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Abstract

Historically, figure-ground segmentation has been seen as an important

and even necessary precursor for object recognition. In that context, seg-

mentation is mostly defined as a data driven, that is bottom-up, process. As

for humans object recognition and segmentation are heavily intertwined pro-

cesses, it has been argued that top-down knowledge from object recognition

can and should be used for guiding the segmentation process. In this paper,

we present a method for the categorization of unfamiliar objects in difficult

real-world scenes. The method generates object hypotheses without prior

segmentation that can be used to obtain a category-specific figure-ground

segmentation. In particular, the proposed approach uses a probabilistic for-

mulation to incorporate knowledge about the recognized category as well as

the supporting information in the image to segment the object from the back-

ground. This segmentation can then be used for hypothesis verification, to

further improve recognition performance. Experimental results show the ca-

pacity of the approach to categorize and segment object categories as diverse

as cars and cows.

1 Introduction

The traditional view of object recognition has been that prior to the recognition process, an

earlier stage of perceptual organization occurs to determine which features, locations, or

surfaces most likely belong together [11]. As a result, the segregation of the image into a

figure and a ground part has often been seen as a prerequisite for recognition. In that con-

text, segmentation is mostly defined as a bottom-up process, employing no higher-level

knowledge. State-of-the-art segmentation methods combine grouping of similar image

regions with splitting processes concerned with finding most likely borders [15, 14, 10].

However, grouping is mostly done based on low-level image features, like color or texture

statistics, which require no prior knowledge. While that makes them universally applica-

ble, it often leads to poor segmentations of objects of interest, splitting them into multiple

regions or merging them with parts of the background [3].

Results from human vision indicate, however, that object recognition processes can

operate before or intertwined with figure-ground organization and can in fact be used to

drive the process [13, 16, 12]. This motivates us to explore how high-level knowledge

can be used for grouping image regions belonging to the same object. The task we want

to solve is object categorization, that is to recognize a-priori unknown objects of a given

category in real-world scenes. Figure-ground segmentation in such settings is difficult
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because of clutter and large within-category variability of object colors, textures, and

shapes.

In this paper, we present a local approach that generates object hypotheses without

prior segmentation. The hypotheses are then used to obtain a category-specific figure-

ground segmentation. We derive a probabilistic formulation of the problem that allows

us to incorporate knowledge about the recognized category as well as the supporting in-

formation in the image. As a result, we obtain a segmentation mask of the object to-

gether with a per-pixel confidence estimate specifying how much this segmentation can

be trusted. Thus, figure-ground segmentation is achieved as a result of object recognition.

The following section discusses related work. Section 3 describes the learning of a code-

book of local appearance for individual object categories, which can be used to generate

object hypotheses. Based on these hypotheses, Section 4 then derives the segmentation

algorithm. Finally, Section 5 presents experimental results.

2 Related Work

The idea to use object-specific information for driving figure-ground segmentation has

appeared in the literature before. Approaches, such as Deformable Templates [18], or

Active Appearance Models [6] are typically used when the object of interest is known to

be present in the image and an initial estimate of its size and location can be obtained.

Examples of successful applications include tracking and medical image analysis.

Most directly related to our approach, Borenstein & Ullman represent object knowl-

edge using image fragments and their figure-ground labeling from a training set [3].

Class-specific segmentations are obtained by fitting fragments to the image and com-

bining them in jigsaw-puzzle fashion, such that their figure-ground labels form a consis-

tent mapping. While the authors present impressive results for segmenting sideviews of

horses, their approach includes no global recognition process. As only the local consis-

tency of adjacent pairs of fragments is checked, there is no guarantee that the resulting

cover really corresponds to an object and is not just caused by background clutter re-

sembling random object parts. Our approach enforces global consistency by integrating

segmentation with an object recognition process.

Yu & Shi also present a parallel segmentation and recognition system [17]. They for-

mulate the segmentation problem in a graph theoretic framework that combines patch and

pixel groupings. A set of 15 known objects is represented by local color, intensity and

orientation histograms obtained from a number of different viewpoints. During recog-

nition, these features are matched to patches extracted from the image to obtain object

part hypotheses, which are combined with pixel groupings based on orientation energy.

A final solution is found using the Normalized Cuts criterion [15]. This method achieves

good segmentation results in cluttered real-world settings. However, their system needs

to know the exact objects beforehand in order to extract their most discriminant features.

In our application, we do not require the objects to be known beforehand – only famil-

iarity with the object category is needed. That means that the system needs to have seen

some examples of e.g. cars and cows before, but those do not have to be the ones that are

to be recognized later. Obviously, this makes the task more difficult, since we cannot rely

on any object-specific feature, but have to compensate for large in-class variations. The

following section describes how our algorithm achieves this by learning a codebook of

local appearance.
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Figure 1: (a,b) Some of the training objects used for cows and cars (from the ETH-80

database [8]). From each object, 16 views were taken from different orientations. (c)

Example codebook clusters for cars with their corresponding patches.

3 A Codebook of Local Appearance for Object

Categorization

In order to generate a codebook of local appearances of a particular object category, we

use an approach inspired by the work of Agarwal and Roth [1]. From a variety of images

(in our case 160 images corresponding to 16 views around the equator of each of the 10

training objects shown in Figure 1(a,b)), image patches of size 25�25 pixels are extracted

with the Harris interest point detector [7]. Starting with each patch as a separate cluster,

agglomerative clustering is performed: the two most similar clusters C1 and C2 are merged

as long as the average similarity between their constituent patches (and thus the cluster

compactness) stays above a certain threshold t:

similarity�C1�C2� �
∑p�C1�q�C2

NGC�p�q�

�C1�� �C2�
� t� (1)

where the similarity between two patches is measured by Normalized Greyscale Correla-

tion (NGC):

NGC�p�q� �
∑i�pi� pi��qi�qi��

∑i�pi� pi�
2 ∑i�qi�qi�

2
(2)

This clustering scheme guarantees that only those patches are grouped which are visually

similar, and that the resulting clusters stay compact, a property that is essential for later

processing stages. From each resulting cluster, we compute the cluster center and store it

in the codebook.

Figure 1(c) shows some of the codebook entries, together with the patches they were

derived from. With a value of t � 0�7, the 8’269 extracted car image patches are reduced

to a codebook of size 2’519. While the resulting number of clusters is still high, the most

interesting property of the clustering scheme is that all clusters are compact and only

contain image patches that are visually similar.

Rather than to use this codebook directly to train a classifier as in [1], we propose to

use a probabilistic voting scheme which produces comparable results. For this, the ex-

tracted image patches are matched to the codebook using the NGC measure. In contrast

to [1], though, we do not activate the best-matching codebook entry only, but all entries

whose similarity is above t, the threshold already used during clustering. For every code-

book entry, we store all the positions it was activated in, relative to the object center.



Figure 2: The recognition procedure. Image patches are extracted around interest points

and compared to the codebook. Matching patches then cast probabilistic votes, which

lead to object hypotheses that can later be refined. Based on the refined hypotheses, we

compute a category-specific segmentation.

During recognition, we use this information to perform a Generalized Hough Trans-

form [2, 9]. Given a test image, we extract image patches and match them to the codebook

to activate codebook entries. Each activated entry then casts votes for possible positions

of the object center. Figure 2 illustrates this procedure. We search for hypotheses as max-

ima in the continous vote space using Mean-Shift Mode Estimation [4, 5]. For promising

hypotheses, all patches that contributed to it can be collected (Fig. 2(bottom)), therefore

visualizing what the system reacts to. Moreover, we can refine the hypothesis by sampling

all the image patches in its surroundings, not just those locations returned by the interest

point detector. As a result, we get a representation of the object including a certain border

area.

In the following, we cast this recognition procedure into a probabilistic framework.

Let e be our evidence, an extracted image patch. Each image patch may have several

valid interpretations Ii, namely the matching codebook clusters. Each interpretation is

weighted with the probability p�Ii�e�. If a codebook cluster matches, it can cast its votes

for different object positions. That is, for every I i, we can obtain votes for several object

identities on and positions x j, which we weight with p�on�x j�Ii�. Thus, any single vote

has the weight p�on�x j�Ii�p�Ii�e�, and the patch’s contribution to the hypothesis is

p�on�x j �e� �∑
i

p�on�x j�Ii�p�Ii�e�� (3)

By basing the decision on single-patch votes and assuming a uniform prior for the patches,

we obtain
p�on�x j��∑

k

p�on�x j�ek�� (4)

From this probabilistic framework, it immediately follows that the p�I i�e� and p�on�x j�Ii�
should both sum to one. In our experiments, we assume a uniform distribution for both

(meaning that we set p�Ii�e� �
1
�I� , with �I� the number of matching codebook entries), but

it would also be possible, for example, to let the p�I i�e� distribution reflect the relative

matching scores.



Figure 3: (left) Example car images and recognition results from the test set (images 1-5:

1st hypothesis; image 6: 7th hypothesis). (right) Quantitative recognition results if all

hypotheses up to a certain rank are considered.

In order to evaluate the system’s recognition capability, we have applied it to a database

of 137 images of real-world scenes containing one car each in varying poses. Based on

interest points, the system is able to correctly recognize and localize 53.3% of the cases

with its first hypothesis and up to 86.1% with the first 12 hypotheses. Taking all available

patches by uniform sampling, performance improves to 87.6% with the first hypothesis

and 98.5% with the first 5 hypotheses1. Figure 3 shows the quantitative recognition re-

sults and some example images from the test set. These results clearly show the system’s

ability to categorize objects in a variety of different poses. In the following, we want to

extend the approach to obtain pose-specific segmentations of objects. In the context of

this paper, we explore in particular the possibility to segment side views of cars and cows.

4 Object Segmentation

In this section, we derive a probabilistic formulation for the segmentation problem. As a

starting point, we take a refined object hypothesis �on�x� obtained by the algorithm from

the previous section. Based on this hypothesis, we want to segment the object from the

background.

Up to now, we have only dealt with image patches. For segmentation, we now want

to know whether a certain image pixel p is figure or ground, given the object hypothesis.

More precisely, we are interested in the probability p�p � figure�o n�x�. The influence of

a given patch e on the object hypothesis can be expressed as

p�e�on�x� �
p�on�x�e�p�e�

p�on�x�
�

∑I p�on�x�I�p�I�e�p�e�

p�on�x�
(5)

where the patch votes p�on�x�e� are obtained from the codebook, as described in the

previous section. Given these probabilities, we can obtain information about a specific

1Since the object size in our images is roughly twice that of Agarwal & Roth’s [1], we double the tolerances

used in their evaluation and accept a hypothesis if δx � 56, δy � 28, and bounding box overlap is above 50%.



pixel by summing over all patches that contain this pixel:

p�p � figure�on�x� � ∑
p�e

p�p � figure�e�on�x�p�e�on�x� (6)

with p�p � figure�e�on�x� denoting patch-specific segmentation information, which is

weighted by the influence p�e�on�x� the patch has on the object hypothesis. Again, we

can resolve patches by resorting to learned patch interpretations I stored in the codebook:

p�p � figure�on�x� � ∑
p�e

∑
I

p�p � figure�e� I�on�x�p�e� I�on�x� (7)

� ∑
p�e

∑
I

p�p � figure�I�on�x�
p�on�x�I�p�I�e�p�e�

p�on�x�
� (8)

This means that for every pixel, we build a weighted average over all segmentations

stemming from patches containing that pixel. The weights correspond to the patches’

respective contributions to the object hypothesis. For the ground probability, the result

can be obtained in an analogue fashion.

The most important part in this formulation is the per-pixel segmentation informa-

tion p�p � figure�I�on�x�, which is only dependent on the matched codebook entry, no

longer on the image patch. If we store a fixed segmentation mask for every codebook

entry (similar to Borenstein & Ullman’s approach [3]), we obtain a reduced probability

p�p � figure�I�on�. In our approach, we remain more general by keeping a separate seg-

mentation mask for every stored occurrence position of each codebook entry. We thus

take advantage of the full probability p�p � figure�I�o n�x�. The following section de-

scribes in more detail how this is implemented in practice.

4.1 Implementation

For learning segmentation information, we make use of a high-quality figure-ground seg-

mentation mask that is available for each of our training images. We can thus obtain a

figure-ground mask for any image patch from the training data. In this paper, we have ex-

perimented with two different ways of integrating segmentation information into the sys-

tem, corresponding to the different interpretations of the probability p�p � figure�I�o n�x�
described above.

In the first approach, as inspired by Borenstein & Ullman [3], we store a segmentation

mask with every image patch obtained from the training images. When the patches are

clustered to form codebook entries, the mask coherence is integrated into the similarity

measure used for clustering. Thus, it is ensured that only patches with similar segmenta-

tion masks, in addition to similar appearance, are grouped together. Whenever a codebook

entry is matched to the image during recognition, its stored segmentation mask is applied

to the image. The entry may cast votes for different object identities and positions, but

whatever it votes for, the implied segmentation mask stays the same. When an object

hypothesis is formed as a maximum in vote space, all patch interpretations contributing

to that hypothesis are collected, and their associated segmentation masks are combined to

obtain the per-pixel probabilities p�p � f igure�on�x�.
In the second approach, pioneered in this paper, we do not keep a fixed segmentation

mask for every codebook entry, but we store a separate mask for every location it occurs



(a) image (b) confidence (c) θ � 0�0 (d) θ � 0�1 (e) θ � 0�4 (f) θ � 1�0

Figure 4: Segmentation results with different confidence levels θ .

in on the training images. With the 2’519 codebook entries used for the car category,

we thus obtain 20’359 occurrences, with one segmentation mask stored for each. For

the cow category, the codebook contains only 2’244 clusters, but these occur in a total

of 50’792 locations on the training images, owing to the larger texture variability on the

cow bodies. Whenever a codebook entry is matched to the image using this approach,

a separate segmentation mask is associated with every object position it votes for. As

such, the same vertical structure can indicate a solid area if it is in the middle of a cow’s

body, and a strong border if it is part of a leg. Which option is finally selected depends on

the winning hypothesis and its accumulated support from other patches. In any case, the

feedback loop of only taking the votes that support the winning hypothesis ensures that

only consistent interpretations are used for the later segmentation.

In our experiments, we obtained much better results with the occurrence masks, even

when edge information was used to augment matches. In the following, we therefore only

report results for occurrence masks. In addition, we assume uniform priors for p�e� and

p�on�x�, so that these elements can be factored out of the equations. In order to obtain a

segmentation of the whole image from the figure and ground probabilities, we build the

likelihood ratio for every pixel:

L �
p�p � figure�on�x�

p�p � ground�on�x�
� (9)

Figure 4 shows an example segmentation of a car, together with p�p � figure�o n�x�,
the system’s confidence in the segmentation result. The lighter a pixel, the higher its prob-

ability of being figure. The darker it is, the higher its probability of being ground. The

uniform gray region in the background does not contribute to the object hypothesis and is

therefore considered neutral. By only considering pixels where max�p�figure�� p�ground���
θ , the computed probability can be used to set a certain ”confidence level” for the segmen-

tation and thus limit the amount of missegmentation. Figures 4(c)-(f) show segmentation

results with different confidence levels (The confidences are not in the range �0�1℄ because

we omitted a normalization factor in the implementation). As can be observed, the seg-

mentation with the lowest confidence level still contains some missegmented areas, while

higher confidence levels ensure that only trusted segmentations are made, although at the

price of leaving open some uncertain areas. This estimate of how much the obtained seg-

mentation can be trusted is especially important when the results shall later be combined

with a bottom-up segmentation method, e.g. based on contour grouping.

5 Results

The enlargement shown in Figures 5(a)-(e) demonstrates the advantage of the proposed

approach compared to gradient-based methods. At the bottom of the car, there is no

visible border between the black car body and the dark shadow underneath. Instead, a



(a) original image (b) edges (c) segmentation (d) confidence (e) segm. image

(f) original image (g) hypothesis (h) segmentation (i) confidence (j) segm. image

Figure 5: (top) Example where object knowledge compensates for missing edge infor-

mation. (bottom) Segmentation result of a partially occluded car. The system is able to

segment out the pedestrian, because it contributes nothing to the car hypothesis.

strong shadow line extends much further to the left of the car. The proposed algorithm

can compensate for that since it ”knows” that if a codebook entry matches in this position

relative to the object center, it must contain the car’s border. Since at this point only

those patch interpretations are considered that are consistent with the object hypothesis,

the system can infer the missing contour.

Figures 5(f)-(j) show another interesting case. Even though the car in the image is

partially occluded by a pedestrian, the algorithm finds it with its second hypothesis. Re-

fining the hypothesis yields a good segmentation of the car, without the occluded area.

The system is able to segment out the pedestrian, because it contributes nothing to the

car hypothesis. This is something that would be very hard to achieve for a system purely

based on pixel-level discontinuities.

More segmentation results for cars and cows can be seen in Figures 6 and 7. All

the cars and the first three cows have been correctly found with the recognition system’s

first hypothesis (The last cow was found with the second hypothesis). Next to each test

image, the gradient magnitude is shown to illustrate the difficulty of the segmentation

task. Even though the images contain low contrast and significant clutter, the algorithm

succeeds in providing a good segmentation of the object. Confidence and segmentation

quality are especially high for the bottom parts of the cars, including the cars’ shadows

(which were labeled figure in the training examples). Most difficulties arise with the car

roofs and cow heads. These regions contain a lot of variation (e.g. caused by (semi-)

transparent windows or different head orientations), which is not sufficiently represented

in the training data. What is remarkable, though, is that the cows’ legs are captured well,

even though no single training object contained exactly the same leg configuration. The

local approach can compensate for that by combining elements from different training

objects.

Another interesting effect can be observed in the cow images 1 and 4. Even though

there are strong edge structures on the cows’ bodies, no borders are introduced there, since

the system has learned that those edges belong to the body. On the other hand, relatively

weak edges around the legs lead to strong segmentation results. The system has learned

that if a certain structure occurs in this region, it must be a leg. No heuristics are needed

for this behavior – it is entirely learned from training data.



(a) original (b) edges (c) hypothesis (d) segmentation (e) confidence (f) segm. image

Figure 6: Example results for car images.

6 Conclusion

In this paper, we have proposed an algorithm that achieves figure-ground segmentation as

a result and extension of object recognition. The method uses a probabilistic formulation

to integrate learned knowledge about the recognized category with the supporting infor-

mation in the image. As a result, it returns a figure-ground segmentation for the object,

together with a per-pixel confidence estimate specifying how much this segmentation can

be trusted. We have applied the method to the task of categorizing and segmenting unfa-

miliar objects in difficult real-world scenes. Experiments show that it works for categories

as diverse as cars and cows and that it can cope with cluttered backgrounds and partial

occlusions.

For more accurate segmentation results, obviously, the combination with traditional

contour or region based segmentation algorithms is required. The result images show that

edges are quite prominent in those regions where our proposed algorithms has problems,

such as on the car roofs or cow heads. On the other hand, category-specific knowledge can

serve to resolve ambiguities between low-level image structures in those regions where

our algorithm is confident. In short, both kinds of methods are mutually beneficial and

should be combined, ideally in an iterative process. The probabilistic formulation of our

algorithm lends itself to an easy integration with other segmentation methods.
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(a) original (b) edges (c) hypothesis (d) segmentation (e) confidence (f) segm. image

Figure 7: Example results for cow images.
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