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Abstract—The performance of a Turbo code with short block
length depends critically on the interleaver design. There are two
major criteria in the design of an interleaver: the distance spec-
trum of the code and the correlation between the information input
data and the soft output of each decoder corresponding to its parity
bits. This paper describes a new interleaver design for Turbo codes
with short block length based on these two criteria. A deterministic
interleaver suitable for Turbo codes is also described. Simulation
results compare the new interleaver design to different existing in-
terleavers.

Index Terms—Concatenated codes, convolutional codes, turbo
codes.

I. INTRODUCTION

T URBO codes [1] have an impressive near-Shannonlimit
error correcting performance. The superior performance

of Turbo codes over convolutional codes is achieved only when
the length of the interleaver is very large, on the order of several
thousand bits. For large block size interleavers, most random
interleavers perform well. On the other hand, for some appli-
cations, it is preferable to have a deterministic interleaver, to
reduce the hardware requirements for interleaving and deinter-
leaving operations. One of the goals of this paper is to propose
a deterministic interleaver design to address this problem. For
short interleavers, the performance of the Turbo code with a
random interleaver degrades substantially up to a point where its
bit error rate (BER) performance is worse than the BER perfor-
mance of convolutional codes with similar computational com-
plexity. For short block length interleavers, selection of the in-
terleaver has a significant effect on the performance of the Turbo
code. In many applications, such as voice, delay is an important
issue in choosing the block size. For these applications, there is
a need to design short block size interleavers that demonstrate
acceptable BER performance. Several authors have suggested
interleaver designs for Turbo codes suitable for short block sizes
[2]–[5].

There are two major criteria in the design of an interleaver:
1) the distance spectrum properties (weight distribution) of the
code, and 2) the correlation between the soft output of each de-
coder corresponding to its parity bits and the information input
data sequence. Criterion 2 is sometimes referred to as the iter-
ative decoding suitability (IDS) criterion [2]. This is a measure
of the effectiveness of the iterative decoding algorithm and the
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fact that if these two data sequences are less correlated, then the
performance of the iterative decoding algorithm improves.

The performance of Turbo codes at low BER is mainly dom-
inated by the minimum effective free distance ( ) [13], [16].
It has been shown [6] that the Turbo code asymptotic perfor-
mance approaches the asymptote. The noise floor that oc-
curs at moderate to high signal-to-noise ratios (SNRs) is the re-
sult of small [6]. The noise floor can be lowered by in-
creasing either the interleaver size or . Increasing inter-
leaver block size ( ) can increase . Increasing can
be achieved (when is fixed) by appropriate choice of inter-
leaver. In our approach, maximizing is a goal in designing
the interleaver.

Performance evaluation of Turbo codes is usually based on
the assumption that the receiver is a maximum likelihood (ML)
decoder. However, Turbo codes actually use a suboptimal itera-
tive algorithm. A soft output decoding algorithm such as max-
imum a posterioriprobability (MAP) [7] is used in the itera-
tive algorithm. The performance of iterative decoding improves
if the information that is sent to each decoder from the other
decoders is less correlated with the input information data se-
quence. Hokfeltet al. [2] proposed the IDS criterion for de-
signing an interleaver. In the interleaver design proposed here,
we recommend the use of the IDS criterion with some modifi-
cations.

Trellis termination of Turbo codes is critical, especially when
the interleaver is designed to maximize . If this problem is
not addressed in the design of the interleaver, it can lead to a very
small value for because of the existence of data sequences
with no trellis termination and low output weight, resulting in a
degradation in the performance of the Turbo code. References
[8]–[10] have addressed this question.

The paper is organized as follows. In Section II, random and
-random interleavers [11] are described. Our approach is based

on -random interleavers. The IDS [2] criterion is also briefly
discussed. In Section III, a two-step-random interleaver de-
sign is presented. Our approach requires knowing which poly-
nomials are divisible by a primitive polynomial; this question is
addressed in the Appendix. Section IV describes a deterministic
interleaver design based on the results from Section III. We con-
clude the paper by comparing the BER performance of Turbo
codes utilizing our interleaver design to other interleavers.

II. PROBLEM STATEMENTS

An interleaver is a permutation that changes the
order of a data sequence ofinput symbols . If
the input data sequence is , then the per-
muted data sequence is , where is an interleaving matrix
with a single one in each row and column, all other entries being
zero. Every interleaver has a corresponding deinterleaver
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Fig. 1. Structure of a Tubo decoder.

that acts on the interleaved data sequence and restores it to its
original order. The deinterleaving matrix is simply the transpose
of the interleaving matrix ( ).

A random interleaver is simply a random permutation. For
large values of , most random interleavers utilized in Turbo
codes perform well. However, as the interleaver block size de-
creases, the performance of a Turbo code degrades substantially,
up to a point when its BER performance is worse than that
of a convolutional code with similar computational complexity.
Thus, the design of short interleavers for Turbo codes is an im-
portant problem [2]–[5].

An -random interleaver (where ) is a
“semirandom” interleaver constructed as follows. Each ran-
domly selected integer is compared withpreviously selected
random integers. If the difference between the current selection
and previous selections is smaller than, the random integer
is rejected. This process is repeated untildistinct integers
have been selected. Computer simulations have shown that if

, then this process converges [11] in a reasonable
time. This interleaver design assures that short cycle events are
avoided. A short cycle event occurs when two bits are close to
each other both before and after interleaving.

A new interleaver design was recently proposed based on the
performance of iterative decoding in Turbo codes [2]. Turbo
codes utilize an iterative decoding process based on the MAP
or other algorithms that can provide a soft output. At each de-
coding step, some information related to the parity bits of one
decoder is fed into the other decoder together with the system-
atic data sequence and the parity bits corresponding to that de-
coder. Fig. 1 shows this iterative decoding scheme. The inputs
to each decoder are the input data sequence,, the parity bits

or , and the logarithm of the likelihood ratio (LLR) asso-
ciated with the parity bits from the other decoder ( or ),
which is used asa priori information. All these inputs are uti-
lized by the decoder to create three outputs corresponding to
the weighted version of these inputs. In Fig. 1,represents the
weighted version of the input data sequence,. Also in the
same figure demonstrates the fact that the input data sequence is
fed into the second decoder after interleaving. The input to each
decoder from the other decoder is used asa priori information in

the next decoding step and corresponds to the weighted version
of the parity bits. This information will be more effective in the
performance of iterative decoding if it is less correlated with the
input data sequence (or interleaved input data sequence). There-
fore, it is reasonable to use this as a criterion for designing the
interleaver. For large block size interleavers, most random in-
terleavers provide a low correlation between and input data
sequence, . The correlation coefficient, , is defined

as the correlation between and . It has been shown [2]
that can be analytically approximated by

if

if
(1)

where and are constants that depend on the encoder feedback
and feedforward polynomials. The correlation coefficient at the
output of the second decoder, , is approximated by

(2)

where the two terms in the righthand side of (2) correspond to
the correlation coefficients between and the input data, i.e.,

and [2]. In our notation, represents the correlation
coefficient matrix and represents one element of this

matrix.
Similar correlation coefficients can be computed for the

deinterleaver. The correlation matrix corresponding to de-in-
terleaver, , is the same as (2) except thatis replaced
by .

Then is defined to be

(3)

where

(4)



SADJADPOURet al.: INTERLEAVER DESIGN FOR TURBO CODES 833

is defined in a similar way using . The iterative de-
coding suitability (IDS) measure is then defined as

(5)

A low value of IDS is an indication that the correlation prop-
erties between and are equally spread along the data se-
quence of length . An interleaver design based on the IDS
condition is proposed in [12].

III. T WO-STEP -RANDOM INTERLEAVER DESIGN

A new interleaver design, a two-step-random interleaver,
is presented here. The goal is to increase the minimum effec-
tive free distance, , of the Turbo code while decreasing or
at least not increasing the correlation properties between the in-
formation input data sequence and . Hokfelt et al. [2], [12]
introduced the IDS criterion to evaluate the correlation proper-
ties. The two vectors for the computation of IDS in (5) are very
similar for most interleavers. Thus, it is sufficient to only use
one of them, i.e., . Instead, we can define a new criterion
based on decreasing the correlation coefficients for the third de-
coding step, i.e., the correlation coefficients between extrinsic
information from the second decoder and information input data
sequence. In this regard, the new correlation coefficient matrix,

, is defined as

(6)

can now be computed in a similar way to (3) by using
(6). The new iterative decoding suitability ( ) is then defined
as

(7)

A small value for only guarantees that the correlation
properties are spread equally throughout the data sequence.
However, this criterion does not attempt to reduce the power
of correlation coefficients, i.e., and .

Therefore, we recommend the following additional condition
as a second iterative decoding suitability criterion

(8)
We then use the average of these two values as a new IDS crite-
rion, namely

(9)

Minimizing (9) is then one of our goals in optimizing the inter-
leaver.

As we described earlier, -random interleavers avoid short
cycle events. This property guarantees that two bits close to each

other before interleaving will have a minimum distance of
after interleaving. More specifically, for information input data

and , and permuted data and , an -random inter-
leaver will guarantee that if , then .
However, this does not exclude the possibility that ,
which can degrade the performance of iterative decoding of
Turbo codes for this particular bit. The larger the distance be-
tween and , the smaller the correlation between the infor-
mation input data sequence and . We therefore introduce an
additional measure, , which is defined to be the minimum per-
missible distance betweenand for all .

Unlike [12], where the interleaver design is based just on the
IDS criterion, our interleaver is designed in two stages. In the
first stage, we design an interleaver that satisfies the-random
criterion together with the condition. In the second stage, we
try to increase the minimum effective free distance ( ) of
the Turbo code while considering the constraint. The
design is as follows. We begin by selecting some values for
and .

Step 1) Each randomly selected integer is compared
with the previous selections to check that if

then . We also insist
that must satisfy .

Besides the above conditions, the lasttail bits
used for trellis termination in the first decoder are
chosen to satisfy , and if
with then . This condition will
guarantee that trellis termination for the first decoder
is sufficient and there will not be any low weight
sequence at the output of the second decoder caused
by failure of trellis termination.

Step 2) Choose the maximum predetermined weight
for input data sequences and the minimum permis-
sible effective free distance of the code .
Find all input data sequences of length N and
weight and their corresponding effec-
tive free distance for the Turbo encoder with
an interleaver design based on step 1 such that

. All these input data sequences are
divisible before and after interleaving by the feed-
back polynomial (usually a primitive polynomial)
of the Turbo encoder. Consider the first input data
block of weight with nonzero elements in loca-
tions and .
Compute based on (9) for the original in-
terleaver designed in step 1. Set and find
the pair . Interchange the interleaver pairs

and to create a new interleaver,
i.e., and . Compute the new
IDS, , based on the new interleaver design.
If , replace the interleaver
by the new one. Otherwise, set and
continue. Repeat this operation for all input data se-
quences with a minimum weight of and

. After completing this operation,
return to step 2 and find all input data sequences of
weight with for the new
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interleaver. Continue this step until it converges and
there is no input data sequence of weight
with . Obviously, if is
too large, the second step may never converge, and
in this case, should be reduced.

An interleaver design proposed in [14] and [15] is based on
the joint -random criteria and elimination of all error patterns
of weight . However, in practice, the joint optimization cri-
teria will not converge easily and, therefore, the value ofmust
be reduced and restricted to only weight two inputs. For
weights larger than two, the convergence of the algorithm is a
problem because of the large number of possibilities. By sepa-
rating these two criteria into two steps, we can easily find the
appropriate interleaver satisfying each step separately. The two
steps in the two-step-random interleaver design are indepen-
dent operations. The second step tries to increase the minimum
effective free distance of the code (based on the interleaver de-
sign in the first step) to a predetermined value ( ), while
attempting not to increase the correlation between the infor-
mation input data and the soft output of each decoder corre-
sponding to its parity bits. Obviously, if is set to too
large a value, the second stage of the design may completely
change the interleaver produced by the first step and produce an
inferior design. This possibility will be illustrated later by sim-
ulation.

It is shown in [13] that the feedback polynomials for the re-
cursive systematic convolutional encoder of Turbo codes should
be chosen to be primitive polynomials. When used for Turbo
codes, primitive polynomials exhibit better distance spectrum
properties. The Appendix describes how to find all input data
sequences of weight that are divisible by a primitive poly-
nomial. This information is required for the second step in our
approach.

IV. DETERMINISTIC INTERLEAVER DESIGN

The following theorem describes a deterministic interleaver
based on step 1 in the previous section.

Theorem 1: Let and be relatively prime natural numbers
such that divides , and let ,

. Then there is a permutation such that
a) if and then

, and b) for all , .
Proof: Let and define

by , where is to be interpreted
as the number that is congruent to
modulo . Since , is indeed a permutation. If

denotes the inverse of , then
is the inverse permutation to.

a) Note that and . Let and
be elements of with and

. Then either i) or ii)
.

In case i) we have
, and we

will show both terms are . In fact, since ,
. Also, since ,

we have
.
In case ii) we have , so

. However

so , which means
is trapped between two successive multiples of

, namely and . Therefore

Again we show both terms are . Since we are in
case ii), . Second,

.
b) Let . Then

. Since divides , and
, the last expression is at least .

To maximize the constants and , the number should
be close to . Then is also about . The following
elementary consideration shows that one cannot achieve

: Assume that . Then the values
have pairwise distance . Therefore,

the “balls” with radius cover the numbers
completely. Thus, Theorem 1 yields a solution

where is already optimal.
In some applications, such as wireless systems in Rayleigh

fading channels, it has been suggested that an additional inter-
leaver be incorporated either before the first encoder or in the
path of the systematic data sequence, or alternatively over the
entire data sequence (both the systematic data and the parity
bits) in order to improve the performance of the system [17]. The
deterministic interleaver proposed here can be used for these ap-
plications without adding too much complexity to the system.

It should be noted that there are other deterministic interleaver
designs such as those provided in [18] and [19] that perform
better than random interleavers. It would be of interest in future
research to compare our approach with existing deterministic
interleaver designs including those mentioned above.

V. SIMULATION RESULTS AND CONCLUSION

This section provides simulation results for the BER perfor-
mance of Turbo codes using the new interleaver design and
comparisons with -random and random interleavers. The con-
stituent encoders are recursive systematic convolutional codes
with memory and with feedback and feedforward gen-
erator polynomials and , respectively. The trellis
termination is applied only to the first encoder.
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Fig. 2. Performance of Turbo code for different interleavers of size 192 bits
and BPSK signal.

Fig. 3. Performance of Turbo code for different interleavers of size 400 bits
and BPSK signal.

In all the examples, the number of iterations (using the log-
arithmic version of the BCJR algorithm [7]) is 18. For the first
two examples, the signal is binary phase-shift keying (BPSK)
with a code rate of 1/3. In the first example, the interleaver
block size is 192. The BER performance of the new interleaver
design is compared with -random and random interleavers.
For the new interleaver, two interleavers with design parame-
ters and (9, 3, 24, 4)
are chosen. For the-random interleaver, the value of is 9.
From Fig. 2, it can be concluded that the new interleaver de-
sign performs much better than other interleavers at low BER.
It is also obvious that the error floor for Turbo codes is much
lower with the new interlearver design because of the larger
value of . This figure also shows that choosing a very large
value for can degrade the performance of the Turbo
code. For this particular example, the two-step-random in-
terleaver with performs better than that with

. The appropriate maximum value for
depends on the length of the interleaver and it is usually obtained
by trial and simulations. Fig. 3 compares the BER performance
of the two-step -random interleaver design with-random and
random interleavers with a block size of 400. For the new inter-
leaver, the design parameters are

and for the -random interleaver . The
two-step -random interleaver has much better BER perfor-
mance than the -random interleaver at low BER and results in
a lower error floor for Turbo codes. In practice, because the cor-
relation properties of the input data and the parity information
are decreasing exponentially, it is sufficient to choose a small
value for .

We have also compared the two-step-random interleaver
with Hokfelt’s interleaver design. Hokfelt’s approach results in
many interleavers for each run of the algorithm with different

Fig. 4. Performance of Turbo code for different interleavers of size 1024 bits
and QPSK signal.

BER performance. If we choose a random instance of these
designs, it may perform worse than the-random or two-step

-random interleaver design. However, if we choose the best
resulting interleaver among them, its performance can be as
good as the two-step-random interleaver design. For the in-
terleavers of length 192 and 400 bits, the best interleavers found
by Hokfelt’s approach can perform as well as the two-step

-random interleavers that were used in examples 1 and 2.
For the last example, the signal is quaternary phase-shift

keying (QPSK) with a code rate of 1/2. Equal number of
parity bits are punctured from both encoders. The code block
length is 1024. Fig. 4 compares the BER performance of a
random interleaver with a deterministic interleaver described in
Section IV with design parameters ,
with the same as . The performance of this deterministic
interleaver is slightly worse than that of a random interleaver.
However, the interleaving and deinterleaving operations can be
carried out algebraically in the receiver and transmitter, thus
reducing storage requirements.

APPENDIX I
POLYNOMIALS DIVISIBLE BY A PRIMITIVE POLYNOMIAL

Let be the ring of polynomials with binary
coefficients, and let be a primitive irreducible poly-
nomial of degree . We wish to determine all the polyno-
mials which have low weight and are divisible by

. (The weight of a polynomial is the number of nonzero
terms).

Choose a zero of . Then generates as a
field. Since is primitive, by definition the minimal
with is . Note that the nonzero elements of

are precisely the zeros of the polynomial .
Since is irreducible, a polynomial is divis-

ible by if and only if . If satisfy
, then , hence is divisible by .

Let be the set of polynomials with ,
. More generally, let be the

sum of disjoint (i.e., all monomials are distinct) terms from
.
Let be the Hamming single-error-correcting code with

generator polynomial , and let be the set of codewords
of of weight , written in the usual way as polynomials of
degree corresponding to residue classes in .
Note that is empty unless or , i.e., , ,

, , are empty.
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Theorem 2: Let have weight and write

where , has weight , no two exponents
of are congruent modulo, and the terms of and

are disjoint (i.e., ). Then is divisible
by if and only if where means “read
exponents .”

Proof:

“ ” Let be as in the theorem. Since
is divisible by , one has
. Therefore and are both

divisible by and so is . By construction the
weight of is .

“ ” Let be divisible by . By construc-
tion and hence is divisible by , where

for some . Again by construction
the weight of is the weight of and the
weight of is .

Note that the polynomials and are not necessarily
unique. But one may define by starting from the highest
exponent of and always taking the first term that fits to
make the decomposition unique.

We discuss the first few values ofindividually, and illustrate
by taking , and . Then is a
Hammingcodeof lengthseven,containingsevenwordsofweight
three, seven of weight four, and one word of weight seven.

Weight : No monomials are divisible by .
Weight : A weight two polynomial is divisible by
if and only if it is in .

Examples: , .
General form: , , .

Weight : A weight three polynomial is divisible by
if and only if it reduces to a weight three codeword in

when the exponents are read .

Example: The seven words in are the cyclic shifts of
itself. So, for instance, is divisible

by , since it reduces to .
General form: ,

, , , .

Weight : A polynomial of weight 4 is divisible by
, if and only if it is in , or it reduces to an element of

when the exponents are read .

Examples: ,
.
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