [ ± 4S]ss, entire through-thickness region.

*2 = 0 whereas a23 has a complete antisymmetry. Therefore,
near the negative free edge fa ^ 0), which is not shown here,
a33 and an will have the same magnitudes and signs as the ones
represented in the figures, and <723 will have the same magni-
tude with opposite sign.

The next group of figures, Figs. 5-7, represents normalized
interlaminar stresses for [ ± 45]5S lay-up at the bottom of the
top ply over the entire transverse region, — b < x2 ̂  b. This is
a case where a high level of the in-plane stress a12 exists. For
convenience, plots are given only for the range two times the
laminate thickness, i.e., b —h. The magnitudes of the far-
field stress for the three loading locations considered are
2021.4, 531.9, and 106.4 kPa, respectively. As with the [90/0]55
laminate, the interlaminar stresses a33 and a23 are approx-
imately of the same order of magnitude. However, a13 has an
order of magnitude much greater than either of the stresses
with very high peaks that approximate singularities near the
ends. This is because there exists significant contribution from
the transverse gradient of the in-plane shear stress ai2, in
addition to the longitudinal gradient of the in-plane normal
stress an. The most interesting feature about the new stress
distributions is that, in contrast to the [90/0]55 lay-up, a33
seems to revert its directions near the free edges for small
values of £. Also, the effects of changing the loading point are
not negligible here; both magnitudes and signs of interlaminar
stresses may change significantly as the location of shear ap-
proaches the root. For example, the maximum magnitudes (or
possible singularities) of <r33 and a13 increase near the negative,
positive free edge, respectively (Figs. 5 and 7), as does the peak
value of a23 near the negative free edge (Fig. 6). Furthermore,
the far-field magnitudes of a23 and ai3 also increase. The latter
is specially a direct reflection of the fact that the ratio of shear
load to bending moment has increased as the loading point
moved inboard. It is seen in the figures that all of the sym-
metries and antisymmetries in the stress distributions break
down. Since these departures are associated with the ratio of
the shear to bending load, the trend becomes more serious as
% approaches the root of the laminate. In particular, the
maximum magnitudes of a33 and a23 are greater near the
negative free edge than near the positive edge. As for <7i3, it
seems almost antisymmetric due to the dominant a\2 gradient
that would give rise to a perfect symmetry about the vertical
plane. Still, a\i for % = 0.1 L exhibits its unbalanced distribu-
tion whose magnitude is greater at the positive free edge
(0.474) than at the negative edge (0.458). The last group of
figures, Figs. 8-10, shows the through-thickness variations of
the normalized interlaminar stresses for £ = L at a distance of
jc2 = 0.05 from the positive free edge. The a33 variation ap-
pears to be at least quadratic yielding smooth transitions be-
tween the plies. Because of the alternating stacking sequence
of the angle-ply laminate, both a^ and a23 are dominated by
linear variations near the free edge, resulting in sharp transi-

tions between the plies. Away from the free edge, <7i3 will
recover its smooth parabolic distribution. The a23 in the far-
field region, however, is still dominated by a sharp linear
transition since its distribution is not affected by the normal
bending stress an.

In general, except for the behavior of a33 singularities in
some cases and the nonzero a23 and a13 values in the far field,
the stress distributions in both cross-ply and angle-ply lami-
nates near either side of free edges under the shear/bending
share similar shapes with the stress distributions under uniax-
ial loading or pure bending. However, the out-of-plane loads
result in relatively high interlaminar normal and shear stresses
compared with the stresses under uniaxial loading or pure
bending, since the combined shear/bending loading directly
subjects the laminate to interlaminar stresses (also pointed out
inRef. 8).

Conclusion
An approximate theory for predicting interlaminar stresses

near straight free edges of composite laminates under out-of-
plane shear/bending has been presented. The method is based
upon admissible stress function representations and the princi-
ple of minimum complementary energy. Stress equilibrium
and boundary conditions at all boundaries are satisfied,
whereas compatibilities are optimized by minimizing the com-
plementary energy. Numerical results for cross-ply and angle-
ply laminates, particularly those of angle ply, reveal some new
characteristics that are not apparent under uniaxial or pure
bending loading. These results show that a composite laminate
with high in-plane shear stress can develop interlaminar
stresses whose magnitudes near one free edge may be greater
than those near the other edge at a location where shear load
is significant compared with bending load. The method, cur-
rently illustrated for cantilevered composite beams with con-
centrated shear loads, can be applied for any other cases with
out-of-plane shear/bending loads such as simply supported
beams with concentrated or arbitrarily distributed loads.
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