
Interleaved Hop-by-Hop Authentication Against

False Data Injection Attacks in Sensor Networks

SENCUN ZHU

The Pennsylvania State University

and

SANJEEV SETIA

George Mason University

and

SUSHIL JAJODIA

George Mason University

and

PENG NING

North Carolina State University

Sensor networks are often deployed in unattended environments, thus leaving these networks
vulnerable to false data injection attacks in which an adversary injects false data into the network
with the goal of deceiving the base station or depleting the resources of the relaying nodes.

Standard authentication mechanisms cannot prevent this attack if the adversary has compromised
one or a small number of sensor nodes. We present three interleaved hop-by-hop authentication

schemes that guarantee that the base station can detect injected false data immediately when
no more than t nodes are compromised, where t is a system design parameter. Moreover, these
schemes enable an intermediate forwarding node to detect and discard false data packets as early

as possible. Our performance analysis shows that our scheme is efficient with respect to the
security it provides, and it also allows a tradeoff between security and performance. A prototype

implementation of our scheme indicates that our scheme is practical and can be deployed on the
current generation of sensor nodes.

Categories and Subject Descriptors: C.2.0 [Computer-Communication Networks]: General—
Security and protection; K.6.5 [Management of Computing and Information Systems]:

Communication Networks—Security and Protection

General Terms: Security,Algorithm,Design

Additional Key Words and Phrases: Authentication, Filtering False Data, Interleaved Hop-by-
Hop, Sensor Networks

A preliminary version of this paper appeared in Proceedings of IEEE Symposium on Security and
Privacy, 2004.

Authors addresses: Sencun Zhu, Department of Computer Science and Engineering, The Pennsyl-
vania State University, University Park, PA 16802. Sanjeev Setia and Sushil Jajodia, Center for
Secure Information Systems, George Mason University, Fairfax, VA 22030. Peng Ning, Computer

Science Department, North Carolina State University, Raleigh, NC 27695.
Emails: szhu@cse.psu.edu, {setia, jajodia}@gmu.edu, pning@ncsu.edu.

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and

notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0000-0000/20YY/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1–0??.

2 · Sencun Zhu et al.

AUTO SEQUENTIAL SWITCHING UNIT

Base
Station

River

munition plant

Mission

Sensor Reading

cluster

Fig. 1. An example sensor network. Suppose we want to monitor three areas of
interest, the road, the river, and the munition plant, by deploying a cluster of sensor
nodes (filled circles) in each area. The base station sends commands or queries to
the sensor nodes, and receives reports from them. All the communications are
relayed by some forwarding nodes (blank circles).

1. INTRODUCTION

Consider a military application of sensor networks for reconnaissance of the oppos-
ing forces, as shown in Fig. 1. Suppose we want to monitor the activities of the
opposing forces, e.g., tank movements, ship arrivals or departures, and other rele-
vant events. To achieve this goal, we can deploy a cluster of sensor nodes around
each area of interest. We can then deploy a base station in a secure location to
control the sensors and collect data reported by the sensors. To facilitate data
collection in such a network, sensor nodes on a path from an area of interest to the
base station can relay the data to the base station.

The unattended nature of the deployed sensor network lends itself to several
attacks by the adversary, including physical destruction of sensor nodes, security
attacks on the routing and data link protocols, and resource consumption attacks
launched to deplete the limited energy resources of the sensor nodes.

Unattended sensor node deployment also makes another attack easier: an adver-
sary may compromise several sensor nodes, and then use the compromised nodes
to inject false data into the network. This attack falls in the category of insider
attacks. Standard authentication mechanisms are not sufficient to prevent such
insider attacks, since the adversary knows all the keying material possessed by the
compromised nodes. We note that this attack can be launched against many sensor

ACM Journal Name, Vol. V, No. N, Month 20YY.

Interleaved Hop-by-hop Authentication Against False Data Injection Attacks in Sensor Networks · 3

network applications, though we have only described a military scenario.
In this paper, we present three authentication schemes for addressing this form

of attack, which we call a false data injection attack. Our schemes enable the base
station to verify the authenticity of a report that it has received as long as the
number of compromised sensor nodes does not exceed a certain threshold. Further,
our scheme attempts to filter out false data packets injected into the network by
compromised nodes before they reach the base station, thus saving the energy for
relaying them.

More specifically, in our proposed authentication schemes t+1 sensor nodes first
agree upon a report before it is sent to the base station, where t is a security
threshold based on the network node density and the security requirements of the
application under consideration. Then, all the nodes that are involved in relaying
the report to the base station authenticate the report in an interleaved, hop-by-hop
fashion. Our scheme guarantees that if no more than t nodes are compromised, the
base station will detect any false data packets injected by the compromised sensors.
In addition, for a given t, our schemes provide an upper bound B for the number of
hops that a false data packet can be forwarded before it is detected and dropped.
The en-route filtering capability of these three schemes differs as described below:

—In Scheme I, if a node on the path between the base station and a cluster head
has the authenticated path knowledge or if t compromised nodes all belong to a
cluster, B = t. For applications that cannot meet either of the above conditions,
in the worst case B = O(t3).

—Scheme II always guarantees that B = 0, i.e., a false report will be dropped
immediately. This scheme however has a larger computational cost than Scheme
I.

—Scheme III has the merits of the other two schemes. It provides B close to 0 and
has the least computational overhead, at the expense of slightly higher additional
storage overhead.

In addition to analyzing the security and the performance of each of these schemes,
we have also implemented a prototype of Scheme II on MICA2 motes [xbo 2005],
which are representative of the current generation of sensor nodes. Our security
and performance analysis and prototype implementation indicate that our schemes
are effective, efficient (with respect to the achieved security), and also practical.

The remainder of this paper is organized as follows. Section 2 first describes the
network, node, and security assumptions, then states our design goals and attack
models. Section 3 presents our basic scheme, followed by two improved schemes
in Section 4, and Section 5 respectively. For each scheme, we provide a detailed
performance and security analysis. We further compare all the proposed schemes
in Section 6. We describe our prototype implementation of Scheme II in Section 7.
We discuss related work in Section 8, and finally conclude our work in Section 9.

2. ASSUMPTIONS AND DESIGN GOALS

2.1 Assumptions

We describe the assumptions regarding sensor networks before we present our
schemes in detail.

ACM Journal Name, Vol. V, No. N, Month 20YY.

4 · Sencun Zhu et al.

2.1.1 Network and Node Assumptions. Sensor nodes can be deployed via aerial
scattering or by physical installation. We assume that in an area of interest, sensor
nodes are organized into clusters. Each cluster includes at least t + 1 nodes, where
t is a design parameter. In a cluster, one node is elected to be the cluster head, and
each cluster has a unique cluster id. The issues of electing a node as the cluster
head and how to generate a unique cluster id are out of the scope of this paper.
A cluster head collects sensor readings or votes from t + 1 cluster nodes (including
itself), and then reports the result to the base station. Note that the role of cluster
head may rotate among the cluster nodes, according to an appropriate criteria such
as remaining energy.

We assume network links are bidirectional; that is, if node u can hear node v, node
v can also hear node u. Sensor nodes are similar to the current generation of sensor
nodes (e.g. the Berkeley MICA motes [Hill et al. 2000]) in their computational and
communication capabilities and power resources. We assume that every node has
space to store several hundred bytes of keying materials.

2.1.2 Security Assumptions. We assume that every node shares a master secret
key with the base station. We also assume that every node knows the authenticated
set of its one-hop neighbors and has established a pairwise key with each of them.
For example, we can use the pairwise key establishment scheme in LEAP [Zhu
et al. 2003] to achieve this goal. Under this assumption, the impact of a node
compromise is localized in the immediate neighborhood of the compromised node.
That is, an attacker can only inject false packets into the sensor network through
the compromised nodes. We further assume that a node can establish a pairwise
key with another node that is multiple hops away, if needed. For example, if the
network size is small (for example, fewer than 200 nodes), we can employ either the
Blom scheme [Blom 1985] or the Blundo scheme [Blundo et al. 1993] directly. For a
larger network, we may use the extensions [Du et al. 2003; Liu and Ning 2003b] to
these schemes to tolerate a possibly larger number of node compromises. In all these
schemes, two nodes only need to know each other’s id to establish a pairwise key,
and the computational overhead is shown to be affordable for current generation
sensor nodes [Du et al. 2003; Liu and Ning 2003b]. For simplicity, we refer to these
schemes as id-based schemes. Since we mention the Blundo scheme frequently as
an example of an id-based scheme during the description of our scheme, we provide
a brief introduction to this scheme in Appendix A.

We further assume that the base station has a mechanism to authenticate its
broadcast messages (e.g., based on µTESLA [Perrig et al. 2001]), and every node
can verify the broadcast messages. As such, we can prevent malicious triggering
of broadcast storms. Because the role of cluster head may rotate among cluster
nodes, we assume that all nodes are equally trusted. We assume that if a node is
compromised, all the information it holds will also be compromised. However, we
assume that the base station will not be compromised.

2.2 Threat Model and Design Goal

Since wireless communication is broadcast-based, we assume that an adversary can
eavesdrop on all traffic, inject packets, and replay older packets. We assume that an
adversary can take full control of compromised nodes. Thus, an adversary knows all

ACM Journal Name, Vol. V, No. N, Month 20YY.

Interleaved Hop-by-hop Authentication Against False Data Injection Attacks in Sensor Networks · 5

the keying material of the compromised nodes, and he may command compromised
nodes to drop or alter messages going through them, aiming at preventing the base
station from receiving authentic sensor readings.

In this paper, we focus on false data injection attacks, in which an attacker’s goal
is to cause false alarms or to deplete the already-constrained resources of forwarding
nodes by injecting false data. We assume that the compromised nodes can collude
in their attacks. Our goal is to design an authentication scheme that can defend
against false data injection attacks launched by up to t compromised nodes, where
t is a system parameter.

This scheme should have the following properties when there are no more than
t compromised nodes. First, the base station should be able to detect any false
data packet injected by a compromised node. Second, the number of hops before
an injected data packet is detected and discarded should be as small as possible.
Third, the scheme should be efficient in computation and communication with
respect to the security it provides. Finally, the scheme should be robust to node
failures.

2.3 Notation

The following notations appear in the rest of this discussion.

—u, v (in lower case) are principals such as communicating nodes.

—Ku is the key of node u shared with the base station.

—Kuv is the pairwise key shared between nodes u and v.

—G is a family of pseudo-random functions [Goldreich et al. 1986].

—Ka
u is node u’s authentication key, derived as Ka

u = GKu
(0).

—MAC(k, s) is the message authentication code (MAC) of message s generated
with a symmetric key k.

3. SCHEME I: THE BASIC SCHEME

We first give an overview of the basic scheme before discussing it in greater detail.
We then discuss issues related to node failure and path dynamics. Finally, we
evaluate both the security and the performance of the scheme.

3.1 Definition

We denote the base station as BS and the head of a cluster of sensor nodes as
CH. Let n be the number of hops between BS and CH, and ui (1 ≤ i ≤ n) be an
intermediate node on the path from CH to BS, where i increases from CH to BS.
Let vi (1 ≤ i ≤ t) denote one of the t cluster nodes other than CH in a cluster.

Definition 1. For two nodes ui and uj on the path from CH to BS, if |i−j| =
t + 1, we say ui and uj are associated, and ui is an associated node of uj. More
specifically, if i − j = t + 1, ui is the upper association node of node uj, and uj is
the lower association node of node ui.

For simplicity, we refer to upper association node and lower association node as
UA node and LA node, respectively. From the definition, we know that a node
that is less than t + 1 hops away from BS has no UA node and an intermediate
node may have multiple LA nodes if it has multiple child nodes leading to multiple

ACM Journal Name, Vol. V, No. N, Month 20YY.

6 · Sencun Zhu et al.

BS

v3

v1

CH
u1u2u3u4u5u6u7u8

v2

Fig. 2. An example showing the definition of association where t = 3. BS is
the base station and CH is a cluster head. Two nodes connected with an arc are
associated, the one closer to the base station is the upper association node and the
other is the lower association node.

clusters. We further extend this definition by including the following two special
cases.

—A node ui (1 ≤ i ≤ t) that is less than t + 1 hops away from CH has one of the
cluster nodes vi (1 ≤ i ≤ t) as a LA node.

—The cluster head CH is associated with ut+1.

Fig. 2 shows a node cluster and a path from the cluster head to the BS, where
t = 3. Node u3 has an UA node u7 and a LA node v3. Node u5 has a LA node u1

but no UA node.

3.2 Scheme Overview

Our scheme involves the following five phases:

(1) In the node initialization and deployment phase, the key server loads every
node with a unique id, as well as necessary keying materials that allow the
node to establish pairwise keys with other nodes. After deployment, a node
first establishes a one-hop pairwise key with each of its neighbors.

(2) In the association discovery phase, a node discovers the ids of its associated
nodes. This process may be initiated by the BS periodically, or by a node that
detects the failure of a neighbor node.

(3) In the report endorsement phase, t + 1 nodes generate a report collaboratively
when they detect the occurrence of an event of interest. More specifically, every
participating node computes two MACs over the event, one using its key shared
with the BS, and the other using its pairwise key shared with its UA node.
Then it sends the MACs to its cluster head. The cluster head CH collects
MACs from all the participating nodes, wraps them into a report, and then
forwards the report towards BS.

(4) In the en-route filtering phase, every forwarding node verifies the MAC com-
puted by its LA node, and then removes that MAC from the received report. If
the verification fails, it drops the report. Otherwise, it then computes and at-
taches a new MAC based on its pairwise key shared with its UA node. Finally,
it forwards the report to the next node towards the BS.

(5) In the base station verification phase, the BS verifies the report after receiving
it. If the BS detects that t + 1 nodes have endorsed the report correctly, it
accepts the report; otherwise, it discards the report.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Interleaved Hop-by-hop Authentication Against False Data Injection Attacks in Sensor Networks · 7

3.3 Scheme Description

This subsection describes the basic processes in the scheme. Subsections 3.4 and
3.5.2 discuss some of the issues in more detail.

3.3.1 Node Initialization and Deployment. The key server loads every node with
a unique integer id, ranging from 0 to the maximal number of nodes in the network.
Therefore, for example, a node id is of size two bytes if the number of nodes in the
network is between 256 and 65536. The key server also loads every node u with
necessary keying materials. Specifically, it pre-loads node u with an individual key
Ku shared with the base station. From Ku, node u derives its authentication key
Ka

u. If the pairwise key establishment scheme in LEAP [Zhu et al. 2003] is employed
for establishing one-hop pairwise key, node u will be loaded with an initial network
key. If the Blundo scheme [Blundo et al. 1993] is used for establishing multi-hop
pairwise keys, the key server randomly generates a symmetric bivariate polynomial
of degree k, and loads node u with the k + 1 coefficients of polynomial f(u, y).
After node u is deployed, it discovers all its one-hop neighbors and then establishes
a pairwise key with each of its neighbors.

3.3.2 Association Discovery. The association discovery phase is necessary for a
node to discover the ids of its association nodes. We first describe a two-way asso-
ciation discovery scheme for the initial path setup, which consists of two processes
– BS Hello and CH Acknowledgment. We then describe an incremental association
discovery scheme in Section 3.4, which is executed when the upper and/or lower
association nodes of a node change due to the change of the path from the CH to
the BS.

3.3.2.1 BS Hello. This process enables a node to discover its UA node. The
base station BS initiates this process by broadcasting a HELLO message, which
is recursively forwarded to all nodes so that every node discovers the ids of up to
t + 1 closest nodes that are on its path to the BS. On receiving a HELLO message
from the base station, a node attaches its own id to the HELLO message before
re-broadcasting it. Our scheme restricts the maximum number of node ids that are
included in a HELLO message to t + 1. Specifically, each node replaces the id of
the node that is t + 1 hops closer to the base station with its own id. Thus, the
communication overhead introduced by a HELLO message is bounded by t+1 ids,
irrespective of the number of hops the HELLO message travels. On receiving the
HELLO message, the cluster head CH assigns each of the t+1 ids in the message to
one of its cluster nodes (including itself). In addition, if a cluster head is also an en-
route node for another cluster, it will rebroadcast the HELLO message. Note that
here an authentication scheme such as µTELSA is used to provide authenticity of
the original BS HELLO message. However, it can only prevent malicious broadcast
storms, but cannot ensure authenticity of the modified part of the HELLO message.

Fig. 3 shows an example where t = 3. The cluster consists of nodes v1, v2, v3,
and CH. BS broadcasts a HELLO message M , which includes its id BS and a
sequence number Sn. Here Sn is used to prevent replay attacks and message loops.
M is authenticated by an authentication scheme such as µTELSA. Note that here
µTESLA prevents malicious broadcast storms. For

After receiving M , node u6 records the id(s) in M , attaches its own id to M ,

ACM Journal Name, Vol. V, No. N, Month 20YY.

8 · Sencun Zhu et al.

v3

v2(u3)

(u1)

v1

CHBS (u2)
u1u2u3u4u5u6

(BS,u6,u5)(BS,u6)(BS) (u4,u3,u2,u1)(u5,u4,u3,u2)(u6,u5,u4,u3)(BS,u6,u5,u4)

(CH,v3,v2,v1)(u1,CH,v3,v2)(u2,u1,CH,v3)(u3,u2,u1,CH)(u4,u3,u2,u1)(u6,u5,u4,u3) (u5,u4,u3,u2)

Fig. 3. An example illustrating the BS hello process where t = 3. BS is the base
station, ui is an en-route node. CH is the cluster head and v1, v2, v3 are cluster
nodes. (M) is the content of the beaconing message. Note that ui may be an
en-route node for multiple paths and CH may also be an en-route node for another
cluster, although we only show one path in this figure.

and then rebroadcasts M . Nodes u5 and u4 do the same. When M arrives at node
u3, M already contains t + 1 = 4 node ids. Node u3 records Sn and the ids in M ,
removes the first id (here BS) in the id list, adds its own id to the end of the id list,
and then rebroadcasts M . Nodes u2 and u1 also do the same. When node CH,
the cluster head, receives M , it assigns the ids of the preceding nodes to its cluster
nodes. For example, it assigns u3 to v3, u2 to v2 and u1 to v1, respectively. Thus,
u1, u2, and u3 are associated with v1, v2, and v3, respectively, and CH is associated
with u4. At the end of this step, every node that is more than t+1 hops away from
BS has an UA node.

3.3.2.2 CH Acknowledgment. After the BS hello process, the cluster head CH
sends an acknowledgment back to the BS. The acknowledgement includes a cluster
id, and the ids of the t + 1 LA nodes. When a node receives the acknowledgement,
it will check if all the node ids in the message are distinct. If not, it will drop the
message because that indicates an attack. During the forwarding of the acknowl-
edgement, the node ids are replaced in the direction opposite to that in the BS hello
process, that is, a node removes the last id in the id list and adds its own id at the
beginning. This allows every receiving node to discover the id of its LA node. In
the case that a node has multiple child nodes leading to multiple clusters, the node
has multiple LA nodes. Therefore, it maintains a table that includes multiple path
information, where each path is uniquely identified by the corresponding cluster
id. Moreover, because the CH acknowledgment message is critical for a node to
maintain correct association knowledge, we employ a hop-by-hop acknowledgment
mechanism to avoid packet loss due to unreliable link layer transmission.

Consider Fig. 3. The cluster header CH first computes a MAC over Sn and the
cluster id, Ci, using its authentication key Ka

CH . CH then generates an acknowl-
edgment, which includes its id CH, the above MAC, and an ordered list of ids of the
t+1 cluster nodes that have discovered their UA nodes in the BS hello process. CH
sends the acknowledgment to u1, which forwards the HELLO message to CH in the
BS Hello process. The id list in the acknowledgment message is {CH, v3, v2, v1}.
Based on the id placement rule, u1 discovers its LA node v1, the last one in the
list. Node u1 then removes v1 from the list and inserts its own id at the beginning
of the list. The id list it sends to u2 is {u1, CH, v3, v2}. In this way, every node
on the path finds out its LA node, while the size of the acknowledgment message

ACM Journal Name, Vol. V, No. N, Month 20YY.

Interleaved Hop-by-hop Authentication Against False Data Injection Attacks in Sensor Networks · 9

remains bounded.
During this process, every node stores the id list it receives. Moreover, the

acknowledgment is authenticated in a hop-by-hop fashion; that is, every node au-
thenticates the acknowledgment message to its upstream node using their pairwise
key as the MAC key. When the base station receives the acknowledgment, it verifies
the acknowledgment and records the id of the cluster. The security of this process
is analyzed in Section 3.6.

3.3.3 Report Endorsement. Sensor nodes generate a report when triggered by
a special event, e.g., an increase in the temperature being monitored by the nodes,
or in response to a query from the base station. Our scheme requires that at least
t + 1 nodes agree on the report for it to be considered a valid report. For example,
at least t + 1 neighboring nodes should agree that the local temperature is higher
than 150F for a valid report to be sent to the base station. Thus, if t > 0, an
adversary cannot cause a false fire alarm by compromising just one sensor node.

When a node v agrees on an event E (E typically contains an event type, and a
timestamp or an incremental sequence number, and the cluster id Ci), it computes
a MAC over E, using its authentication key Ka

v as the MAC key. In addition, node
v computes another MAC over E, using the pairwise key shared with its UA node
u as the MAC key. Note that both u and v can compute their pairwise key Kuv

based on an id-based pairwise key establishment scheme because they know each
other’s id from the association discovery phase. We refer to these two types of
MACs as individual MAC (IMAC for short) and pairwise MAC (PMAC for short),
respectively. Node v then sends an endorsement message to the CH that includes
these two MACs. The CH collects endorsements from t+1 cluster nodes (including
itself). It then compresses the t + 1 IMACs by XORing them to reduce the size
of a report. The PMACs however are not compressed for transmission, because
otherwise a node relaying the message will not be able to extract the PMAC from
its LA node. The CH finally generates a report, which contains the event E, a list
of ids of the endorsing nodes, the compressed MAC and t + 1 PMACs. We will
discuss the use of a short PMAC to reduce the message overhead in Section 3.7.

Consider the cluster node v1 in Fig. 4. v1 computes two MACs over the event E;
one MAC key is its authentication key Ka

v1
and the other is the pairwise key Kv1u1

shared with its upper associated node u1. v1 sends its endorsement that contains
these two MACs to the current cluster head CH. The endorsement is authenticated
with the pairwise key shared between v1 and CH.

CH collects endorsements from the other two nodes v2 and v3 as well. It then
verifies the authenticity of each endorsement based on its pairwise key shared with
the corresponding cluster node. If all the endorsements are authenticated, CH
computes a compressed MAC over E, denoted as XMAC(E).

XMAC(E) = MAC(Ka
v1

, E) ⊕ MAC(Ka
v2

, E) ⊕

MAC(Ka
v3

, E) ⊕ MAC(Ka
CH , E).

The report R that node CH finally generates and forwards towards BS is as follows.

R : E, {v1, v2, v3, CH},XMAC(E),

{MAC(KCHu4
, E),MAC(Kv3u3

, E),

ACM Journal Name, Vol. V, No. N, Month 20YY.

10 · Sencun Zhu et al.

BS

v3

v1

CH
u1u2u3u4u5u6u7u8

v2

RRRRRRRR R

Fig. 4. An example of report endorsement and en-route filtering where t = 3.

MAC(Kv2u2
, E),MAC(Kv1u1

, E) ⊕ MAC(KCHu1
, E)}.

The report includes the ids of the endorsing nodes v1, v2, v3 and CH, which enable
the base station to verify the compressed MAC later. These ids may be removed
in future reports to save bandwidth overhead unless the nodes in the endorsing
set have changed, since the base station can identify the endorsing nodes from the
cluster id Ci contained in E. The order of the PMACs in R corresponds to that in
the CH acknowledgment message so that a node receiving R knows which PMAC
is from its LA node. Note that here the last PMAC is actually the result of an
XOR operation of two MACs, the first contributed by v1 for its UA node u1 and the
second contributed by CH for its immediate upstream node u1. The second MAC is
important for restricting the impact of a node compromise to its direct neighbors.
If a report R does not include this MAC an attacker can inject false data packets
at any location of a sensor network once it has compromised a single node. Since
each report includes this MAC, an attacker that has compromised t nodes can only
inject false data into a network through these t nodes. This is because each node is
assumed to have obtained authenticated neighbor knowledge using the pairwise key
establishment scheme in LEAP [Zhu et al. 2003]. The reason for piggybacking this
MAC on a PMAC using an XOR operation is to reduce message overhead without
reducing security.

3.3.4 En-route Filtering. When a node u receives R from its downstream node,
it first checks the number of different PMACs in R. If node u is s(s < t + 1) hops
away from BS, it should see s PMACs; otherwise, it should see t + 1 PMACs. It
then verifies the last PMAC in the PMAC list, based on its pairwise key shared with
its LA node and its pairwise key shared with its immediate downstream neighbor.
In the case that it has not computed the pairwise keys earlier, it computes the
pairwise keys and stores it. Node u will drop the report if the above checks fail.
Otherwise, if node u is more than t+1 hops away from BS, it proceeds to compute
a new PMAC over event E using the pairwise key shared with its own UA node
and its pairwise key shared with its immediate upstream node. It then removes the
last PMAC from the PMAC list and inserts the new PMAC into the beginning of
the PMAC list. Finally it forwards the report to its upstream node.

Consider node u1 in Fig. 4. When node u1 receives the report R from node CH,
it checks if there are four PMACs. If true, it computes its pairwise key shared with
node v1, i.e., Ku1v1

, if it has not computed the key before. Node u1 then verifies the
last PMAC in R by computing MAC(Kv1u1

, E) and MAC(KCHu1
, E) and then

XORing them. If the verification succeeds, node u1 computes MAC(Ku1u5
, E),

i.e., the new PMAC computed over E using the pairwise key shared with node

ACM Journal Name, Vol. V, No. N, Month 20YY.

Interleaved Hop-by-hop Authentication Against False Data Injection Attacks in Sensor Networks · 11

u5. It also computes MAC(Ku1u2
, E) for its upstream node u2. Finally, node u1

inserts the MAC(Ku1u5
, E) at the beginning of the PMAC list, and removes the

last PMAC on the list. The report R that node u1 forwards to node u2 is as follows.

R : E, {v1, v2, v3, CH},XMAC(E),

{MAC(Ku1u5
, E),MAC(KCHu4

, E),

MAC(Kv3u3
, E),MAC(Kv2u2

, E) ⊕ MAC(Ku1u5
, E)}.

The other forwarding nodes follow the same process, except that the nodes within
t + 1 hops of BS do not insert a new PMAC. It is easy to see that every node on
the path from the cluster head to the base station can verify one PMAC in the
report independently. Thus the report is authenticated in an interleaved hop-by-
hop fashion.

3.3.5 Base Station Verification. The BS only needs to verify the compressed
MAC. Basically, it computes t + 1 IMACs over E using the authentication keys of
the nodes in the id list. It then XORs the MACs to see if the resulting XMAC
matches the one in the report. The BS can easily compute the authentication key
of a node based on its id. If the report is authenticated, the BS can react to the
event; otherwise, it will discard the report.

3.4 Association Maintenance

The correctness of our scheme relies on correct association knowledge. A node needs
to know the id of its LA node; otherwise, it will not know which pairwise key to use
to verify a PMAC. In addition, it needs to know the id of its UA node so that it
can add a valid PMAC into a report; otherwise, its UA node will drop the report.
If the path between the base station and a cluster head is static, then only an
initial association discovery process is necessary. However, if the path between the
base station and a cluster head changes due to the failure of an intermediate node
or other reasons, our scheme has to adapt to the change accordingly to maintain
correct associations. We discuss below association maintenance in two scenarios,
namely base station initiated repair and local repair.

3.4.1 Base Station Initiated Repair. In this scenario, once a path is formed, the
reports from a cluster head to the base station always follow the same path, unless
the path is changed due to the base station. For example, in the TinyOS beaconing
protocol [Hill et al. 2000], the base station broadcasts a beaconing message peri-
odically forming a breadth-first tree rooted at the base station. Specifically, every
node records its parent node as the node from which it first received the beaconing
message during the current epoch, and then rebroadcasts the beaconing message.
Thus, the path between a cluster head and the base station is changed when an
intermediate node chooses different parent nodes in two consecutive time epochs.

To adapt to path changes, our scheme can execute the BS hello process for each
epoch by piggybacking node ids in every beaconing message. The CH acknowledg-
ment process can be omitted by letting a LA node include its id with its PMAC
when it forwards a report. This strategy works best for networks where the topol-
ogy changes very frequently, at the additional bandwidth expense of including t+1
ids per beaconing message. For less dynamic networks, this overhead will be re-

ACM Journal Name, Vol. V, No. N, Month 20YY.

12 · Sencun Zhu et al.

u
i
 u
i-1

()
 ()

(case 1)

u
i
 u
i-1

(u'
i+3
, u
i+2
, u
i+1
,u
i
)
 ()

(case 2)

u
i
 u
i-1

(u
i+3
, u
i+2
, u'
i+1
,u
i
)

(case 3)

(
u
i+2
, u'
i+1
,u
i
,u
i-1
)

u'
i
 u
i-1

(u
i+3
, u
i+2
, u
i+1
,u'
i
)

(case 4)

(
u
i+2
, u
i+1
,u'
i
,u
i-1
)

u'
i
 u
i-1

(

)

(case 5)

(
u'
i+2
, u'
i+1
,u'
i
,u
i-1
)

(u'
i+3
, u'
i+2
, u'
i+1
,u'
i
)

Fig. 5. Five basic cases for base station initialized repair when t = 3. In case 1, node
ui−1 does not add its id into a beaconing message when it finds there is no ids in the
received message and the message is from its old upstream node ui. In case 2, node
ui−1 finds only its own UA node has changed, it restores the beaconing message
to its original format (i.e.,no piggybacked ids). In case 3 and case 4, whether its
upstream node ui is the same or not, node ui−1 attaches its own id based on the
id replacement rule. In case 5, ui−1 finds its upstream node has changed and the
beaconing message comes with no ids, it requests the id list and then sends the
replaced list to its downstream node.

duced. If a path does not change during different epochs, it is not necessary for a
node to attach its id to a beaconing message.

We adopt a reactive approach for association maintenance in relatively static
networks. Recall that in the BS hello process, every node records s ids that are the
ids of the nodes that are on its path to the base station. Here s = t + 1 if a node
is more than t hops away from the base station; otherwise s is the actual number
of hops from the base station. A node can infer that its own s upstream nodes are
unchanged

—if it receives a beaconing message from the same parent node and the beaconing
message is in its original format (i.e., no node ids are added), and

—if a node forwards the original beaconing message only if its own s− 1 upstream
nodes are unchanged.

We can see that if a path is unchanged during different epochs, our scheme will not
incur any additional bandwidth overhead. However, when a node selects a parent
node that is different from the one in the previous epoch, it sends a request to the
new parent node to get the ids of s − 1 upstream nodes, and then attaches these
s − 1 node ids and its own id to the beaconing message it is forwarding. Figure 5
illustrates five basic scenarios and the way they should be handled by node ui−1.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Interleaved Hop-by-hop Authentication Against False Data Injection Attacks in Sensor Networks · 13

3.4.2 Local Repair. In the base station initiated repair scheme, if the underlying
routing protocol has a large beaconing period, the failure of an intermediate node
on a path may cause many reports to be dropped. Therefore, it is necessary for the
nodes detecting the failure of a neighbor to locally repair a path that avoids the
failed node. This, however, will result in inconsistent node association relationship
in our scheme. Thus, we need an adaptive scheme to locally repair the association
relationship.

Our general idea is as follows. The immediate downstream node of a failed node
will send a LA repair message to an upstream node based on an existing route
repair protocol. This LA repair message includes two id lists: the id list of the t+1
downstream nodes of the failed node and the id list of the t upstream nodes of the
same failed node. The first list helps the new upstream nodes find their new LA
nodes when the message is forwarded towards BS and modified hop-by-hop like an
CH acknowledgement message; the second list helps merge the new path into the
old path to minimize the path rebuilding cost. The LA repair message is forwarded
until it reaches one of the t upstream nodes of the failed node or an upstream node
whose all t + 1 downstream nodes are the same as before. This upstream node
will send downwards a UA repair message, which contains the ids of its t upstream
nodes. The UA repair message is forwarded and modified hop-by-hop like a BS
HELLO message until it reaches the LA node of the failed node. In this way, all
the affected nodes will have the updated association information, which allows these
nodes to compute their pairwise keys with the newly associated nodes.

Consider an example in Figure 6 where node u5 has failed and here t = 3. u4

detects the failure of its upstream node (the issue of node failure detection is out of
our scope) and tries to find a path towards the base station. If w1, w2, w3 previously
did not belong to a path, we can apply the right-hand rule in the greedy parameter
stateless routing (GPSR) protocol [Karp and Kung 2000] for local repair. Here we
assume every node knows the locations or relative locations of its neighbors. u4

sends a LA repair message to w1, which is the first node counterclockwise about u4

from edge (u4, u5). The LA repair message includes the ids of t + 1 = 4 LA nodes
of u5 and t = 3 upstream nodes of u5; that is, it includes two id lists {u4, u3, u2, u1}
and {u6, u7, u8}. Thus, w1 knows its new LA node is u1. Since w1 is not on the
old path and its LA node is changed, it will change the first id list in the message
into {w1, u4, u3, u2} and forward the message to w2. Following the same process,
w2 and w3 forward the repair message based on the same right-hand rule, and
they will modify the first id list based on the id placement rule. When u6 receives
the message, it finds that it is in the second list {u6, u7, u8}, which indicates that
the failed node u5 has been bypassed. u6 then sends a UA repair message to w3,
which includes the id list {u6, u7, u8, u9}. Node w3 then knows its UA node is u9.
It forwards the list to its downstream nodes in the same way as in the BS hello
process, thus u1 will discover its new UA node w1. On the other hand, because the
LA nodes of u7, u8, u9 have changed, u6 further forwards the LA repair message
towards u9.

Figure 6 does not include the scenario where the new path does not merge into
the old one according to the right-hand rule. However, our general idea still works.
Also note that although local repair is necessary to maintain path connectivity,

ACM Journal Name, Vol. V, No. N, Month 20YY.

14 · Sencun Zhu et al.

1

2
w1w3 w2

u3u4u5u6u7u9 u8u10

3

BS
u2 u1 CH

v1

v2

v3

Fig. 6. An example showing the local repair process when node u5 fails and node
u4 establishes a new path towards BS (here t = 3). The new path includes nodes
w1, w2 and w3.

it is also very important to limit the frequency with which the process is invoked.
Otherwise, a compromised node may invoke this process very frequently to consume
the energy of the involved nodes. To thwart this attack, for instance, we can limit
the number of local repair operations to be at most one within one beaconing epoch.

3.5 Further Discussions

Next we discuss two slight variants of this scheme to copy with more complex
situations.

3.5.1 Dealing with Dynamic Clusters. In the description of our basic scheme,
we have implicitly assumed that when an event is detected, the cluster membership
formed in the previous CH acknowledgement process has not changed. Otherwise,
not knowing their UA nodes, the new cluster nodes cannot generate correct PMACs.
Next we show a slight variant of the basic scheme to handle the dynamic cluster
case where one or multiple of the cluster nodes that will contribute endorsements
are different from those participating in the previous CH acknowledgement process.

There are two strategies to consider. First, if the cluster nodes or the cluster
head hold the event data until the next BS HELLO comes, the average delay will
be half the BS hello interval. Second, when the cluster head notices the change of
cluster membership since the previous CH acknowledgement, it can associate the
new cluster nodes with appropriate en-route nodes. In this way, the new cluster
nodes can know their UA nodes and generate correct PMACs. The cluster node
then directly forwards the endorsed data towards the BS. Slightly different from
the basic scheme, in this case the report will also carry the ids of the new cluster
nodes so that the UA nodes of these new cluster nodes may verify the PMACs
(other en-route nodes will not be affected). Note that the security strength of this
variant is the same as the basic scheme because a BS hello process is not protected
from insider attacks anyway.

3.5.2 Interaction with Routing Protocols. The advantage of the two-way asso-
ciation discovery protocol described above is its independence from the underlying
protocols, making it applicable for various sensor network applications. On the
other hand, we note that the association discovery process usually overlaps with
the route discovery process in a routing protocol. Therefore, in practice we can
combine the association discovery protocol with the underlying routing protocol
when it is beneficial. As described earlier, we can integrate the BS hello process

ACM Journal Name, Vol. V, No. N, Month 20YY.

Interleaved Hop-by-hop Authentication Against False Data Injection Attacks in Sensor Networks · 15

with the TinyOS beaconing protocol [Hill et al. 2000] by piggybacking the ids of the
upper association nodes in a beaconing message. As another example, if we want
to adapt our scheme to the GPSR [Karp and Kung 2000] protocol, in addition to
piggybacking node ids, the base station should unicast (instead of broadcast) its
HELLO messages to the next node towards the cluster head, based on the location
of the cluster head.

3.6 Security Analysis

We discuss the security of our scheme with respect to our two design goals, i.e., the
ability of the base station in detecting a false report and the ability of the en-route
nodes in filtering false reports.

3.6.1 Base Station Detection. Our authentication scheme requires that each
of t + 1 cluster nodes compute an IMAC based on its authentication key that is
only shared with the base station. Thus, it guarantees that an adversary has to
compromise at least t + 1 nodes to be able to forge a report to deceive the base
station. Note that our scheme compresses t + 1 IMACs into one XMAC based on
the bitwise XOR operation (instead of attaching t + 1 IMACs) to reduce message
overhead. This compression scheme is secure because it is a special case of the
XOR-MAC scheme [Bellare et al. 1995] which is proven to be secure.

3.6.2 En-route Filtering. Next we discuss the en-route filtering capability of our
scheme for two attack models, namely, outsider attacks launched by an adversary
that has not compromised any nodes, and insider attacks launched by an adversary
that has compromised up to t nodes.

3.6.2.1 Outsider Attacks. An outside attacker could eavesdrop, replay, or inject
messages. Eavesdropping does not hurt the filtering capability of enroute nodes.
In our scheme, every report is authenticated at every hop during its transmission.
Thus, any false data injected by an outsider will be detected and dropped immedi-
ately. Moreover, because an event also contains a timestamp or a sequence number,
an attack in which an outsider replays an old report will be detected.

3.6.2.2 Insider Attacks. We consider several insider attacks by up to t compro-
mised nodes. We first discuss the security of our scheme under the assumption
that every node knows the authentic ids of its UA node and its LA node. This
corresponds to a situation in which every node is loaded with correct association
knowledge before it is deployed, or every node discovers the ids of its association
nodes through the association discovery process before any nodes are compromised.

Lemma 1. Given authenticated association knowledge, a false report injected by
t compromised nodes is dropped after it is forwarded by at most t noncompromised
nodes.

Proof. A compromised node can provide an authenticated PMAC over any data
to deceive its UA node. Thus, if totally t nodes are compromised, they can provide
t authenticated PMACs over a false report, which will pass the verification of t
noncompromised UA nodes. By requiring that every en-route node verify a PMAC
from its LA node, our scheme enables one noncompromised node among any t + 1
consecutive en-route nodes to filter out a false report because it will not receive

ACM Journal Name, Vol. V, No. N, Month 20YY.

16 · Sencun Zhu et al.

a valid PMAC from its LA node. Note that in a special case when the distance
between a CH and the BS is less than t + 1 hops, the BS will discard a false
report based on XMAC. Thus, despite the distance between a CH and the BS,
our scheme guarantees that a false report will be dropped after it is forwarded by
at most t noncompromised nodes.

Next we analyze the security of our scheme in another scenario where no au-
thenticated association knowledge is provided. Essentially, we need to analyze the
security of the association discovery process because it provides association knowl-
edge to nodes. More specifically, the security of the cluster acknowledgment process
is critical because it provides the nodes with the lower association knowledge that
is used as the basis for en-route filtering. The cluster acknowledgment process is
subject to attack if it is executed at any time after some nodes have been compro-
mised.

Before we show two types of attacks on the cluster acknowledgment process, we
first clarify the attack model. Recall that in the cluster acknowledgment phase,
when a node u receives an acknowledgment message ACK from its downstream
neighbor (authenticated with their pairwise key), it verifies the ACK and then
checks if all the ids in the id list in the ACK are distinct. If the check is successful,
the node will set the id of its LA node to the last id in the list. Then it removes the
last id and adds its own id to the beginning of the list. The goal of an attack on
this process is to lower associate more than t noncompromised nodes to t (or less)
compromised nodes, under the constraint that t + 1 distinct ids must appear in the
list when the ACK is forwarded. This attack is referred to as mis-association attack.
This attack is possible mainly because in a multi-hop pairwise key establishment
process, two nodes do not know the actual number of hops between them. In other
words, when a node u establishes a pairwise key with another node v, it trusts v
only because v can compute the same secret key – it does not know where v is.

Below we discuss two types of insider attacks on en-route filtering: cluster in-
sider attack and en-route insider attack. The strength of other insider attacks falls
between.

Cluster Insider Attack In this attack, all the t compromised nodes are from the
cluster (possibly including the cluster head); that is, no nodes on the path to the
base station are compromised.

Lemma 2. In a cluster insider attack, a false report is dropped after it is for-
warded by at most t noncompromised nodes.

Proof. Because the ACK from the cluster head towards the base station must
contain t + 1 distinct node ids, it must include the id of a noncompromised or
nonexistent node. Therefore, one of the t + 1 consecutive relaying nodes closest to
the cluster head (e.g., node u1, u2, u3 and u4 in Fig. 4) will be lower associated to
a noncompromised or nonexistent node. Since a noncompromised or nonexistent
node does not contribute a valid MAC over the forged event, the attacker has to
forge a MAC corresponding to the forged node id, thus the en-route node lower
associated with the forged node will detect the forged MAC and drop the false
report. Hence, a false report will be dropped after it is forwarded by at most t

ACM Journal Name, Vol. V, No. N, Month 20YY.

Interleaved Hop-by-hop Authentication Against False Data Injection Attacks in Sensor Networks · 17

noncompromised nodes.

En-route Insider Attack In this attack, t compromised nodes that lie on the path
to the base station collude to attack the cluster acknowledgment process. If t = 1, a
false report will be dropped immediately. Although an attacker can lower associate
an en-route node to two nodes of its choice, it cannot provide two valid MACs in a
false report to an en-route node later because an en-route node verifies two MACs.
Therefore, we assume t > 1 in the following discussion. We first construct an attack
to show that in the basic scheme without authenticated association knowledge the
en-route nodes cannot filter out the false reports injected by t colluding nodes, then
give a related upper bound.

From the previous security analysis of our basic scheme, we can see that if an
attacker can deceive t+1 en-route nodes in a row, the basic scheme will not provide
any en-route filtering capability, because the next t + 1 nodes in a row trust the
previous t + 1 nodes. Hence, given the assumption that an attacker can only
compromise t nodes, the goal of an attacker is to deceive t + 1 noncompromised
nodes through these t compromised sensors. An attacker may achieve this goal by
associating multiple upstream nodes to one compromised downstream node, if we
assume that an attacker can selectively compromise en-route nodes and the en-route
nodes do not have any authenticated association knowledge.

Here is a specific attack. Denote the t compromised nodes on the path as
X1,X2, ...,Xt, where Xi is farther away from BS than Xj is if i < j. Let the
number of noncompromised nodes between X1 and X2 be m (m ≤ t). Node X1 can
choose m ids of compromised nodes and then arrange them in its CH acknowledge-
ment message such that m noncompromised nodes will be lower associated with
these m compromised nodes. Not knowing that they have been deceived, these
m noncompromised nodes will then provide m authenticated PMACs to their UA
nodes. Now in the CH acknowledgement message, X2 could forge an id list con-
taining t + 1 ids chosen randomly from the ids of the previously deceived m nodes
and t compromised nodes. The next t + 1 nodes in a row will be lower associated
with these t + 1 nodes that will later provide t + 1 authenticated PMACs. Thus, a
false data packet will not be detected by en-route nodes.

Next we derive an upper bound on the number of hops a false report can tra-
verse. Let the maximum number of node ids in a BS hello message and a CH
acknowledgement message be r (instead of t + 1 in the basic scheme).

Lemma 3. In an en-route insider attack where an attacker can selectively com-
promise en-route nodes and the en-route nodes do not have any authenticated asso-
ciation knowledge, if r ≥ t2 + 1 and every node accepts an id list only when all the

ids are distinct, at most Bmax = t2(t+1)
2 noncompromised nodes will be deceived to

forward false data packets injected by t colluding compromised nodes.

Proof. We first construct a specific attack scenario in which the number of
nodes deceived to forward false data is Bmax, and then show Bmax is also the
upper bound for more general attack scenarios. Again, denote the t compromised
nodes on the path as X1,X2, ...,Xt, where Xi is farther away from BS than Xj

is if i < j. In this specific attack, t nodes are selectively comprised such that the

ACM Journal Name, Vol. V, No. N, Month 20YY.

18 · Sencun Zhu et al.

number of noncompromised nodes between Xi and Xi+1 is t · i. This is illustrated
as follows:

X1, {u1,1, u1,2, ..., u1,t},

X2, {u2,1, u2,2, ..., u2,2t},

...,

Xt−1, {ut−1,1, ut−1,2, ..., ut−1,(t−1)t},

Xt, {ut,1, ut,2, ..., ut,t2},

..., BS (1)

where ui,j is a noncompromised node.
Node X1 first forges a list of r ids, among which the first r−t are randomly picked

legitimate ids and the remaining t ids are those of the t compromised nodes. For
example, the id list could be {Y1, ..., Yr−t,X1,X2, ...,Xt−1,Xt}. According to the
id replacement rule in the cluster acknowledgment process, every noncompromised
node between u1,1 and u1,t sets its lower association node to be the last id in the
list, removes the last id and then inserts its own id at the beginning of the list. As
a result, each of the nodes u1,1, u1,2, ..., u1,t is lower associated to one compromised
node. Note that the node after u1,t (i.e., X2) is lower associated with Yr−t according
to the id replacement rule. If X2 were not a compromised node, it would drop any
false data packets because it would not receive a valid PMAC from node Yr−t. Since
X2 is a compromised node, it ignores the association rule. This indicates that an
attacker cannot deceive more than t noncompromised nodes if X2 is farther away
from X1. On the other hand, if X2 is closer to X1, the attacker can only deceive
less than t noncompromised nodes. Thus, in the en-route filtering phase, node X1

can deceive at most t noncompromised nodes to forward false data.
Next node X2 forges a new list {Y1, ..., Yr−2t,X1,X2, ...,Xt−1,Xt, u1,t, u1,t−1, ..., u1,1}

and sends it to u2,1. Thus u2,1, ..., u2,t are lower associated with u1,1, ..., u1,t respec-
tively, and u2,t+1, ..., u2,2t are lower associated with Xt, ...,X1 respectively. On the
other hand, X2 could have easily forged a list that upper-associates u1,1, u1,2, ..., u1,t

to u2,1, u2,2, ..., u2,t respectively in the base station hello phase. Thus, here at most
2t noncompromised nodes will be deceived to forward false data. More generally,
Xi(i > 2) can forge an id list that lower-associates t · i noncompromised nodes to
t compromised nodes and (i − 1)t noncompromised nodes that were deceived by
Xi−1. Thus, the total number of noncompromised nodes that will be deceived to

forward false data packets is at most Bmax = t + 2t + ... + t2 = t2(t+1)
2 .

Note that for the above result to hold, we must set r ≥ t2 + 1. This is because
Xt can forge an id list to deceive up to t2 noncompromised nodes. If r ≤ t2, the
nodes between ut,t2 and BS will not be able to detect a false data packet because
each of them will receive a valid PMAC from its claimed LA node.

We derived Bmax from the above specific attack scenario in which an attacker
started from X1 and ended at Xt in a specific order. Actually, the order is ir-
relevant because the maximum number of noncompromised nodes deceived by a
compromised node always increases according to the sequence t, 2t, ..., t2. More-
over, as shown earlier, changing the number of noncompromised nodes between two
compromised nodes does not help deceive more noncompromised nodes either.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Interleaved Hop-by-hop Authentication Against False Data Injection Attacks in Sensor Networks · 19

In fact, it is easy to see the total number of deceived noncompromised nodes is
upper bounded by Bmax irrespective of the locations of the t compromised nodes in
the network. On the other hand, because a node only accepts reports authenticated
by one of its immediate neighbors, an attacker can inject a false report only through
a compromised node. More generally, let t1 and t2 be the number of compromised
nodes in a cluster (including CH) and on the path, respectively, and t1 + t2 = t.

Then when r ≥ t · (t2 + 1) + 1, Bmax = t1 +
t2
2
(t2+1)

2 .

3.6.3 Localizing False Data Injection Capability. A compromised yet undetected
node can always drop or alter every packet going through it. There is no way to
prevent it from doing so. The only solution is to detect the compromised node and
then avoid it. Compromise detection in a sensor network is a very difficult issue,
because a sensor network is usually deployed in an unattended environment. Due to
the difficulty of compromise detection, the security bottom line of a security protocol
for sensor networks is that the impact of a node compromise must be localized so
as to provide the basis for later compromise detection. If a compromised node can
only mount such attacks on its own behalf and the attacks can only occur around
its initial deployment location, the node will take a great risk of being detected.
Our scheme does meet the above security bottom line. Recall that our scheme
starts with a node initialization and deployment process. After this phase, every
node knows the authenticated set of its direct neighbors and establishes a pairwise
key with each of them, and it will only accept events authenticated by one of the
nodes from its neighbor set, which is its current immediate downstream node. This
implies that a compromised node can only mount an attack locally and on its own
behalf. Thus, after compromising t nodes, an attacker can only inject false data
reports through these t nodes, but not through any noncompromised nodes. In
other words, although our scheme has a security threshold of t, it does not mean
our scheme is completely broken after more than t nodes are compromised.

3.7 Performance Evaluation

This section analyzes the computational and communication overheads of our basic
scheme.

3.7.1 Computational Cost. The computational overhead of our scheme is mostly
due to two operations – establishing pairwise keys and report authentication.

3.7.1.1 Establishing Pairwise Keys. In the basic scheme, two associated nodes
need to establish a multi-hop pairwise key on the fly, based on one of the id-based
schemes [Blom 1985; Blundo et al. 1993; Du et al. 2003; Liu and Ning 2003a;
2003b]. All these schemes have similar computational overhead. For example, in
the Blundo scheme, a node needs to compute k modular multiplications and k
modular additions for a polynomial of degree k. Let k = 100, and the size of a
secret key be 64 bits and the size of a node id be 16-bits (assuming there are no
more than 65, 536 sensor nodes in a network). The cost of computing a pairwise
key has been shown [Liu et al. 2005] to be of the same order as that of generating
a MAC based on RC5 [Rivest 1994], which is generally believed to be efficient for
sensor networks. Moreover, in our scheme normally a cluster node computes one
pairwise key and an en-route node computes two. In the case of a node failure or

ACM Journal Name, Vol. V, No. N, Month 20YY.

20 · Sencun Zhu et al.

a path change, a node computes a pairwise key shared with a new node; however,
this situation does not happen very frequently.

3.7.1.2 Report Authentication. In the basic scheme, a cluster node computes
three MACs for one report. One uses its individual key as the MAC key, the
second uses a pairwise key shared with its association node as the MAC key, and
the third uses the pairwise key shared with its cluster head as the MAC key. An
en-route node normally computes four MACs — it verifies one PMAC from its LA
node and generates one PMAC for its UA node if it is more than t hops away
from BS; it verifies one MAC from its downstream neighbor and generates one
MAC for its upstream neighbor. All these PMACs are computed over an event
E, not the entire report R. Therefore, if we use 4 bytes for an event and the
report R is 24 bytes, the computational overhead of computing a PMAC is multiple
times smaller than the overhead of computing an IMAC. Note that in our scheme
although a forwarding node computes two more MACs than that in a hop-by-hop
authentication scheme [Zhu et al. 2003], the security it achieves is much stronger.
Since the energy for computing a MAC is about the same as that for transmitting
one byte [Ye et al. 2004], by filtering false data as early as possible, our scheme
reduces the overall energy expenditure of a node even though it entails additional
computational costs. Also note that the energy for computing two MACs using the
same key is usually much smaller than twice of that for computing one MAC. For
example, when computing a MAC based on RC5 [Rivest 1994], the most expensive
operation is the initial key setup that outputs a cipher context, which only has to
be performed once for a specific key. After this operation, the future computation
for generating MACs consumes much smaller energy by reusing the same cipher
context. Therefore, as long as a node keeps the cipher context in its memory
(about 80 bytes), the computation of MACs will be very efficient.

3.7.2 Communication Cost. We consider the communication cost (overhead)
of our scheme as the additional bandwidth overhead incurred in providing data
authentication, compared to a nonsecure packet forwarding protocol which merely
delivers the event report through a path. As such, the communication overhead
of our scheme comes from the following sources. First, every authenticated report
contains one compressed MAC and t + 1 PMACs. In practice, we can choose a
larger size for an IMAC, while selecting a smaller size for a PMAC. The size of the
compressed MAC must be large enough because the authenticity of an reported
event is security critical. Since the size of a PMAC only impacts the capability of
en-route filtering, we can make it smaller as a tradeoff between performance and
security. For example, if we use totally 4 bytes for PMACs, and t = 3, the size of a
PMAC will be 1 byte. In this case, an attacker, after compromising 3 nodes, has the
probability of 1/256 to blindly forge a packet that will pass the en-route filtering
process. Second, additional bandwidth overhead is involved during association
discovery. In the BS hello process, a node adds its own id to a beaconing message,
thus the cost is at most t+1 node ids; in the CH acknowledgement process, the cost
is at most t + 2 node ids and one MAC. We note that there is also communication
cost in a local repair process when a path changes; however, this component of
the communication overhead depends on path dynamics. For a relatively static

ACM Journal Name, Vol. V, No. N, Month 20YY.

Interleaved Hop-by-hop Authentication Against False Data Injection Attacks in Sensor Networks · 21

network, this cost could be very small when amortized to all the nodes on a path.

4. SCHEME II: TRADING COMPUTATIONAL OVERHEAD FOR IMMEDIATE DE-

TECTION

In scheme I, the base station can detect an injected false data by t compromised
nodes immediately whereas an en-route node can be easily deceived by colluding
nodes. Their capability in filtering false data is determined by the number of MACs
they verify. This observation motivates the design of Scheme II.

The basic idea underlying this scheme is that every node en-route to the base
station accepts a report received from a downstream node only if it has been verifi-
ably endorsed by at least t + 1 nodes, just as the base station does. To realize this
idea, however, we cannot assume that each node en-route to the base station shares
an exclusive key with the t + 1 cluster nodes that originate data reports. Instead,
this scheme requires every en-route node to have established pairwise shared keys
with t + 1 nodes that are immediately downstream from it. A report is accepted
by the node if it has been endorsed by these associated nodes. As in Scheme I, we
first define the node association relationship more formally.

Definition 2. For two nodes ui and uj on the path from CH to BS, if |i−j| ≤
t + 1, we say ui and uj are range associated, and ui is a range association node of
uj. More specifically, if 0 < i− j ≤ t + 1, ui is the upper range association (URA)
nodeof node uj, and uj is the lower range association (LRA) node of node ui.

From this definition, we know that a node ui has t+1 URA nodes if it is at least
t + 1 hops away from BS, and it has n − i URA nodes otherwise. A node ui has
t + 1 LRA nodes if it is at least t + 1 hops away from CH. We further extend this
definition by including the following two special cases.

—A node ui (1 ≤ i ≤ t) that is less than t + 1 hops away from CH is also lower
range associated with CH and t + 1 − i cluster nodes vj (1 ≤ j ≤ t + 1 − i).

—The cluster head and its cluster nodes do not have LRA nodes.

Definition 3. We call the set composed of all the URA nodes of node u the
URA set of node u, denoted as U(u), and the set composed of all the LRA nodes
of node u the LRA set of node u, denoted as L(u).

Fig. 7 shows a node cluster and a path from the cluster head to the base station,
where t = 3. The LRA set L(u4) for node u4 is {u3, u2, u1, CH} and its URA set
U(u4) is {u5, u6, u7, BS}. The URA set of node u6 (not shown in the figure) is
U(u6) = {u7, BS}. Note that an intermediate node may have multiple LRA sets if
any of its t downstream nodes has multiple child nodes leading to multiple clusters.

Scheme II also has four phases, as in Scheme I. Below we introduce the scheme
in more detail, focusing on its differences from Scheme I.

4.1 Association Discovery

A node can discover its URA and LRA sets through a process similar to the asso-
ciation discovery process in Scheme I. The differences are listed below:

—In the BS Hello process, an en-route node records all the ids in the id list as its
URA nodes. Upon receiving the HELLO message, the cluster head CH assigns

ACM Journal Name, Vol. V, No. N, Month 20YY.

22 · Sencun Zhu et al.

BS

v3

v1

CH
u1u2u3u4u5u6u7

v2

L(u1) = {v1, v2, v3, CH} U(u1) = {u2, u3, u4, u5}
L(u2) = {u1, v1, v2, CH} U(u2) = {u3, u4, u5, u6}

L(u4) = {u3, u2, u1, CH} U(u4) = {u5, u6, u7, BS}

L(u3) = {u2, u1, v1, CH} U(u3) = {u4, u5, u6, u7}

(t=3)

Fig. 7. A logical view of a sensor network in which nodes v1, v2, v3 and CH have
been deployed in a cluster to monitor an area of interest. The upper and lower
range association sets of nodes u1, u2, u3, and u4 are shown for t = 3, where t is the
number of compromised nodes that can be tolerated.

different numbers of ids in the HELLO message to its cluster nodes (including
itself). For example, referring to Figure 3, in Scheme I when CH receives M , it
assigns one id to each cluster node. In scheme II, CH assigns {u1} to v3, {u1, u2}
to v2 and {u1, u2, u3} to v1, respectively.

—In the CH acknowledgement process, an en-route node records all the ids in
the id list as its LRA nodes. For example, the CH acknowledgement message
CH sends to u1 includes the id list {CH, v1, v2, v3}. u1 knows its LRA set is
{CH, v1, v2, v3}. It then removes v3 from the list and inserts its own id at the
beginning of the list. The id list it sends to u2 is then {u1, CH, v1, v2}.

4.2 Report Endorsement

When a node v agrees on an event E, it computes an IMAC for E, using its au-
thentication key Ka

v as the MAC key. Suppose node v has s URA nodes, discovered
through the BS hello process. Node v computes s PMACs over E, each of which
is based on the pairwise key shared with each of its s URA nodes. Node v then
sends an endorsement message to the cluster head, which includes its IMAC and s
PMACs. As in Scheme I, the cluster head collects endorsements from t + 1 cluster
nodes (including itself), and then compresses the t + 1 IMACs by XORing them to
reduce the size of a report. Unlike in Scheme I, the PMACs for every URA node
are also compressed based on the XOR operation. These two types of compressed
MACs are referred to as XIMAC and XPMAC, respectively. The cluster head fi-
nally generates a report, which contains the event E, a list of ids of the endorsing
nodes, the XIMAC and t + 1 XPMACs.

Consider the cluster node v2 in Fig. 7. v2 computes three MACs over the event E,
one IMAC and two PMACs for its URA nodes u1 and u2, respectively. v2 sends its
endorsement that contains these MACs to CH. The endorsement is authenticated
with the pairwise key shared between v2 and CH.

CH collects endorsements from the other two nodes v1 and v3 as well. It then
verifies the authenticity of each endorsement based on its pairwise key shared with
the corresponding cluster node. If all the endorsements are authenticated, CH
computes a XIMAC over E, denoted as XIMAC(E).

XIMAC(E) = MAC(Ka
v1

, E) ⊕ MAC(Ka
v2

, E) ⊕ MAC(Ka
v3

, E) ⊕ MAC(Ka
CH , E).

ACM Journal Name, Vol. V, No. N, Month 20YY.

Interleaved Hop-by-hop Authentication Against False Data Injection Attacks in Sensor Networks · 23

CH further composes four compressed XPMACs based on the PMACs contributed
by the cluster nodes (including itself).

XPMACu4
(CH) = MAC(Ku4CH , E)

XPMACu3
(CH, v1) = MAC(Ku3CH , E) ⊕ MAC(Ku3v1

, E)

XPMACu2
(CH, v1, v2) = MAC(Ku2CH , E) ⊕ MAC(Ku2v1

, E) ⊕ MAC(Ku2v2
, E)

XPMACu1
(CH, v1, v2, v3) = MAC(Ku1CH , E) ⊕ MAC(Ku1v1

, E)

⊕ MAC(Ku1v2
, E) ⊕ MAC(Ku1v3

, E)

The report R that CH finally generates and forwards towards BS is:

R : E, {v1, v2, v3, CH},XIMAC(E),XPMACu4
(CH),

XPMACu3
(CH, v1),XPMACu2

(CH, v1, v2),XPMACu1
(CH, v1, v2, v3).

The order of the XPMACs in R is such that the next receiving node can verify the
last XPMAC.

4.2.1 En-route Filtering. An en-route node receiving a report verifies the last
XPMAC in the XPMAC list, based on its pairwise keys shared with its LRA nodes.
If the verification succeeds, the node u proceeds to compute s2 PMACs over event
E using the pairwise keys shared with its own URA nodes, where s2 is the number
of its URA nodes. It then removes the last XPMAC from the XPMAC list and
updates the XPMAC list with these s2 PMACs. Finally it forwards the report to
its upstream node.

Consider node u1 in Fig. 7. When node u1 receives the report R from node CH, it
checks if there are four XPMACs. It then computes four PMACs over E based on its
pairwise keys shared with nodes CH, v1, v2, v3, and derives a XPMAC by XORing
these PMACs. Now it can verify the last XPMAC in R, PMACu1

(CH, v1, v2, v3).
If the verification succeeds, node u1 computes four new PMACs over E, using its
pairwise keys shared with its URA nodes u2, u3, u4, u5. It then removes the last
XPMAC in the list. The XPMAC list is updated as follows:

XPMACu5
(u1) = MAC(Ku5u1

, E)

XPMACu4
(u1, CH) = XPMACu4

(CH) ⊕ MAC(Ku4u1
, E)

XPMACu3
(u1, CH, v1) = XPMACu3

(u1, CH, v1) ⊕ MAC(Ku3u1
, E)

XPMACu2
(u1, CH, v1, v2) = XPMACu2

(CH, v1, v2) ⊕ MAC(Ku2u1
, E)

Finally, the report R that node u1 forwards to node u2 is as follows.

R : E, {v1, v2, v3, CH},XIMAC(E),XPMACu5
(u1),

XPMACu4
(u1, CH),XPMACu3

(u1, CH, v1),XPMACu2
(u1, CH, v1, v2).

All the other forwarding nodes carry out the same process. However, the nodes
within t + 1 hops of BS do not insert a new XPMAC. It is very easy to see that
every node on the path from the cluster head to the base station can verify one
XPMAC in the report independently.

4.2.2 Base Station Verification. The base station BS only needs to verify the
XIMAC, as in Scheme I. If the report is authenticated, BS then react to the event;
otherwise, BS will discard the report.

ACM Journal Name, Vol. V, No. N, Month 20YY.

24 · Sencun Zhu et al.

4.3 Security Analysis

Like in Scheme I, since the base station verifies t + 1 MACs, it can detect injected
false data packets by up to t colluding nodes. Unlike in Scheme I, this scheme
enables an en-route node to filter false data injected by t nodes as well because
it verifies t + 1 MACs. No matter how an attacker manipulates the ids in a CH
acknowledgement message, as long as an en-route node verifies t + 1 PMACs by
t + 1 distinct nodes, the attacker cannot forge a valid XPMAC. Therefore, we have
the following lemma.

Lemma 4. In Scheme II, if an en-route node verifies t + 1 PMACs provided
by t + 1 distinct nodes, it will immediately detect false data packets injected by t
colluding compromised nodes, i.e., Bmax = 0.

We note that the above claim holds when the size of a PMAC is large enough.
In practice, if we use a smaller PMAC (of one byte, for example) an attacker will
have a non-negligible success probability in blindly forging data report. This is a
tradeoff between security and performance.

4.4 Performance Evaluation

4.4.1 Computational Cost. Each node establishes a pairwise key with each of its
URA and LRA nodes, if any. Thus, the number of pairwise key establishments is
up to 2(t+1). Section 3.7.1 showed that the computational overhead of establishing
a pairwise key based on Blundo scheme is in the same order of magnitude as that
of an AES encryption; therefore, the involved computational cost for computing
2(t + 1) pairwise keys is affordable. For a sensor network, the value of t is usually
not large because of the default small packet size. For example, as we will show
in Section 7, the default data payload size is 29 bytes in TinyOS, which limits the
value of t to 4.

For every data report, an en-route node computes t+1 MACs to verify a XPMAC,
and then computes another t + 1 MACs for its URA nodes if the report is valid.
Hence, totally 2(t+1) MACs are needed when a node forwards a data report. Given
that the energy consumed in computing a MAC is roughly equivalent to that used
in transmitting one byte, this is a beneficial trade-off when t is not large.

4.4.2 Communication Cost. In Scheme II, both a BS hello message and a CH
acknowledgement message contain up to t + 1 node ids, which are the same as in
Scheme I. A report contains one IMAC and t + 1 XPMACs. Since the size of a
XPMAC is the same as that of a PMAC, the per report bandwidth overhead in
Scheme II is also the same as in Scheme I.

Scheme I and Scheme II can be thought of as two extremes in a family of protocols
based on interleaved hop-by-hop authentication. In both these schemes, an en-route
node verifies a MAC from its immediate downstream node with the goal of localizing
the impact of a node compromise. In Scheme II, an en-route node also verifies t
additional MACs by the other t nodes in its LRA set, whereas in Scheme I an
en-route node only verifies one additional MAC by the node that is the farthest to
it in its LRA set. This indicates that we can explore the design of schemes whose
performance and security properties lie in between those of the two extremes by
making a tradeoff between computation and security. A more interesting question

ACM Journal Name, Vol. V, No. N, Month 20YY.

Interleaved Hop-by-hop Authentication Against False Data Injection Attacks in Sensor Networks · 25

u
i-2
 u
i-1

u
i
 u
i+1

u
i+2

R
0

R
1

R
2

Fig. 8. An example of the hybrid scheme where t = 3. Here Rj (0 ≤ j ≤ 2) is a
report whose sequence number equals j (mod 3). The lower association set of node
ui+2 contains ui−2, ui−1, ui, ui+1. In addition to always verifying a MAC from its
immediate downstream node ui+1, for every report, node ui+2 also verifies a MAC
provided by one of the other three nodes selected in a round robin fashion.

is: can we achieve the best sides of these two schemes? That is, is there a scheme
that only requires an en-route node to verify two MACs but provides immediate
filtering capability? We introduce such a scheme in the next section.

5. SCHEME III: A HYBRID SCHEME

In Scheme I, for every data report an en-route node only verifies two MACs provided
by two predetermined nodes. Thus, an attacker only has to compromise these two
fixed nodes to deceive this en-route node. The strategy of Scheme III is to enable a
node to verify MACs provided by nodes other than two fixed nodes. Specifically, to
localize the impact of a node compromise, for every report a node will always verify
a MAC provided by its immediate downstream node in its LRA set. The second
MAC of a report could be provided one of the other nodes in its LRA set. To
entail the maximum number of distinct nodes in providing MACs, these nodes are
required to take turn in providing the second MAC over multiple reports. As such,
a node only has to verify two MACs for each report and verifies 2t MACs using
t+1 different pairwise keys shared with its LRA set for every block of t consecutive
reports. If an attacker has compromised t en-route nodes, it can generate t valid
MACs that may be filled in t−1 false reports. Therefore, by letting a node discard
the subsequent packets when it fails to receive valid MACs from t + 1 LRA nodes
in t consecutive reports, our scheme guarantees that the number of false reports an
attacker can inject in a row is at most t− 1. Below we describe Scheme III in more
detail.

5.1 Description of The Scheme

We first describe the scheme through an example. Figure 8 depicts the node asso-
ciation relationship when t = 3. The lower association set of node ui+2 contains
ui−2, ui−1, ui, ui+1. According to Scheme I, for every report ui+2 only verifies two
MACs, one from ui−2 and the other from ui+1. In Scheme III, however, if the se-
quence number s of a report satisfies s ≡ 0 (mod t), ui+2 will verify one MAC from
ui−2 and the other one from ui+1; if s ≡ 1 (mod t), ui+2 verifies one MAC from
ui−1 and the other one from ui+1. More generally, if s ≡ j (mod t), 0 ≤ j ≤ t − 1,

ACM Journal Name, Vol. V, No. N, Month 20YY.

26 · Sencun Zhu et al.

ui+2 will verify one MAC from ui+j−2 and the other one from ui+1. Moreover, the
sequence numbers of the received reports, when modulo t, must be strictly cyclic
between 0 and t−1 without any skip. Node ui+2 drops any reports whose sequence
numbers do not follow the rule. As such, an attacker may inject t − 1 = 2 data
reports after it has compromised ui−2, ui−1, ui+1 in the figure. Node ui+2 will drop
the following fake reports from the attacker because none of them will include a
valid MAC from node ui. More generally, the number of injected false data packets
is bounded by t − 1 in the case of t compromised nodes.

The enforcement of the above cyclic verification rule poses a strict requirement
that data reports must be forwarded reliably in each hop. If a node drops a new
report immediately because of the loss of the previous report, in the worst case a
node may drop t−1 authentic reports even without being attacked. The techniques
of hop-by-hop acknowledgement and retransmission could be employed to address
the problem, but they do not provide guarantee because in practice the number of
retransmissions for a packet is usually limited.

Our solution to avoid new reports being dropped due to packet loss is to let
every en-route node maintain a queue of t spaces for accommodating t reports.
These t spaces are not necessarily for buffering the most recent t reports a node has
received. Instead, a node reserves one space for each of the nodes in its LRA set
except the immediate downstream one. For example, in Figure 8, node ui+2 has
a space for each of ui−2, ui−1 and ui, and each space is used to temporarily buffer
the most recent report which could not be forwarded (an older report) or has not
been forwarded yet (a new report waiting for its turn to be delivered). If multiple
reports authenticated by the same node could not be delivered, the most recent
one overwrites the previous ones. More specifically, let i be the sequence number of
the last report that was forwarded successfully (e.g., acknowledged) by a node, the
next report to be delivered is always the one with the sequence number l such that
(l− i) ≡ 1 (mod t), irrespective of the arrival times of the reports. If the report l is
forwarded successfully, it is removed from the queue. The node then sets i = l and
continues the process until no reports are left in the queue. In this way, when a
report is lost, the next t−1 reports may still be delivered, though with some delay.

5.2 Performance and Security Analysis

The computational overhead of Scheme III is the same as in Scheme I. The security
of this scheme however is much stronger than that provided by Scheme I under the
same attack because a noncompromised node only forwards up to t−1 false reports
even when t of its LRA nodes are compromised.

We notice a special packet substitution attack may work against Scheme III. To
inject false data packets without being detected by an en-route node, an attacker
may selectively substitute authenticated packets with false ones. Take the scenario
in Figure 8 as an example. Assume that all the LRA nodes of ui+2 except ui have
been compromised. An attacker may command a compromised node, e.g., ui−2 or
ui−1, to substitute two authentic reports that do not require ui’s MAC with two
forged data packets, while the authentic packets with ui’s MAC will be forwarded
to ui+2 without any malicious change. In this way, according to the rule of Scheme
III, ui+2 will not block the forwarding of the following packets because it can always
verify two correct MACs for each packet. Hence, after the third authentic report

ACM Journal Name, Vol. V, No. N, Month 20YY.

Interleaved Hop-by-hop Authentication Against False Data Injection Attacks in Sensor Networks · 27

Table I. Comparison of Four Schemes (t > 1 compromised nodes)

Security Performance(#MACs))

Scheme BS Detection En-route Filtering(worst) Comp. Comm.

Scheme I Yes O(t3) 4 t + 1

Scheme II Yes 1 2(t + 1) t + 1

Scheme III Yes 1 4 t + 1

passes by node ui+2, the attacker can inject two more false reports. More generally,
an attacker controlling t compromised nodes can inject (or substitute, to be more
precise) t − 1 false data packets for every block of t authenticated reports.

The false data injection rate, however, is limited to the real event generation
rate of the application. Moreover, this attack does not really defeat our design
goal because it does not increase the traffic in the network. Although some false
data packets are not filtered out on their way to the BS, the BS will detect them
anyway. The energy expenditure of en-route nodes does not increase either because
the number of reports, false or authentic, does not increase. Because of these
reasons, we say this scheme provides a certain degree of immediate en-route filtering
capability as in Scheme II.

6. FURTHER DISCUSSIONS

Table I compares both the security and the performance of the three schemes we
presented above. We can observe that all these schemes have the same communi-
cation overhead. In practice, Scheme II or Scheme III should be selected because
of their strong filtering capability. Compared to Scheme II, Scheme III is preferred
because of its smaller computational overhead, although it requires additional mem-
ory space for buffering t reports. The additional memory space is usually not a big
concern for a reasonable t. For example, if t = 6 and the size of a report is 29 bytes
(as in TinyOS [Hill et al. 2000]), only 174 bytes are additionally needed.

Note that the choice of t should be based on both security and network node
density. A large t makes it more difficult for an adversary to launch a false data
injection attack, but it also results in more nodes being required to form a cluster.
Moreover, we can separate the base station verification capability from the en-
route filtering capability by using different values of the threshold t for them. For
example, we can require a larger number of cluster nodes to endorse a report in
order to provide stronger source authentication if the size of a cluster is large.
Similarly, we may associate only a fraction of the cluster nodes with en-route nodes
so that the overhead of en-route hop-by-hop authentication remains small. Finally,
in practice, the en-route filtering functionality can be turned on or off as desired.
For example, when no false data injection attack is detected, the base station can
broadcast a command to turn off the en-route filtering, which will reduce both the
computational and communication costs. When the base station receives false data
reports, it can broadcast a command to turn on the en-route filtering.

7. PROTOTYPE IMPLEMENTATION

To study the practicality of our schemes for the current generation of sensors, we
have implemented a prototype of one of our schemes on Berkeley Mica2 motes on

ACM Journal Name, Vol. V, No. N, Month 20YY.

28 · Sencun Zhu et al.

Table II. The required RAM space as a function of the system parameter t

t 1 2 3 4 5 6

RAM (bytes) 898 935 974 1015 1058 1103

top of the TinyOS platform [Hill et al. 2000]. Since all the three schemes involve
three phases: association establishment, report endorsement, en-route filtering, and
base station verification, we selected one of them, Scheme II, for implementation.
The code for the scheme was written in nesC, a C-like language for developing
applications on top of TinyOS.

We first derive an upper bound of t for the TinyOS platform with the default
packet payload size of 29 bytes. Let the size of an IMAC and a PMAC be 8 bytes
and 1 byte respectively, the size of an event 4 bytes, the size of an id 2 bytes, and
the size of a cluster id 1 byte. Since the packet size of each one of the BS hello,
CH acknowledgement, and data report messages is a linear function of t, we can
easily calculate the largest t given the packet payload size. A CH acknowledgement
message (similar to a BS hello message) contains a cluster head id, a cluster id, a
MAC, and t + 1 node ids. Therefore, for the message to fit into a single packet of
29 bytes, the maximum value of t is 8. On the other hand, a data report normally
contains an event, an IMAC, t + 1 PMACs, a cluster id, t + 1 ids if the endorsing
node set in the report is different with the previous one. In this case, the largest
t is 4, which corresponds to a 28 byte payload. Therefore, the upper bound of t
for TinyOS with 29-byte packets is min(8, 4) = 4. We note that for TinyOS the
packet size may be increased, for example, from 29 bytes to 128 bytes. In the case
of 128-byte packets, the upper bound of t is 38.

Our implementation includes code for all the four phases of our protocols as well
as reliability mechanisms for endorsement messages. It also includes the Blundo
scheme for pairwise key establishment1. On Mica2 motes [xbo 2005], the ROM
needed for our code is 18.7 KB (out of the available 128 KB). The data memory
used varies with the system parameter t. Clearly, if t is larger, a node has more
association nodes, it has to store more pairwise keys, and more memory is needed.
Table II shows the RAM used for data by our scheme as a function of t. Here the
size of a key is 8 bytes and the sizes of an IMAC and a PMAC are 8 bytes and 1
byte respectively. We can see that data storage requirements of our scheme do not
exceed the available RAM (4 KB) on Mica2 motes.

8. RELATED WORK

Przydatek, Song, and Perrig proposed SIA [Przydatek et al. 2003], a secure infor-
mation aggregation scheme for sensor networks. SIA addresses the issue of false
data injection using statistical techniques and interactive proofs, ensuring that the
aggregated result reported by the aggregation node (the base station) is a good
approximation to the true value, even if a small number of sensor nodes and the
aggregation node may have been compromised. In contrast, the focus of our work
is on detecting and filtering out false data packets, either at or en-route to the base
station. Our scheme is particularly useful for large-scale sensor networks where a

1The code is available at http://www.cse.psu.edu/∼szhu/research/tinymesh.zip

ACM Journal Name, Vol. V, No. N, Month 20YY.

Interleaved Hop-by-hop Authentication Against False Data Injection Attacks in Sensor Networks · 29

sensor report needs to be relayed over several hops before it reaches the base sta-
tion, and for applications where the information contained in the sensor reports is
not amenable to the statistical techniques used by SIA (e.g., non-numeric data).
We note that our scheme and SIA address complementary problems, and the tech-
niques of both schemes can be combined to make the network more robust to false
data injection attacks.

Hu and Evans [Hu and Evans 2003] propose a secure hop-by-hop data aggregation
scheme that works if one node is compromised (i.e., t = 1). Ye et al [Ye et al. 2004]
propose a statistical en-route detection scheme called SEF, which allows both the
base station and en-route nodes to detect false data with a certain probability. With
an overhead of 14 bytes per report, SEF is able to drop 80 − 90% of the injected
false reports by a compromised node (i.e., t = 1) within 10 forwarding hops. In our
schemes, when t = 1, a false data packet will be dropped immediately. Moreover,
the packet overhead of our scheme is also smaller.

Perrig et al [Perrig et al. 2001] presented µTESLA for base station broadcast
authentication, based on one-way key chains [Lamport 1981] and delayed key dis-
closure. Zhu et al [Zhu et al. 2003] presented a scheme that is also based on one-way
key chains for local (one-hop) broadcast authentication with the goal of enabling
authenticated passive participation in sensor networks. Although this scheme is
robust against outsider attacks, it is vulnerable to insider attacks in which an ad-
versary only needs to compromise a single node to inject false data. In contrast, our
interleaved hop-by-hop authentication scheme is robust to insider attacks involving
a certain number of compromised nodes. Indeed, the scheme in [Zhu et al. 2003]
can be considered as a special case of our scheme where t = 0.

Recently, many key management schemes [Anderson et al. 2004; Chan et al.
2003; Chan and Perrig 2005; Du et al. 2003; Eschenauer and Gligor 2002; Liu and
Ning 2003b; Zhu et al. 2003; Zhu et al. 2003] for sensor network security have
been proposed . The polynomial-based pairwise key establishment scheme [Blundo
et al. 1993] has been recently extended [Liu and Ning 2003b] to enable a sensor
network to sustain more node compromises under the same memory constraints.
Our schemes can also use other schemes if necessary although we demonstrated our
scheme using the Blundo scheme.

Deng et al [Deng et al. 2003] discuss several security mechanisms for supporting
in-network processing in hierarchical sensor networks. They also propose a multiple-
base station and multiple-path strategy to increase intrusion tolerance, and an anti-
traffic analysis strategy to disguise the location of a base station [Deng et al. 2004].
Karlof and Wagner [Karlof and Wagner 2003] describe several security attacks on
routing protocols for sensor networks. Wood and Stankovic [Wood and Stankovic
2002] identify a number of DOS attacks in sensor networks. Different with most of
these work, this work focuses on addressing a specific attack, the false data injection
attack.

9. CONCLUSION AND FUTURE WORK

We presented several simple but effective authentication schemes to prevent false
data injection attacks in sensor networks. The schemes guarantee that the base
station can detect a false report when no more than t nodes are compromised, where

ACM Journal Name, Vol. V, No. N, Month 20YY.

30 · Sencun Zhu et al.

t is a security threshold. In addition, our schemes enable an en-route node to detect
and drop injected false data reports as early as possible, thus saving its energy that
will otherwise be wasted for forwarding these false data reports. Our performance
analysis shows the schemes are efficient with respect to the security it provides and
allows a tradeoff between security and performance. Finally, we have demonstrated
the feasibility of employing our schemes on resource-constrained sensor nodes by
implementing one of the schemes on the TinyOS-based Mica2 motes.

As future work, several directions are worth investigating. In particular, we
plan to study the use of interleaved hop-by-hop authentication for preventing or
mitigating attacks against sensor network routing and data collection protocols,
such as those pointed out in [Karlof and Wagner 2003]. Another topic that we
plan to address is how our scheme can be adapted for handling more complex data
reports. In the presented schemes, t+1 nodes have to agree on an event to generate
a report. In practice, a node’s decision on an event may not be a boolean value
because of the limitation of its detection ability. A node may agree on an event
with certain level of confidence, i.e., with some probability. In this case, both the
report endorsement phase and the en-route filtering phase will need to be modified.
Also, our schemes do not work for hop-by-hop data aggregation applications. To
address this problem, we will leverage our knowledge in designing SDAP, a secure
hop-by-hop data aggregation protocol [Yi et al. 2006].

REFERENCES

2005. Crossbow technology inc.

Anderson, R., Chan, H., and Perrig, A. 2004. Key infection: Smart trust for smart dust. In
Proceedings of IEEE International Conference on Network Protocols (ICNP’04).

Bellare, M., Guerin, R., and Rogaway, P. 1995. Xor macs: New methods for message authen-
tication using finite pseudorandom functions. In Proceedings of CRYPTo’95.

Blom, R. 1985. An optimal class of symmetric key generation systems. In Advances in Cryptology,
Proceedings of EUROCRYPT’84. LNCS 209. 335–338.

Blundo, C., Santis, A. D., Herzberg, A., Kutten, S., Vaccaro, U., and Yung, M. 1993.

Perfectly-secure key distribution for dynamic conferences. In Advances in Cryptology, Proceed-
ings of CRYPTO’92. LNCS 740. 471–486.

Chan, H. and Perrig, A. 2005. Pike: Peer intermediaries for key establishment in sensor net-
works. In Proceedings of Infocom’05.

Chan, H., Perrig, A., and Song, D. 2003. Random key predistribution schemes for sensor

networks. In Proceedings of IEEE Security and Privacy Symposim’03.

Deng, J., Han, R., and Mishra, S. 2003. Security support for in-network processing in wireless

sensor networks. In Proceedings of First ACM Workshop on the Security of Ad Hoc and Sensor
Networks (SASN’03).

Deng, J., Han, R., and Mishra, S. 2004. Intrusion tolerance strategies in wireless sensor net-
works. In Proceedings of IEEE 2004 International Conference on Dependable Systems and

Networks (DSN’04).

Du, W., Deng, J., Han, Y., and Varshney, P. 2003. A pairwise key pre-distribution scheme
for wireless sensor networks. In Proceedings of the 10th ACM Conference on Computer and
Communications Security (CCS’03). 42–51.

Eschenauer, L. and Gligor, V. 2002. A key-management scheme for distributed sensor net-

works. In Proceedings of ACM CCS’02.

Goldreich, O., Goldwasser, S., and Micali, S. 1986. How to construct random functions.

Journal of the ACM 33(4), 210–217.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Interleaved Hop-by-hop Authentication Against False Data Injection Attacks in Sensor Networks · 31

Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D. E., and Pister, K. S. J. 2000.

System architecture directions for networked sensors. In Architectural Support for Programming
Languages and Operating Systems. 93–104.

Hu, L. and Evans, D. 2003. Secure aggregation for wireless networks. In Proceedings of Workshop
on Security and Assurance in Ad hoc Networks.

Karlof, C. and Wagner, D. 2003. Secure routing in sensor networks: Attacks and countermea-
sures. In Proceedings of First IEEE Workshop on Sensor Network Protocols and Applications.

Karp, B. and Kung, H. 2000. Gpsr: A geographic hash table for data-centric storage. In

Proceedings of ACM International Workshop on Wireless Sensor Networks and Applications.

Lamport, L. 1981. Password authentication with insecure communication communication. Com-

munications of the ACM 24(11), 770–772.

Liu, D. and Ning, P. 2003a. Efficient distribution of key chain commitments for broadcast

authentication in distributed sensor networks. In Proceedings of the 10th Annual Network and
Distributed System Security Symposium (NDSS’03). 263–276.

Liu, D. and Ning, P. 2003b. Establishing pairwise keys in distributed sensor networks. In
Proceedings of the 10th ACM Conference on Computer and Communications Security (CCS
’03). 52–61.

Liu, D., Ning, P., and Li, R. 2005. Establishing pairwise keys in distributed sensor networks.
ACM Transactions on Information and System Security.

Perrig, A., Szewczyk, R., Wen, V., Culler, D. E., and Tygar, J. D. 2001. Spins: security
protocols for sensor netowrks. In Proceedings of ACM Mobile Computing and Networking

(Mobicom’01). 189–199.

Przydatek, B., Song, D., and Perrig, A. 2003. SIA: Secure information aggregation in sensor

networks. In Proceedings of ACM SenSys 2003.

Rivest, R. 1994. The rc5 encryption algorithm. In Proceedings of the 1st International Workshop
on Fast Software Encryption. 86–96.

Wood, A. and Stankovic, J. 2002. Denial of service in sensor networks. IEEE Computer , 54–62.

Ye, F., Luo, H., Lu, S., and Zhang, L. 2004. Statistical en-route detection and filtering of

injected false data in sensor networks. In Proceedings of IEEE Infocom’04.

Yi, Y., Wang, X., Zhu, S., and Cao, G. 2006. Sdap: A secure hop-by-hop data aggregation

protocol for sensor networks. In Proceedings of the ACM Mobihoc.

Zhu, S., Setia, S., and Jajodia, S. 2003. Leap: Efficient security mechanisms for large-scale

distributed sensor networks. In Proceedings of the 10th ACM Conference on Computer and
Communications Security (CCS ’03). 62–72.

Zhu, S., Xu, S., Setia, S., and Jajodia, S. 2003. Establishing pair-wise keys for secure communi-
cation in ad hoc networks: A probabilistic approach. In Proceedings of 11th IEEE International
Conference on Network Protocols (ICNP’03).

Appendix A: The Blundo Scheme

The Blundo scheme was originally proposed by Blundo et al. [Blundo et al. 1993]
to allow any group of m parties to compute a common key while being secure
against collusion between some of them. Here we use a special case of this scheme
for establishing pairwise keys between two sensor nodes in the context of sensor
networks.

The scheme works as follows. The key server first randomly generates a sym-
metric bivariate k-degree polynomial f(x, y) =

∑k

i,j=0 aijx
iyj over a finite field Fq,

where q is a prime number that is large enough to accommodate a cryptographic
key. A polynomial f(x, y) is said to be symmetric if f(x, y) = f(y, x). The key
server computes f(i, y) for node i, and then loads node i with all the k + 1 coeffi-
cients (as a function of y). When two nodes i and j want to establish a pairwise

ACM Journal Name, Vol. V, No. N, Month 20YY.

32 · Sencun Zhu et al.

key, they compute f(i, j) (or f(j, i), which is the same) by evaluating f(i, y) at
point j and f(j, y) at point i, respectively. f(i, j) serves as their pairwise key.

The above scheme has been proved to be unconditionally secure and k-collusion
resistant [Blundo et al. 1993]; that is, an adversary knows nothing about the pair-
wise key between any two non-compromised nodes if the number of sensor nodes it
has compromised is no more than k. However, if the adversary compromises more
than k nodes, it will know all the pairwise keys in the network. Therefore, it is
important to choose a large enough degree k for the polynomial for the application
under consideration. For the current generation sensor nodes, k can be around 200.

ACM Journal Name, Vol. V, No. N, Month 20YY.

