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Abstract 

The influence of a hybrid interleaf system based on aramid and phenoxy fibres on the 

interlaminar toughness and damage tolerance of epoxy based carbon fibre reinforced plastic 

(CFRP) laminates was studied. An interleaf consisting of a non-woven aramid mat was either 

used on its own or in combination with epoxy-dissolvable thermoplastic chopped phenoxy 

fibres. These thermoplastic phenoxy fibres are miscible with the epoxy resin and phase 

separate upon curing to improve ductility and toughness. Tensile properties, Mode-I fracture 

toughness, interlaminar shear strength (ILSS), as well as compression after impact (CAI) 

properties of the toughened CFRP laminates have all been characterized and analysed. 

Fractography was used to identify the toughening mechanisms in the CFRP laminates with 

different interleaf compositions. At the optimal interleaf composition, obvious synergic 

effects were found in terms of the overall mechanical performance of these hybrid composite 

laminates, including a near 150% increment in interlaminar fracture toughness in comparison 

to a reference CFRP laminate. 

Key words: A. Carbon fibres; A. Epoxy; A. Hybrid; B. Fracture toughness; B. 
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1. Introduction 

After six decades of developments since the commercialization of carbon fibre, carbon fibre 

reinforced plastics (CFRPs) have been widely used to replace metals in industries where high 

strength and stiffness are required in relation to low weight, such as aviation, automotive, 

automation, sports equipment, and wind energy. 

Although the in-plane properties of CFRPs are generally outstanding, their relatively poor 

out-of-plane properties (e.g. interlaminar toughness) have often limited their wider use in 

structural applications due to their laminated nature. With the aim of improving their out-of-

plane properties, over the years several efforts have been made to improve the toughness of 

epoxy matrices ranging from utilising liquid rubber [1-3] or thermoplastics [4-10], to the 

more recent use of nanofillers like carbon nanotubes and other nano-particles [11-17]. 

Although the use of liquid rubber can be regarded as one of the earliest established and most 

widespread toughening routes, the associated penalty of sacrificing the glass transition 

temperature (Tg) and Young’s modulus of highly crosslinked epoxies has limited their 

applications in many advanced composite systems. Consequently, engineering thermoplastics 

of relatively high Tg have gained rapid acceptance since the late 1980s due to a better 

preservation of some of the advantageous properties of epoxies such as high Tg, yield stress, 

thermal and environmental stabilities. However, one of the major challenges encountered 

during the use of thermoplastic toughened resins was the increased resin viscosity and 

associated problems during liquid moulding processes such as resin transfer moulding (RTM) 

and vacuum assisted resin infusion (VARI). 

The concept of localized toughening, i.e. tailoring interlaminar regions to improve 

mechanical properties (notably interlaminar toughness) of composite laminates without 

affecting resin viscosity and/or manufacturing routes, has proven itself as a successful 
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alternative toughening approach for many composite systems. Such toughening concepts 

include interlaminar hybridization with either ductile fibres like aramid [18], high-

performance polyethylene [19] or ductile polymer films or interleaves [20]. The latter 

toughening concept was first introduced by American Cyanamid and involves the 

incorporation of discrete layers of a tough resin at lamina interfaces thereby giving the 

composite laminate the ability to undergo higher shear deformations without forming 

delaminations. Two main categories of thermoplastic interleaves have been employed over 

the years, being either epoxy-dissolvable thermoplastic films or fibres which dissolve and 

phase separate upon curing [21-23], or a tough interleaf that remains intact after curing [24-

27]. 

Several research studies have been devoted to epoxy-dissolvable thermoplastic interleaves 

and good levels of interlaminar toughening were obtained for a number of composite systems. 

Yun et al. [23] inserted a polysulfone film as interleaf in carbon/epoxy laminates, and 

reported a 2.7 times higher fracture toughness than the reference laminate. Duarte et al. [28] 

utilized polyetherimide interleaves to improve the impact resistance as well as damage 

initiation energy of carbon/epoxy laminates. Wong et al. [21] reported a remarkable tenfold 

increase in fracture toughness with the addition of 10 wt.% phenoxy fibres into carbon 

fibre/epoxy laminated composites while tensile modulus, strength, and thermal stability were 

preserved. Zhang et al. [22] compared the toughening effects of phenoxy interleaves in 

various forms, ranging from continuous films to electrospun nanofibre mats, and explained 

their differences in interlaminar fracture toughness in relation to variations in dissolution 

times of the phenoxy interleaves as a result of different surface-to-volume ratios.  

Interleaf toughening concepts in which the interlaminar region is reinforced by ductile fibres 

have also received a certain level of success. Sohn and Hu [24] reported a toughness 

improvement by adding short Kevlar
®
 fibres (5-7 mm) to the interlaminar regions of 
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laminates. It was suggested that the short Kevlar
®
 fibres acted as a fibre bridging medium 

between the continuous carbon fibre layers. Van Eijk and Peijs [29] reported an increase in 

toughness and impact behaviour of woven glass fibre reinforced plastics (GFRP) after 

interleaving with aramid fabrics. Yasaee et al. [27] employed chopped aramid fibres as 

interleaves to suppress damage propagation and obtained a doubling in Mode-II toughness 

due to the introduction of torturous crack paths and an increase in thickness of the interleaved 

regions. In general, it was believed that strong adhesion between interleaf and matrix and 

good lateral support from the intact interleaf were key to the improved mechanical 

performance. 

Although composite interleaving with both epoxy-dissolvable thermoplastics as well as 

ductile polymer fibres has been successful, few attempts have been made on trying to exploit 

synergic effects by combining these two distinct toughening mechanisms. The possibility of 

combining toughening mechanisms based on shear yielding and increased plasticity for 

thermoplastic toughened epoxy, together with fibre bridging and crack arrest phenomena 

introduced through the use of ductile polymer fibres is of great interest but remained 

unexplored until recently.  

In this work, an epoxy-dissolvable thermoplastic phenoxy, in combination with ductile 

aramid fibres are employed as hybrid interleaves for carbon fibre reinforced plastic (CFRP). 

The work builds upon excellent interlaminar toughening effects reported for interleaved 

systems based on chopped phenoxy fibres [21], and aims to further improve on this work 

through the hybridization of these phenoxy interleaves with strong and tough aramid fibres. 

Tensile properties, interlaminar fracture toughness, interlaminar shearing, as well as 

compression after impact properties of modified CFRP panels have been examined, in order 

to reveal potential synergistic effects between the two interleaving concepts and to provide 

guidelines for future novel composite designs.  
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2. Experimental 

2.1 Materials 

The composite system employed consists of a high strength (HS) plain weave carbon fibre 

(6K) fabric with an areal weight of 300 g/m2, supplied by Carr Reinforcements (UK) 

(product no. 38422), and a ACG MVR444 resin, being a tetraglycidyl 4,4-

diaminodiphenylmethane (TGDDM) based epoxy resin (Figure 1a), premixed with an amine 

curing agent supplied by Advanced Composites Group (UK). 

The phenoxy fibre (Mw ~37000 Da) was provided from Grilon
®
 MS phenoxy yarn (500 dtex, 

EMS-Griltech, Switzerland), with an individual filament diameter of 48 µm. Phenoxy is a 

high molecular weight linear thermoplastic made by reacting bisphenol A with the diglycidyl 

ether of bisphenol A making it chemically similar to DGEBA epoxy resin, but with no 

terminal epoxide groups (Figure 1b) [30]. This phenoxy fibre was chopped to approximately 

5 cm lengths prior to subsequent composite processing. The non-woven aramid interleaf veil 

(Optiveil
®
, Technical Fibre Products, UK) was made from chopped para-aramid fibres (6 mm 

length and 12 µm diameter), with an areal weight of 26 g/m
2
 and was held together by a 

cross-linked polyester binder.  

 

  
 

(a) 

 

(b) 
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Fig. 1 Structural formula of (a) tetraglycidyl 4.4’-diaminodiphenylmethane (TGDDM) epoxy 

resin, and (b) phenoxy. 

 

2.2 Sample preparation 

A steel plate coated with Frekote
®
 700-NC release agent was used as a mould for the flat 

laminates. Six layers of plain weave carbon fibre fabric were cut to size (400 mm x 370 mm) 

and laid up in a [0/90]6 configuration. A 12 μm thick polytetrafluoroethylene (PTFE) insert 

film was placed at the mid-plane of the lay-up for the double cantilever beam (DCB) 

specimens. The lay-up was sealed in a vacuum bag and the mould was heated to 80 °C before 

resin infusion. The premixed and degassed epoxy resin was heated to 80 °C before infusion, 

while the curing cycle was from 80 °C to 120 °C at 3 °C/min, holding at 120 °C for 4 hrs, 

followed by cooling to room temperature (RT) at 3°C /min. A post-cure was carried out in 

which the laminate was heated from RT to 180 °C at 3 °C/min, holding at 180 °C for 2 hrs 

before cooling to RT at 3 °C/min. Laminate thickness was around 2.4 mm, while the fibre 

volume fraction (Vf) of all laminates was around 0.5.  

For phenoxy modified laminates, the phenoxy fibre was added as a chopped fibre between 

each layer of carbon fibre fabric. A schematic illustration is presented in Fig. 2. The phenoxy 

fibre content corresponded to around 5 wt.% and 10 wt.% of the total matrix content of the 

composite. The phenoxy fibre was weighed and randomly distributed by hand between each 

of the carbon fibre fabric plies. The distribution of phenoxy fibres in terms of areal weight 

was around 12.5 g/m
2
 and 25 g/m

2
 for the 5 wt.% and 10 wt.% phenoxy specimens, 

respectively. It is worth noting that for future applications a more consistent and 

homogeneous distribution of phenoxy within the laminates could be obtained by utilising 

non-woven phenoxy fibre mats. Upon impregnation with unmodified TGDDM epoxy resin 
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and subsequent curing, these phenoxy fibres are expected to dissolve and phase separate to 

form a secondary thermoplastic phase that toughens the epoxy matrix at the inter-ply region. 

The preparation of the mould, sealing of the vacuum bag, mixing of the resin and curing 

agent, and the resin infusion process were all as described above.  

  

Fig. 2 Schematic illustration of (a) vacuum assisted resin infusion (VARI) process, (b) 

location of non-woven aramid interleaf (in red), and (c) location of chopped phenoxy fibres 

(in grey). 

 

For comparison, neat epoxy resin specimens and modified epoxy blends with 5 wt.% and 10 

wt.% phenoxy were also manufactured. For this purpose, epoxy resin was heated to 130 ºC 

before adding the phenoxy fibres and curing agent. The epoxy/phenoxy mixture was stirred 

until homogeneous and transparent after which the curing agent was added. This mixture was 

then poured into an open PTFE mould and degassed in a vacuum oven. Samples were cured 

using the same curing cycle as for the composites. A dog-bone shaped mould was used for 

the preparation of tensile specimens according to ASTM 638 Type V, while a rectangular 
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mould was used to for fracture toughness specimens, which were cut to size (30 mm x 6 mm 

x 3 mm), after curing.  

 

2.3 Characterizations 

Tensile testing 

For tensile testing, the composite laminates were cut to size (200 mm x 20 mm x 2.4 mm) 

using a diamond cutting wheel, with glass fabric reinforced epoxy end-tabs (38 mm x 20 mm) 

adhesively bonded to both ends and tested in accordance to ASTM D3039 [31]. A strain 

gauge with a length of 6 mm was bonded to the centre of each specimen using an epoxy 

adhesive. The tests were performed using an Instron 5505 universal testing machine equipped 

with a 100 kN load cell at a rate of 2 mm/min. Neat resin dog-bone specimens were tested 

according to ASTM 638, using an Instron universal testing machine equipped with a 10 kN 

load cell and an optical extensometer at a test speed of 1 mm/min. Five specimens were 

tested for each type of material system. 

Fracture toughness 

Double cantilever beam (DCB) specimens were prepared for Mode-I interlaminar fracture 

toughness tests in accordance with ASTM D5528 [32]. The composite laminates were cut to 

size (130 mm x 20 mm x 2.4 mm) and a   composite material made of glass fabric and epoxy 

(similar as  used  for  end-tabs) was cut to size (130 mm x 20 mm) and bonded to both sides 

of the specimen surface to increase flexural stiffness, making the total thickness of the 

specimens around 6 mm. Piano hinges were bonded to the ends of the specimens, and the 

distance between the loading points and the end of the PTFE insert film (i.e. the beginning of 

the crack) was 50 mm. The sides of the specimens were spray painted with a white paint 

primer and markers were drawn on the primer for every 1 mm interval. Each sample was 
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loaded in Mode-I tension using a Hounsfield universal testing machine at a rate of 1 mm/min. 

Crack growth was observed using a digital microscope and the loads and displacements at 

corresponding crack lengths were recorded. The GIC values in this study were calculated 

using the modified beam theory (MBT) and refer to propagation GIC values. MBT was 

selected since it yielded the most conservative values for the majority of test cases evaluated 

in a round robin test carried out by the ASTM [32]. Fracture toughness tests on neat resin 

specimens were carried out in accordance with ASTM D5045, using a single notched three-

point bending specimen (30 mm x 6 mm x 3 mm). A notch, 2 mm deep, was machined in the 

middle of one side of the specimen before a fresh, sharp razor blade was slid repeatedly 

across the notch to create a total notch depth of 3 mm. Three-point bending tests were carried 

out using an Instron universal testing machine at a test speed of 1 mm/min and a span-to-

thickness ratio of 4. Five specimens of each type were tested. 

Interlaminar shear strength 

In this study, the interlaminar shear strength (ILSS) of the hybrid laminates was measured 

using the short beam shear (SBS) test method in accordance with ASTM D2344 [33], using 

an Instron universal testing machine at a test speed of 1 mm/min. The width-to-thickness 

ratio of the specimen was 2 while the span-to-thickness ratio was 4. The average dimensions 

of the SBS specimens were 25 mm x 4.4 mm x 2.4 mm. The diameters of the loading and 

supporting rollers were 6 mm and 3 mm, respectively. A detailed illustration can be found in 

[34]. 

Compression after impact 

In this study compression after impact (CAI) specimens were cut from composite panels to 

size (90 mm x 55 mm x 2.4 mm) and impacted at 2, 4 and 6 Joules, using a CEAST impact 

tester. Each specimen was clamped in a 40 mm diameter support and the dart diameter was 

20 mm. The non-impacted and impacted specimens were then placed in a miniaturised 
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Boeing CAI rig [35] and loaded in compression at a rate of 0.5 mm/min. Five specimens were 

tested for each impact energy. The maximum compressive strength was recorded and 

presented as the compression after impact (CAI) strength. 

Fractography 

The Mode-I fracture surfaces of specimens were examined in a scanning electron microscope 

(SEM), Inspect
TM

 F from FEI Company (Netherlands). Specimens were coated with gold 

prior to imaging, and an electron beam of 20 kV was used. 

 

3. Results and Discussions 

3.1 Fractography 

Fig. 3a shows a typical brittle fracture surface of a non-modified TGDDM epoxy matrix. 

With the addition of 5 wt.% and 10 wt.% phenoxy this single-phase epoxy system is changed 

into an epoxy blend with a dispersed morphology consisting of phenoxy droplets in a 

TGDDM epoxy matrix (Figs. 3b, c). The main toughening mechanisms from phenoxy 

modification are believed to be the particle-induced shear yielding, which contributes to 

energy dissipation during crack propagation. These morphological observations are in 

agreement with previous epoxy/phenoxy studies by Siddhamalli and Kyu [35], who reported 

a dispersed droplet morphology for phenoxy concentrations of 10 wt.%, while a co-

continuous morphology was observed for 20 wt.% phenoxy. A phase inverted morphology 

was obtained for phenoxy concentrations of 30 wt.% and above. 

Figs. 3d, e and f show Mode-I fracture surfaces of carbon/epoxy laminates without and with 

phenoxy. Already with the presence of 5 wt.% phenoxy, a clear morphological change from a 

typical brittle Mode-I fracture surface for neat epoxy (Fig. 3d) to a more deformed and rough 

surface for the blend was observed (Fig. 3e). Brittle fracture from Mode-I failure in neat 
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epoxy based laminates was characterized by a smooth corrugated fracture surface, which is 

partly the result of fibre debonding. 

Fig. 3g shows the morphology of Mode-I fracture surfaces of aramid veil interleaved 

specimens without phenoxy. Clearly, most interlaminar cracking occurs at the carbon/epoxy 

interface as indicated by the exposed carbon fibre fabric, indicating that the involvement of 

the aramid fibre interleaf in the overall failure process is rather negligible. Fracture surfaces 

of aramid interleaved laminates with 5 wt.% phenoxy at inter-ply regions (Fig. 3h), showed a 

significant changed in failure mode compared to the neat resin based composite system, with 

the aramid fibres now contributing more to the interlaminar failure process. Apparently a 

better load transfer and connectivity between the carbon fibre plies and the non-woven 

aramid veil was achieved with the introduction of the phenoxy, leading to increased aramid 

fibre pull-out, fibre bridging and fibrillation. Similar levels of matrix and aramid fibre 

deformation were observed in laminates based on 10 wt.% phenoxy (Fig. 3i). Morphological 

studies did not reveal a clear co-continuous or phase-inverted blend morphology in the 

composites at the current phenoxy loadings, although local phenoxy concentrations in 

interlaminar regions are expected to be well above the overall concentration of 5 and 10 wt.%.  

 

0 wt.% phenoxy 5 wt.% phenoxy 10 wt.% phenoxy 
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Fig. 3 SEM image of Mode-I fracture surfaces of phenoxy/epoxy blends at different phenoxy 

concentrations of: (a) neat epoxy resin; (b) 5 wt.% phenoxy and (c) 10 wt.% phenoxy, 

showing a slightly rougher fracture surface with a droplet morphology after phase 

separation. Mode-I interlaminar fracture surfaces of phenoxy modified CFRP laminates at 

different phenoxy concentrations of: (d) neat epoxy resin, showing brittle failure features 

together with fibre debonding; (e) 5 wt.% phenoxy and (f) 10 wt.% phenoxy, showing more 

ductile failure. And finally, Mode-I interlaminar fracture surfaces of aramid veil interleaved 

CFRP laminates of: (g) neat epoxy resin, showing negligible involvement of the aramid veil 

interleaf; (h) 5 wt.% phenoxy and (i) 10 wt.% phenoxy, showing a significantly increased 

contribution of the aramid veil via fibre pull-out, fibrilation and fibre bridging, confirming 

the improved contribution of the aramid interleaf to the interlaminar fracture process in the 

presence of phenoxy. 
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3.2 Tensile properties 

It is well known that the in-plane properties of CFRPs are dominated by the continuous 

carbon fibres. Hence it is expected that the addition of a non-woven aramid interleaf at the 

mid-ply as well as matrix modification by phenoxy will not significantly affect the tensile 

properties of the CFRP laminates. However, a reduction in effective carbon fibre volume 

fraction with interleaving may lead to less load carrying carbon fibres per unit area, which 

could lead to a slight reduction in strength and stiffness. 

Fig. 4 shows the tensile properties of both reference and interleaved CFRP laminates. As 

expected, the tensile modulus was only slightly reduced with the introduction of the aramid 

interleaf, while the addition of phenoxy did not significantly affect the Young’s modulus of 

the laminates as well as that of the neat epoxy system (see Table 1). A similar trend was 

found for the tensile strength of the aramid interleaved CFRP panels. Interestingly, here the 

addition of 10 wt.% phenoxy to the epoxy resin resulted in a slight increase in tensile strength 

compared to the reference laminate, indicating a certain level of synergy between the two 

interleaf systems. 

The macroscopic failure modes of all interleaved specimens were similar (Fig. 5). All 

specimens fractured across their width with limited evidence of delamination, regardless of 

the interleaf system present. Some evidence of fibre debonding was noted for both reference 

and 5 wt.% phenoxy modified specimens. It can be expected that apart from the carbon fibre 

content, the interfacial adhesion between the carbon fibre/epoxy and aramid fibre/epoxy plays 

an important role in the tensile properties. 
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Fig. 4 (a) Young’s modulus and (b) tensile strength of CFRP laminates with and without a 

non-woven aramid interleaf and different phenoxy concentrations. 
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Fig. 5 CFRP test specimens with non-woven aramid interleaf and (a) 0 wt.%; (b) 5 wt.%; and 

(c) 10 wt.% phenoxy, showing similar macroscopic failure modes. 

 

3.3 Interlaminar fracture toughness 

With the aim of having a baseline of the current phenoxy modified epoxy systems, the 

mechanical properties of the phenoxy/epoxy blends are summarised in Table 1. At current 

phenoxy concentrations the mechanical properties of the epoxy blends are not greatly 

affected by the presence of phenoxy. Although the fracture toughness of the blends was 

increased between 10 and 40%, all systems exhibited relatively similar levels of toughness 

due to epoxy being the continuous phase. Similar levels of toughness (K1c) of around 0.7 

MPa/m
2
 for neat epoxy and 0.9 MPa/m

2
 for blends consisting of 10 wt.% phenoxy and 
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exhibiting a droplet morphology were reported by Siddhamalli and Kyu [35]. However, their 

study also revealed significantly increased fracture toughness levels of around 3.2 MPa/m
2
 

for slightly higher phenoxy concentrations of 20 wt.% as a result of a co-continuous blend 

morphology. A further increase in phenoxy content to 30 wt.% resulted in a phase-inverted 

morphology but slightly lower fracture toughness levels of around 2.3 MPa/m
2
 [35].    

 

Table 1. Summary of mechanical properties of phenoxy/epoxy blends. 

 Modulus (GPa) Strength (MPa) KIC (MPa/m
2
) GIC (kJ/m

2
) 

Epoxy 3.2 (±0.4) 80.3 (±20) 0.66 (±0.13) 0.09 (±0.02) 

5 wt.% phenoxy 3.0 (±0.3) 68.2 (±8) 0.95 (±0.01) 0.13 (±0.01) 

10 wt.% phenoxy 3.4 (±0.2) 68.4 (±15) 0.80 (±0.12) 0.10 (±0.03) 

 

The interlaminar fracture toughness of laminated composites is normally expressed in terms 

of critical energy release rate, Gc, and is the energy consumed by the material as the 

delamination front advances through a unit area. The Mode-I interlaminar fracture toughness 

of CFRP laminates without aramid or phenoxy was first tested as a reference. Fig. 6a shows 

the load-displacement (L-D) curves as well as the toughness and crack length increment (R-

curve) for the reference laminate and panels with two phenoxy concentrations. Typical L-D 

curves can be seen, with step-like load increments and sudden load drops near the end of the 

test. In comparison to the reference panel, the addition of 5 wt.% phenoxy results in no 

obvious change in the L-D curve. However, with the addition of 10 wt.% phenoxy, an 

obvious increasing trend in the L-D curve can be seen, indicating that a larger amount of 

energy is required to propagate the crack. This trend was confirmed by the R-curves in Fig. 

6a, suggesting that the addition of 10 wt.% phenoxy significantly enhanced the interlaminar 

toughness of the CFRP laminates. The similarity in interlaminar toughness of composite 
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laminates based on neat epoxy and 5 wt.% phenoxy blend is in agreement with the pure 

matrix systems, which revealed no significant differences in toughness between these two 

blends. Mode-I fracture toughness values of composite laminates were somewhat higher than 

those of the polymer matrix presumably due to effects such as fibre debonding and fibre 

bridging, all of which can lead to an increase in fracture surface area. Interestingly, composite 

laminates based on blends incorporating 10 wt.% phenoxy showed a step change in 

interlaminar toughness, not observed in the pure matrix system. In fact, interlaminar 

toughness values for these laminates are more in line with values reported by Siddhamalli and 

Kyu for blends containing 20 and 30 wt.% phenoxy [35]. This suggests a change in blend 

morphology from phenoxy droplets to a co-continuous or phase inverted morphology in these 

composites. Since the phenoxy in the composite laminates is highly localized within the 

interlaminar regions it can be easily envisaged that local phenoxy concentrations are indeed 

significantly higher than the overall concentration of 10 wt.%. This could lead to a change in 

blend morphology within these regions and a significant change in interlaminar toughness.    

Fig. 6b shows the L-D curves and R-curves of the aramid interleaved panels. Apparently, 

here for both phenoxy loadings, the load required for crack initiation and propagation was 

increased and R-curves remained high after the introduction of the non-woven aramid veil for 

both phenoxy loadings. It is worth noting that the initiation values for the aramid interleaved 

panels were slightly lower than for panels without aramid interleaf, which was subsequently 

recovered and further improved after the introduction of phenoxy, suggesting a synergic 

effect between epoxy, phenoxy and aramid fibres. The likely cause of this initial drop is 

believed to be due to relatively poor interfacial bonding between the aramid veil and epoxy 

matrix as suggested by the fracture surface shown in Fig 3g, and which was subsequently 

improved with the introduction of phenoxy (see Figs. 3h, i), leading to an increase in energy 

absorption processes such as aramid fibre pull-out, fibrillation and bridging. 
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Fig. 6 Double cantilever beam (DCB) load-displacement curves (left) and R-curves (right) of: 

(a) carbon fibre/epoxy laminates without aramid interleaf and different phenoxy 

concentrations; and (b) carbon fibre/epoxy laminates with aramid interleaf and different 

phenoxy concentrations. 

 

To have a more clear comparison, the calculated interlaminar fracture toughness values (GIC) 

are plotted in Fig. 7 for all laminates. As mentioned earlier, the GIC value is an indication of 

how much energy is required to propagate the interlaminar crack. Without aramid interleaf, 

no obvious difference was observed for the reference CFRP panel and the panel with 5 wt.% 

(b) 

(a) 
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phenoxy, while a significantly higher GIC value was measured for the panel with 10 wt.% 

phenoxy.  

As mentioned earlier, the interlaminar fracture toughness was slightly reduced when an 

aramid interleaf was introduced in the neat epoxy based laminate. This reduction could be 

attributed to the relatively poor integration of the aramid veil (see Fig. 3g), possibly partly as 

a result of the presence of the crosslinked polyester binder on the aramid fibres. Because of 

this, it might be beneficial in future to use an epoxy soluble binder (such as phenoxy) for 

aramid veils in this type of application. 

Both 5 wt.% and 10 wt.% phenoxy modified laminates showed an apparent increase in GIC 

values, especially for 5 wt.% phenoxy based specimens where a doubling in interlaminar 

fracture toughness was achieved for aramid interleaved laminates. As mentioned before, this 

increment is believed to be attributed to an improved integration of aramid fibres with 

phenoxy modification. The highest GIC value was obtained after the introduction of both the 

aramid interleaf and phenoxy, suggesting a possible synergic toughening effect between these 

two systems. 

This synergic effect was consistent with morphological observations shown in Fig. 3. For 

laminates without phenoxy, debonding occurred at the carbon/epoxy interface with limited 

interaction between the woven carbon fabric and the non-woven aramid veil. On the other 

hand, laminates with both 5 wt.% and 10 wt.% phenoxy revealed a much better interaction 

between carbon and aramid, and failure modes that involved both fibres. For these hybrid 

systems, fibre debonding and fibre pull-out occurred for both fibres, together with some fibre 

breakage of carbon fibres, and fibre fibrillation and splitting of aramid fibres. These 

observations suggest a favourable interaction between carbon and aramid fibres in the case of 
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phenoxy modified epoxy systems, which allowed for the contribution of both fibres to the 

overall laminate toughness. 

 

Fig. 7 Comparison of the Mode-I interlaminar fracture toughness of CFRP laminates with 

and without aramid interleaf and different phenoxy concentrations, showing the importance 

of the presence of a small amount of phenoxy phase to fully utilize the toughening potential of 

the non-woven aramid interleaf. 

 

3.4 Interlaminar shear strength 

In composite materials, a low resistance to shear deformation, especially for matrix 

dominated properties is a severe weakness. Relatively low shear stiffness and strength often 

compromise a composite materials’ performance. Interlaminar shear strength (ILSS) is 

strongly dependent on the stress transfer capability of the fibre/matrix interface and therefore 

sometimes used as a qualitative indicator for the level of interfacial bonding in laminated 

composites. Composites with low ILSS values are prone to delamination and often have a 

poor resistance to environmental degradation, which is detrimental to many applications. 

However, composites with too high ILSS values may have a lower toughness, as some of the 
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toughening mechanisms such as fibre/matrix debonding and crack deflection cannot be 

triggered. 

The interlaminar shear strength was determined from the short beam shear (SBS) test and is 

plotted in Fig. 8. Without aramid interleaf, no obvious changes in ILSS were observed for 

phenoxy modified laminates. After the introduction of the aramid interleaf, a reduction in 

ILSS value was observed for neat epoxy systems without phenoxy, which is consistent with 

the previous Mode-I fracture toughness trends. For 5 wt.% phenoxy modified laminates and 

aramid interleaves, the ILSS value was obviously increased, while a further increase in 

phenoxy content (10 wt.%) did not lead to a further increase in ILSS. However, overall the 

introduction of phenoxy led to a respectable improvement in ILSS for CFRP laminates with 

aramid interleaving. 

 

Fig. 8 Comparison of interlaminar shear strength (ILSS) of CFRP laminates with and 

without aramid interleaf and different phenoxy concentrations. 

 

3.5 Compression after impact 
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Impact resistance and damage tolerance are very important considerations for composite 

laminates, as impact loadings can result in non-visible damage and reduced residual 

properties. It is important to understand how a composite will perform after being damaged. 

The compression after impact (CAI) test for composite laminates generally involves 

subjecting a plate to an out-of–plane low energy impact to introduce damage but not 

complete failure. The damaged plate will then be loaded until failure by in-plane compression. 

The most common form of internal damage after impact is delamination. Delamination can 

lead to premature failure during compression loading caused by ply buckling and Mode-I 

dominated crack growth. 

In this work, each specimen was subjected to a non-penetrating impact of 2, 4 and 6 Joules, 

followed by compression after impact (CAI) tests to examine their residual compressive 

properties (Fig. 9). Regardless of the impact energy applied, an increased compression after 

impact (CAI) strength was obtained from all laminates with the introduction of both phenoxy 

and aramid interleaf. In the case of laminates based on neat epoxy resin the addition of an 

aramid interleaf resulted in a reduction in CAI strength, presumably due to the formation of 

sub-laminates as a result of impact induced delaminations. This trend is consistent with the 

previously reported Mode-I fracture toughness and short beam shear data (see Figs. 7 and 8), 

which showed reduced GIC and ILSS values with the introduction of an aramid interleave for 

neat epoxy based panels. Conversely, an obvious increase in CAI strength was observed with 

the introduction of an aramid interleaf for panels based on phenoxy modified epoxy, in 

particular for systems with 5 wt.% phenoxy were a clear synergistic effect was observed for 

laminates incorporating an aramid interleaf and phenoxy as a toughening agent. Again this 

trend is consistent with the GIC and ILSS data in Figs. 7 and 8. This seems to suggest a link 

between CAI strength and interlaminar fracture toughness and/or interlaminar shear strength.  
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It is well know that delamination growth under impact is controlled by a combined Mode-I 

crack opening action and a Mode-II shear action [36]. Hence, it is not surprising that residual 

compressive strength after impact, which is strongly controlled by buckling of delaminated 

sub-laminates, follows similar trends as Mode-I dominated DCB and Mode-II dominated 

SBS data. 

Finally, it should be noted that the highest overall residual compressive properties were 

measured for aramid interleaved CFRP laminates based on phenoxy modified epoxy, again 

highlighting the importance of phenoxy in this hybrid toughening concept. 

 

Fig. 9 Comparison of residual compressive after impact (CAI) strength for CFRP laminates 

with and without aramid interleaf and different phenoxy concentrations. 

 

4. Conclusions 

The combined action of two interleaf based toughening concepts for CFRP has been 

investigated in this experimental study. Two distinct interleaf and toughening mechanisms 

were employed: (i) phenoxy fibre interleaves which dissolved and phase separated upon 
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curing to improve the epoxy resin ductility and toughness within the interlaminar region; and 

(ii) a non-woven aramid interleaf to improve the toughness within the interlaminar region by 

fibre bridging and crack arrest. Tensile and compressive properties, as well as out-of-plane 

interlaminar properties were examined for CFRP laminates for these two types of toughening 

concepts. 

A synergistic toughening effect was found when combining phenoxy and aramid interleaves, 

leading to a high damage tolerance as measured in compression after impact, while various 

toughening mechanisms were identified from fractographic studies. Interestingly, the 

presence of phenoxy improved the interfacial properties between the woven fabric carbon 

plies and the non-woven aramid interleaf, leading to enhanced load transfer and hence 

improved interlaminar properties and impact damage tolerance.  

Based on the understanding obtained from this hybrid interleaving methodology, together 

with previous studies on dissolvable phenoxy systems [21, 22], the current hybrid 

interleaving system could be extended to various other thermoplastic toughening agents for 

application in both carbon- and glass fibre reinforced plastics. 
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