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To ensure data fidelity, a number of random error cor-

rection codes (ECCs) have been developed. ECC is,

however, not efficient in combating bursts of errors,

i.e., a group of consecutive (in one-dimensional (1-D)

case) or connected (in two- and three- dimensional (2-

D and 3-D) case) erroneous code symbols owing to the

bursty nature of errors. Interleaving is a process to

rearrange code symbols so as to spread bursts of

errors over multiple code-words that can be corrected

by ECCs. By converting bursts of errors into random-

like errors, interleaving thus becomes an effective

means to combat error bursts. In this article, we first

illustrate the philosophy of interleaving by introducing

a 1-D block interleaving technique. Then multi-dimen-

sional (M-D) bursts of errors and optimality of inter-

leaving are defined. The fundamentals and algorithms

of the state of the art of M-D interleaving—the t-inter-

leaved array approach by Blaum, Bruck and Vardy and

the successive packing approach by Shi and Zhang—

are presented and analyzed. In essence, a t-interleaved

array is constructed by closely tiling a building block,

which is solely determined by the burst size t. There-

fore, the algorithm needs to be implemented each time

for a different burst size in order to maintain either the

error burst correction capability or optimality. Since

the size of error bursts is usually not known in

advance, the application of the technique is somewhat

limited. The successive packing algorithm, based on

the concept of 2×2 basis array, only needs to be imple-

mented once for a given square 2-D array, and yet it

remains optimal for a set of bursts of errors having dif-

ferent sizes. The performance comparison between

different approaches is made. Future research on the

successive packing approach is discussed. Finally,

applications of 2-D/3-D successive packing interleav-

ing in enhancing the robustness of image/video data

hiding are presented as examples of practical utiliza-

tion of interleaving.
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Introduction

I
n data manipulation and transmission, errors may be

caused by a variety of factors including noise corrup-

tion, limited channel bandwidth, and interference

between channels and sources. It is well known that many

error correction codes (ECCs) have been developed to

correct errors in order to ensure data fidelity. In doing so,

redundancy has been added to ECC, resulting in what is

known as random error correction codes. There are basi-

cally two different types of ECCs. One is known as block

codes, the other as convolutional codes. The frequently

used block codes are often denoted by a pair of two inte-

gers, i.e., (n,k), and one block code is completely defined

by 2k binary sequences, each is an n-tuple of bits, known

as code-worde. Note that for simplicity only binary code

symbols are considered in this article. Specifically, con-

sider the commonly used BCH codes, which are one kind

of block codes, named after the three inventors Bose,

Chadhuri, and Hocquenghem [1, 2]. The notation BCH

(31, 6) indicates that there are at most 26 distinct mes-

sages, each represented by six bits and encoded by a

code-worde consisting of 31 bits in this BCH code. Instead

of six bits, 31 bits are used to represent an input symbol,

implying an added redundancy. According to channel

coding theory, the minimum Hamming distance between

any two different code-words in the BCH (31, 6) code is

15, and the error correction capability of the code is

seven. In other words, a 31-bit code-worde in the BCH

(31, 6) code can be correctly decoded as long as there are

no more than seven error bits regardless of the bit error

positions within the code-worde. That is why random

ECC refers to its ability to correct random bit errors with-

in a code-worde. While error positions can be random the

number of error bits within one code-worde that can be

corrected, referred to as the random error correction

capability of the code, is critical.

Bursts (or clusters) of errors are defined as a group of

consecutive error bits in the one-dimensional (1-D) case or

connected error bits in multi-dimensional  (M-D) cases. In

this sense, we can see that the channel has memory. One

example can be several consecutive transmitted error

bits in a mobile communication system caused by a mul-

tipath fading channel. Another example can be an area

formed by many connected error bits in a two-dimen-

sional (2-D) barcode. In [3], a bursty channel is defined as

a channel over which errors tend to occur in bunches, or

“bursts,” as opposed to  random patterns associated with

a Bernoulli-distributed process. Therefore, a random

error correction code, when applied, may not be power-

ful enough to correct the bursts of errors and at the same

time it may be a waste for other occasions (1-D case)

when there are no bursts of errors, or regions (M-D case)

where there are no bursts of errors. For instance, consid-

er a case in which there is one burst of errors consisting

of 60 consecutive bits. Obviously, the BCH (31, 6) code is

not be able to correct this burst of errors. One may think

of using a more powerful BCH code to combat this burst

of errors. For example, BCH (255, 9) seems to be a suit-

able candidate since it can correct 63 errors in a 255-bit

code-worde. Indeed, this error burst consisting of 60 con-

secutive error bits can be corrected by this powerful BCH

code. However, for a vast majority of time, the error cor-

rection capability at the expense of high redundancy

(each code-worde now consists of 255 bits) has been

wasted. This example demonstrates that using random

ECC to combat bursts of errors is not efficient.

Although some codes, including Fire codes [4, 3], suit-

able for correcting bursts of errors have been developed,

they are not efficient for random error correction. In most

practical systems, unfortunately, both types of errors

may exist. By far, interleaving before applying random

ECCs is a most frequently used and efficient way to com-

bat bursts of errors and random errors. In this article, the

philosophy of interleaving is first illustrated through a 1-

D block interleaver. Then M-D bursts of errors and opti-

mality of interleaving are defined. Afterwards, the state of

the art of M-D interleaving techniques is presented. In

particular, the first comprehensive M-D interleaving tech-

nique, i.e., the t-interleaved array approach developed by

Blaum et al. [5] and the successive packing (SP) approach

developed by Shi and Zhang [6] are introduced and ana-

lyzed. In essence, a t-interleaved array is constructed by

packing a building block, which is solely determined by

the burst size t. In the 2-D case, for a given burst size, t0,

a specific algorithm, which can correct arbitrarily-shaped

error burst of size t0 and is optimal in the sense of the

interleaving degree, is implemented. It is observed that

when the burst size, t, increases, i.e., t > t0, the algorithm

with a set of new parameters has to be implemented once

again in order to correct  larger arbitrarily-shaped error

bursts. When the burst size decreases, i.e., t < t0, the

interleaved array obtained with respect to t0 is not opti-

mal any more. Since the size of error bursts is not known

in advance (this is usually the case in reality), the appli-

cation of the technique is somewhat limited. In practice,

the size of a 2-D array, say, a digital image is normally

given and the burst size is often unknown a priori, the

successive packing algorithm, based on the concept of

the 2×2 basis array, only needs to be implemented once

for a given square 2-D array and yet it remains optimal for
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a set of bursts of errors having different sizes. The per-

formance of these two interleaving techniques is com-

pared and comments are made. Future research on the

successive packing approach is discussed. Finally, apply-

ing 2-D/3-D SP interleaving techniques to enhance the

robustness of image/video data hiding is presented as

practical examples of interleaving techniques.

Philosophy of Interleaving

The 1-D interleaving techniques have been well docu-

mented in error correction coding texts, e.g., in [3]. The

main idea is to mix up the code symbols from different

code-words so that when the code-words are recon-

structed at the receiving end error bursts encountered

in the transmission are spread across multiple code-

words. Consequently, the errors occurred within one

code-worde may be small enough to be corrected by

using a simple random error correction code. This can

be seen clearly from a simple example. Consider a code

in which each code-worde contains four code symbols.

Furthermore, the code possesses the random error cor-

rection capability. Without loss of generality, we assume

the  one-random-error-correction capability, i.e., any sin-

gle code symbol error occurred in one code-worde can

be corrected. Suppose there are 16 symbols, which cor-

respond to four code-words. That is, code symbols from

1 to 4 form a code-worde, from 5 to 8 another code-

worde, and so on. One of the 1-D interleaving proce-

dures, known as block interleaving, first creates a 4×4

2-D array, called block interleaver as shown in Figure 1.

The 16 code symbols are read into the 2-D array in a col-

umn-by-column (or row-by-row) manner. The inter-

leaved code symbols are obtained by writing the code

symbols out of the 2-D array in a row-by-row (or column-

by-column) fashion. This process has been depicted in

Figure 1 (a), (b), and (c). Now take a look at how this

interleaving technique can correct error bursts. Assume

a burst of errors involving four consecutive symbols as

shown in Figure 1 (c) with shades. After de-interleaving

as shown in Figure 1 (d), the error burst is effectively

spread among four code-words, resulting in only one

code symbol in error for each of the four code-words.

With the one-random-error-correction capability, it is

obvious that no decoding error will result from the pres-

ence of such an  error burst. This simple example

demonstrates the effectiveness of 1-D interleaving tech-

nique in combating 1-D bursts of errors, i.e., how the

interleaving spreads code symbols over multiple code-

words so as to convert a burst of errors occurred with

the interleaved array into random-like errors in the de-

interleaved array. In other words, the pair of interleaving

and de-interleaving can equivalently convert a

bursty channel into a random-like channel. Conse-

quently, random error correction codes can be

used efficiently to correct bursts of errors.

2-D and M-D Bursts of Errors 

Scenarios, where M-D error bursts may occur, include

magnetic and optical (say, holographic) datastorage,

charge-coupled devices (CCDs), 2-D barcodes, and infor-

mation hiding in digital images and video sequences. In

particular, it is worth mentioning that in the holographic

recording a laser beam illuminates a programmable spa-

tial light modulator thereby generating an object beam,

which represents a 2-D page of data. An entire page of

data can be retrieved all at once, thus achieving a very

high data rate. Therefore, the reliability issue of M-D infor-

mation has arisen as an important task, having both the-

oretical and practical significance.

Instead of defining a burst of errors as a rectangular

area or a circular area, Blaum et al. defined a 2-D burst of

errors as an arbitrarily-shaped, connected area [5]. Con-

sider Figure 2, where all the code symbols (assigned to

the elements of the 2-D array) marked with triangles form

a 2-D error burst. Note that all of these symbols are con-

nected to each other and the connectivity here is con-

strained to the horizontal and vertical directions, referred

to as 4-connection. This definition can be generalized to

the M-D case. The size of a burst is defined as the total

number of code symbols contained in the burst. Hence,

the size of the error burst in Figure 2 is 10. 

1-D Interleaving: Not Effective for

Combating 2-D Error Bursts

To enhance the reliability of M-D digital data, which is of

crucial importance in the information age, codes that can
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(a)  Data  before interleaving
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(b)  Two-dimensional 4x4 array used for interleaving

Figure 1. 1-D block interleaving and its performance.



correct M-D bursts of errors are desired. Here, we show

that it is necessary to develop M-D interleaving tech-

niques by demonstrating via an example that 1-D inter-

leaving-based techniques are not effective in correcting

2-D error bursts.

It is known that 2-D barcodes are information storage

media in which the source information is stored as a bit

stream on a printed label [7]. Examples of 2-D barcode

applications include  bracelets that are used in hospitals

to carry patients' entire medical histories;  labels put on

parts that are used in automotive assembling processes

to carry a unique identification number and other perti-

nent information applicable to production, tracking, and

statistical process control [8]; and the labels that are

used as portable data files that accompany packages in

shipping industry [9]. When the United Parcel Service

(UPS) developed its own 2-D bar codes, 1-D interleaving

technique was used to combat 2-D

bursts. That is a sequence of code

symbols is first 1-D interleaved. The

1-D interleaved symbols are then

written into a 2-D array (printed on

a 2-D label) according to some writ-

ing pattern. Specifically, there are

two different patterns used by the

UPS: the Boustrophedonic Pattern

and the Spiral Data Pattern, [9],

shown in Figure 3 (b) and (e),

respectively.

Now, consider again the scenario

of the 16 code symbols discussed

earlier. After the 16 symbols have

been 1-D interleaved (refer to Figure

1 (c)), they are written into a 4×4 2-

D array according to either the

Boustrophedonic Pattern or the Spi-

ral Data Pattern. The 4×4 2-D array

obtained by applying these two writ-

ing patterns are shown in Figure 3 (a) and (d), respective-

ly. Let us examine the performance of these two proce-

dures by checking if they can combat a 2×2 2-D error

burst, shown in Figure 3 (a) with shades. Figure 3 (c) indi-

cates that this 2×2 error burst has not been spread effec-

tively so that there are two code symbols in error in the

second code-worde, indicating that the error burst cannot

be corrected by using the code of one-random-error-cor-

rection capability. That is, the 1-D interleaving technique

plus the Boustrophedonic Pattern writing procedure can-

not combat the 2×2 burst of errors. The same observation

may be obtained for  the Spiral Data Pattern writing pro-

cedure, as shown in Figure 3 (d) and (f).

Summing up, combining the 1-D interleaving tech-

nique and some writing procedure to constitute a 2-D

interleaved array may not be able to combat 2-D burst

errors effectively. This does not come as a surprise

because the 2-D nature has not been taken into account

with the 1-D procedure. Therefore, it is necessary to

develop efficient M-D interleaving techniques to secure

the reliability of M-D digital data.

M-D Interleaving I: t-Interleaved Array 

As mentioned above, while some 2-D error burst correction

codes have been developed [4, 10], an M-D interleaving

technique followed by a simple random error correction

code has become the most common approach to correct-

ing M-D error bursts. Some M-D interleaving techniques for

combating M-D bursts of errors have been proposed [12,

11, 13, 98]. Some theoretical aspects of the task, in terms of

the definitions of 2-D and M-D bursts, the optimality of

interleaving, the existence of the optimal interleaving and

32 IEEE CIRCUITS AND SYSTEMS MAGAZINE FIRST QUARTER 2004

3 5 6 7 8 9 14 152 4 10 11 12 13 161

3 5 6 7 8 9 14 152 4 10 11 12 13 161

(a)

551 9 13

261014

3 11 15

481216

7

1010 14 3 7

6 1 5 11

2 13 9 15

16 12 8 4

(b)

(c)

(e)

(f )(d)

Figure 3. Boustrophedonic pattern and spiral data pattern.

▲▲

▲▲▲▲

▲   ▲▲   ▲

▲  ▲▲  ▲

▲  ▲   ▲▲  ▲   ▲

Figure 2. A 2-D burst of errors of size 10.
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so on have been studied in [adbel-

ghaffar 88, 5]. It has been noticed

that the organization of raster-graph-

ics memory encounters the same

problems as that faced by the inter-

leaving technique [14]. Taking into

account [12] (dealing with an error

burst of circular-shape) is rather

brief, and that [5] is the first compre-

hensive presentation of the M-D

interleaving scheme, we will elabo-

rate on the t-interleaved array tech-

nique [5] in this section. 

t-Interleaved Array, Interleaving

Degree and Optimality

Blaum et al. [5] introduced the concept of the t-inter-

leaved array. Consider  two 4-interleaved arrays shown in

Figure 4. By a 4-interleaved array, it is meant that no mat-

ter how we choose four 4-connected elements in the

array we always have these four elements marked with

distinct numbers. Assuming that in Figure 4 all elements

in the 2-D array denoted by the same number form one

code-word, we can then conclude that whenever a burst

of errors of size four takes place within the 4-interleaved

2-D array each code-worde will encounter at most one

error. If further assuming that the code has the  one-ran-

dom-error-correction capability, we can see that the error

burst can be corrected. Through this discussion, it is

observed that a t-interleaved array together with a ran-

dom error correction code having the one-random-error-

correction capability can combat an error burst of size

four. Without loss of generality, only one error burst is

discussed in this article.

A close look at Figure 4 (a) and (b) reveals that there

are a total of eight and 10 distinct numbers, i.e., eight and

10 distinct code-words in (a) and (b), respectively. The

total number of distinct code-words is referred to as the

interleaving degree. The optimality of interleaving is

achieved if the interleaving degree reaches its lower

bound. The lower bound for correcting arbitrarily-

shaped error bursts has been proved to be: t2/2 if t is

even and (t2 + 1)/2 if t is odd [5]. Thus, for a 4-inter-

leaved array, the lower bound of the interleaving degree

is equal to eight. Therefore the code depicted in Figure 4

(a) is optimal, while that in Figure 4 (b) is not. Blaum et

al. have shown that optimality can be guaranteed for the

1-D and 2-D case; however, this is not always true for the

3-D case [5, 15]. 

Basic Ideas and Algorithms

Based on the concept of the t-interleaved array, Blaum et

al. proposed their algorithms for 2-D and 3-D interleaving.

Here, we present only one of their two optimal 2-D inter-

leaving algorithms. Assume that A is a 2-D array and m is

a positive integer. One labels the coordinates of the array
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toroidally on m, i.e., assign the same number to elements

(x, y) and (x′, y′) of A if x′
≡ x and y′

≡ y modulo m. Let b

be a fixed positive integer. Then for each

a = 0, 1, · · · , m − 1, the elements (x, a + xb), with both

coordinates taken modulo m, are labeled by the integer a.

For odd t, b = t and m = (t2 + 1)/2; for even t, b = t + 1

and m = t2/2. It can be verified that the 4-interleaved

array shown in Figure 4(a) can be constructed using the

above algorithm with b = 5, and m = 8. It is observed that

the algorithm is implemented differently according to the

burst size t as well as whether it is odd or even.

The key idea of the Blaum et al. approach is based on

Lee-spheres and close tiling. Linking Lee spheres with

odd burst sizes and creating some spheres for  even burst

sizes, Blaum et al. used these spheres as fundamental

building blocks to construct interleaved arrays. A Lee

sphere of radius 1 is shown in Figure 5 (a), where one can

see that the maximum 4-distance (only considered in

either horizontal or vertical directions) from the central

element to any other elements in the sphere is equal to

one. This Lee sphere can be used as a fundamental build-

ing block to construct (closely tile) a 3-interleaved array

as shown in Figure 5 (b). Note that, in Figure 5 (b), there

is a square array of 5×5 enclosed by solid lines and

formed by several whole and partial Lee spheres of radius

1 (also bounded by solid lines). The fundamental building

block used to closely tile a 4-interleaved array is shown in

Figure 6 (a), while the constructed 4-interleaved array is

shown in Figure 6 (b). Similarly, there is an 8×8 square

array bounded by solid lines and formed by several

whole and partial fundamental building blocks (enclosed

by soled lines). It is further noted that the 3- and 4-inter-

leaved arrays shown in Figures 5 (b) and 6 (b), respec-

tively, can in turn be used as  building blocks to closely

tile 3- and 4-interleaved array of a larger size. This can be

verified by the observing that the five central elements in

the first row in Figure 5 (b): 3, 4, 5, 1, 2 with dashed lines

repeat themselves in the last row within the solid line

square, and so do the eight central elements in the first

row of Figure 6 (b): 5, 6, 7, 8, 1, 2, 3, 4. The same is true for

the five and eight elements, respectively, in the bottom

row, the left-most column, and the right-most column of

Figure 5 (b) and Figure 6 (b). By close tiling, it is meant

that  translated building blocks are used to construct a

larger block, which is the union of  translated building

blocks and there is no overlapping among the building

blocks  translated in the process. (For more information

on these two concepts, i.e., the Lee sphere and close

tiling, interested readers may refer to [15].) Blaum et al.

have shown that if one labels each element in the funda-

mental building block with a distinct number and uses

the building block to closely (meaning no uncovered ele-

ments) tile (meaning no overlapping between blocks) a

large enough 2-D area, then one can produce an inter-

leaved array. In this interleaved array, each element in

any arbitrarily-shaped, connected subset consisting of t

elements is labeled with a distinct number. All numbers of

the same kind form a code-worde. Consequently, the

error burst of size t can be corrected by one-random-

error-correction codes.

Comments and Discussions

Though it can effectively spread arbitrarily-shaped 2-D

burst errors of size t, the above characterization of the

technique [5] does reveal some of its limitations. Firstly,

the technique is based on the size of a burst of errors, t.

For combating bursts of errors of size t equal to a specif-

ic t0, one needs to implement an algorithm with a set of

parameters to construct an interleaving code.  When the

size t increases, i.e., t > t0, one needs to implement an

algorithm with a new set of parameters to construct

another interleaving code. That is, the interleaved array

constructed for a specific t0 may not be able to correct a

burst of errors of size t as t > t0. Since in reality, e.g., in an

application of 2-D bar-codes, the size of error bursts may

not be known exactly a priori, the implementation of the

technique may become cumbersome and ineffective. 

Figure 7. 2-D successive doubling. 
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Secondly, when the actual size of a burst, t, is less than

t0, with which the interleaving algorithm is applied, the

technique is no longer optimal. This can be justified as

follows. In [5], the optimality means that the interleaving

degree reaches its lower bound. As mentioned before, in

the 2-D case the interleaving degree, associated with an

interleaving scheme designed for some burst size t in [5],

is guaranteed to reach its lower bound. Furthermore it is

known that the lower bound of the interleaving degree is

a monotonically increasing function of the burst size t.

Specifically, the lower bound is t2/2 for even t and

(t2 + 1)/2 for odd t. Therefore, with respect to the imple-

mentation of the interleaving scheme designed for a burst

size t0, when the actual size of an error burst, t, is smaller

than t0, the achieved interleaving degree with t0 is larger

than the lower bound that corresponds to t. That is, the

interleaving scheme designed for a burst size t0 is not

optimal for a smaller bust size, t.

In many applications, the size of a given 2-D or M-D

array is known. For instance, a digital (watermarked)

image may be known to have a size of 512 by 512 pixels.

Under the circumstances, one may wonder if it is possible

to develop a 2-D interleaving technique, which is optimal

for all (if possible) or (at least) for many of the possible

error burst sizes. Therefore, it can be implemented only

once for a given 2-D array. Motivated by these observa-

tions, a novel 2-D interleaving technique, called succes-

sive packing approach, has been proposed [6].

M-D Interleaving II: Successive Packing 

Given that digital images, video frames, charge-coupled

devices (CCDs), and 2-D bar-codes are all in the form of 2-

D arrays, without loss of generality, square arrays of

2n
×2n are considered here. The utilization of 2n

×2n

arrays will be further justified later.

2-D Code-words and 1-D Sequence of Code Symbols

In general, the code-words in the 2-D case are of 2-D in

nature. 1-D code-words, either row-type, or column-type,

or other-type, can be considered as special cases of 2-D

code-words. The successive packing technique is able to

handle 2-D code-words because all the code symbols in

the 2-D code-words are first linked into a 1-D sequence of

code symbols. Without loss of generality, the quartering

indexing scheme is described below for illustrative pur-

poses. That is, a square array of 2n
×2n is viewed as con-

sisting of four quadrants, each quadrant itself consisting

of its own four quadrants; the process repeats itself until

it reaches a level where all four quadrants are of 2×2. This

is referred to as 2-D successive doubling, as shown in

Figure 7. These 2×2 arrays are the fundamental structure.

When the quartering indexing scheme is applied, each

code symbol, assigned to an element of the array has a

pair of subscripts. The first subscript represents the

index of the 2×2 array in which the code symbol is locat-

ed, while the second subscript indicates the index of the

code symbol within the 2×2 array. To convert the quar-

tering index, si, j into the 1-D index, sk, we apply the fol-

lowing operation: k = 4i + j.

Quartering indexing is not the only choice for the pro-

posed interleaving technique. Actually, code-words can

be of any shape. Several shapes of a code-worde consist-

ing of four code symbols are shown in Figure 8. Obvious-

ly, for any given shape of 2-D code-words, it is always

possible to label the code symbols into a 1-D sequence

with a possibly more complicated bookkeeping scheme.

The Successive Packing Algorithm

Now we present the successive packing interleaving tech-

nique in the 2-D case in a general and compact way, that

allows straightforward generalization to the M-D case.

The 2-D interleaving using the successive packing

proceeds as follows. Consider a 2-D array of 2n
×2n for 2-

D interleaving. 

When n = 0, i.e., an array of 1×1 is considered for

interleaving, the  interleaved array is the original array

itself. That is,

S1 = [s0] (1)

where s0 represents the element in the array, and S1 the

array. Note that the subscript in the notation S1 repre-

sents the total number of elements in the interleaved

array. Hence, when n = 1, i.e., for a 2×2 array, the inter-

leaved array is denoted by S4; when n = 2, the inter-

leaved array is S16. In general, for a given n, the

interleaved array is denoted by S22n .

(b) Row code-word

(d) Bent line code-word

(a) Square code-word

(c) Column code-word

Figure 8. Four different types of 2-D code-words having four

code symbols.



The procedure is carried out successively. Given an

interleaved array Si, the interleaved array of S4i can be

generated according to

S4i =

[

4 × Si + 0 4 × Si + 2

4 × Si + 3 4 × Si + 1

]

(2)

where the notation of 4 × Si + k with k = 0, 1, 2, 3 repre-

sents a 2-D array that is generated from Si. This indicates

that 4×Si + k has the same dimensionality as Si. Further-

more, each element in 4×Si + k is indexed in such a way

that its subscript equals to four times of that of the cor-

responding element in Si plus k. By the corresponding ele-

ment, we mean the element occupying the same position

in the 2-D array. It appears that S4i is derived from Si by

packing Si four times. This explains why the term succes-

sive packing is used.

According to the above rule, we have

S4 =

[

4 × S1 + 0 4 × S1 + 2

4 × S1 + 3 4 × S1 + 1

]

=

[

s0 s2

s3 s1

]

. (3)

Similarly, we have S16 as follows. 

S16 =

[

4 × S4 + 0 4 × S4 + 2

4 × S4 + 3 4 × S4 + 1

]

=









s0 s8 s2 s10

s12 s4 s14 s6

s3 s11 s1 s9

s15 s7 s13 s5









. (4)

The resemblance between the

successive packing interleaving and

the fast Fourier transform (FFT) is

observed. Firstly, the successive

doubling mentioned before is also

used in FFT. Secondly, after the suc-

cessive doubling, what is left here is

a 2×2 basis array, which is expressed

in (3) and depicted in Figure 9. This

2×2 basis array is the counterpart of

the basic butterfly computation

structure used in FFT. Thirdly, both techniques work on a

group of data whose dimensionality is an integer power of

two to facilitate utilization of digital computers.

Main Results

It has been proved in [6] that in a 2-D interleaved array

of 2n
×2n, A, generated with the successive packing

technique, any square error burst of 2k
×2k with

1 ≤ k ≤ n − 1 and any rectangular error burst of 2k
×2k+1

or 2k+1
×2k with 0 ≤ k ≤ n − 1 can be spread so that each

element in the burst falls into a distinct block in the de-

interleaved array, where the block size, K, is 22n−2k for

the burst of 2k
×2k, and 22n−2k−1 for the burst of 2k

×2k+1

or 2k+1
×2k. This indicates that, if a distinct code symbol

is assigned to each element in a block and all the code

symbols associated with the block form a distinct code-

worde, then this technique guarantees that the error

burst can be corrected with a one-random-error-correc-

tion code, provided the code is available. (Note that a

code capable of correcting one code symbol error with-

in a code-worde of two code symbols does not exist in

reality. Therefore, though the error burst of 2n−1
×2n or

2n
×2n−1 can be effectively spread in the de-interleaved

arrays as described above, they in fact cannot be cor-

rected with a one-random-error-correction code.) Fur-

thermore, the interleaving degree equals to the size of

the burst error, hence minimizing the number of code-

words required for an interleaving scheme. In other

words, the interleaving degree obtained by the succes-

sive packing interleaving is indeed the lower bound [6].

In this sense, the successive packing interleaving tech-

nique is optimal. If a coding technique has a strong ran-

dom-error-correction capability, say, it can correct one

error in every code-worde of size eight, then any error

burst of 2n−1
×2n−2 or 2n−2

×2n−1 can be corrected. If a

code, on the other hand, has a weaker random-error-

correction capability, say, it can only correct one ran-

dom error within a code-worde of size 64, then only

smaller error bursts, i.e., any burst of 2n−3
×2n−3 in the

interleaved array can be corrected by the successive

interleaving. 

Performance Comparison

In this subsection, the performance of the three tech-

niques—the UPS’ technique, the t-interleaved array inter-

leaving technique [5], and the SP interleaving technique

[6]—is compared by means of an example, followed by

some general comments.

An Example

Figure 10 shows the interleaved 2-D arrays of 8×8

obtained by applying the three techniques and the de-

interleaved array, from which the following observations

can be made.

Firstly, look at an error burst of 2×2 located in the cen-

ter of the interleaved arrays. It involves the following four

elements: s20, s62, s43, s1 in the interleaved array using SP;

s35, s27, s28, s36, using UPS’; and s35, s43, s60, s4 using the t-

interleaved array method. After de-interleaving, SP spreads

the four elements in the error burst into four different

quadrants, while either the UPS’ method or the t-inter-

leaved array method has two error elements located with-

in one quadrant. This implies that the SP interleaving can

spread error burst farther away in 2-D sense, and if a code

can only correct one random error in each code-worde
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consisting of 16 code symbols, then only SP can correct the

2×2 error burst. In other words, only SP can correct the

2×2 error burst with four code-words, while the other two

methods require more than four code-words.

Secondly, it is noticed that, with respect to the inter-

leaved 2-D array of 8×8, SP can optimally spread and cor-

rect with an one-random-error-correction code the

following types of bursts: any burst of 2×4, 4×2, or 2×2,

according to the Main Results presented above; while the

t-interleaved array method can spread and correct with a

one-random-error-correction code arbitrarily-shaped

error bursts of size four with an interleaving degree of

eight (refer to [5]).  Since any error burst of size four in an

array of 8×8 can be entirely included in either a burst of

2×2, or a burst of 2×4, or a burst of 4×2, it is clear that SP

can also spread and correct with a one-random-error-cor-

rection code any arbitrarily-shaped error burst of size

four in the interleaved 2-D array of 8×8. As far as the effi-

ciency is concerned, if a burst of size four is of 2×2, then

as shown above, SP reaches an interleaving degree of

four, and hence is more efficient. If, more general, a burst

of size four is included in a burst of 2×4 or 4×2, then the

interleaving degree is 8, indicat-

ing that in this case SP achieves

the same efficiency as the tech-

nique [5] does.

Thirdly, in addition to the

three types of bursts described

above, SP can also optimally

spread and correct with a one-

random-error-correction code

any bursts of 1×2, 2×1, or 4×4

within the interleaved array of

8×8, according to the Main

Results presented earlier. Thus

SP is  versatile and effective.

Comment 1

Both examples presented  in

Introduction (Figure 3) and above

demonstrate that the UPS’

approach (using 1-D interleaving

plus a special writing procedure

to form a 2-D interleaved array)

does not work well in combating

2-D error bursts. 

Comment 2

While the SP technique works

for 2-D arrays of 2n
∧ 2n , the

technique of [5] works for 2-D

arrays of m∧m, where m = t2/2

for even t and m = (t2 + 1)/2 for

odd t with t being the size of error size t = 4 can be gen-

eralized to the case of any error burst of size t = 2p,

where p is a positive integer [6]. That is, both the t-inter-

leaved array technique and the successive packing tech-

nique can be applied to a square array of 22p−1
×

2p−1 ,

and both can correct optimally an arbitrarily-shaped

error bursts of size   t = 2p (with the same interleaving

degree m = t2/2 = 22p − 1).  It has been noticed that,

however, SP can optimally correct other error bursts of

different sizes according to the Main Results presented

earlier in this article. Therefore, SP is versatile.

Comment 3

Needless to say that there is a certain constraint, yet

practical, on using the SP technique. That is, it is assumed

that given 2-D arrays are of 2n
×2n shape, and the error

bursts considered are of 2k
×2k shape with 1 ≤ k ≤ n − 1,

or 2k
×2k+1 or 2k+1

×2k with 0 ≤ k ≤ n − 1. To our best

knowledge, 2-D burst error-correction codes (not  involv-

ing interleaving) [4, 10] address error bursts of rectangu-

lar shapes only. Furthermore, as discussed previously,

the assumption made with SP is similar to that made in
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the development of the fast Fourier transform technique,

i.e., both are based on integer powers of 2 (base-2). There-

fore, the assumption is practical and reasonable. 

Future Research

How to make SP workable for a 2-D array having dimen-

sionality different from 2n
×2n, say, 3n

×3n (base-3) is a

future research subject. It is expected that other basis

arrays different from the 2×2 basis array depicted in

Figure 9 may be necessary, and combinations of differ-

ent basis arrays may be able to solve this problem. In

both interleaving techniques [5, 6], the ECC with one-

random-error-correction capability is assumed. In [16,

17], a more general situation has been examined for the

t-interleaved array method. Therefore, the investigation

in this regard for the successive packing approach may

be another subject for future research. 

Applications of 2-D/3-D SP Interleaving Techniques to

Enhance Robustness of Image/Video Data Hiding 

Recently, watermarking and data hiding have received

extensive attention. Data hiding is a process to hide some

data (representing some useful information) into a cover

media imperceptibly. The hidden data may be used for

authentication, copyright protection, and data system

security. Robustness is one of the basic requirements for

imperceptible data hiding in some applications. Error cor-

rection codes have been adopted to improve the robust-

ness of watermark signal in [e.g., 18, 19]. As analyzed,

however, ECC is only suitable to correct random errors,

and will not be efficient for correction of bursts of errors.

When cropping or random rows/columns removal takes

place in a marked image, often called stego-image, bursts

of errors do occur in watermarked still images. Frame

loss and 3-D error clusters are typical bursts of errors

that can occur to watermarked video sequences. Trans-

mission error may be another source of bursts of errors.

When bursts of errors occur, how to extract and detect

the hidden data correctly becomes a challenge.  While

using ECC alone to correct these bursts of errors are not

efficient, surprisingly, combating bursts of errors using an

interleaving technique, a common tool used in communi-

cation systems, has been neither recognized nor

addressed so far in the data hiding community.

In this section, we report on recent investigations  on

applying 2-D/3-D successive packing interleaving tech-

niques to combat bursts of errors occurred in water-

marked still images/video sequences, [20]. Experimental

results demonstrate that the robustness of hidden data

inside still images/video sequences against bursts of

errors is significantly improved by using 2-D/3-D SP

interleaving followed by ECC.

2-D SP Interleaving for Still Image Data Hiding

Consider the “Lena” image (256×256×8) shown in

Figure 12 (a), a widely used image for image processing

experiments. The data hiding is carried out in the block

discrete cosine transform (DCT) domain. First, the

image is split into non-overlapped blocks of 8×8 pixels

each. Then, DCT transform is applied to each block. The

largest three AC DCT coefficients are used to embed

bits. If the bit to be embedded is “1”, to the coefficient is

added  a quantity � (e.g., � = 6 is empirically used in

our simulations). If the bit is “0”, from the coefficient �

is subtracted. We use six bits to represent one symbol.

Two types of ECC are used in our simulations. In simula-

tions involving 2-D bursts of errors and cropping, we

used the BCH (31, 6) code. For random rows/columns

removal, also known as jitter attack, we used the BCH

(63, 7) code. Hence, 99 symbols are embedded in the for-

mer case and 48 symbols in the latter case. The image is

scanned three times. Each scan embeds 1/3 of the total

bits (about 1024 bits) in an AC coefficient having the

same position within each block. These 1024 bits are

first interleaved using the 2-D SP interleaving technique,

and are then embedded into the AC coefficients. For the
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data extraction, parts damaged by the error

burst are replaced with “0”s. Without 2-D

interleaving, we simply embed bits block by

block, say, from left to right, from top to bot-

tom through out the whole image. In each

block, we embed three bits. The experimental

results are shown in Figures 12 to 14, respec-

tively. 

In Figure 12, the horizontal axis represents

the size of the 2-D error burst. For example,

size 2 means that the error burst is a square

area of 2×2 blocks (each block is of 8×8 pix-

els). That is, the square error burst has the

size of 16×16 pixels. The vertical axis stands

for the symbol error rate (SER). In the simula-

tion, we consider all possible positions of the

error burst. Then the arithmetic average of

SERs corresponding to the bursts occupying

all possible positions is reported in the figure.

As shown in the figure, without interleaving,

the SER emerges when the error burst size is

larger than four. With 2-D SP interleaving, the

SER is still zero even when the error burst size

is 16. This indicates that even when a quadrant

of the marked Lena image has been in error,

the SER is still zero, implying significant

improvement of robustness. Note that when

the error burst size is larger than 22, the SER

with interleaving will be larger than that with-

out interleaving. In this case, almost half of the

image has been damaged. The SER for both

algorithms with and without interleaving has

been almost 50%, practically rendering both

algorithms useless in this case. 

Cropping is a test function of the well-known

benchmark software StirMark [21]. In Figure

13, the horizontal axis represents the size of

cropping. For example, a cropping of 10 means

that five percent of the stego-image is cropped from the

top, from the bottom, from the left, and from the right

while keeping the central part intact. That is, with respect

to a value, say, x, along the horizontal axis, cropping will

be conducted from four boundaries of an image inwards

by x/2%, while leaving the central portion intact. From

this figure, it is observed that with interleaving the SER

remains to be zero even when the cropping size is 10,

while without interleaving, the SER emerges when the

cropping size is only two. Obviously, the robustness

against cropping attack has been improved with inter-

leaving. Note that when the cropping size is close to 50, in

which case almost all the image has been cropped, the

SER with interleaving is  higher than that without inter-

leaving.

Jitter attack is another testing function of the Sir-

Mark. It randomly removes a few rows and/or a few

columns. The experimental results for jitter attack are

depicted in Figure 14. The horizontal axis represents the

number of columns and/or rows randomly removed,

while SER is represented by the vertical axis. It is

observed that the SER with interleaving is constantly

well below that without interleaving. 

3-D SP Interleaving for Video Sequence Data Hiding

A video sequence is a set of successive frames. Each

frame is a 2-D image. Here we consider two types of

bursts of errors that may occur to the data embedded in

a video sequence. The first type of error bursts is frame

loss. Frame loss may occur in video transmission, espe-

39FIRST QUARTER 2004 IEEE CIRCUITS AND SYSTEMS MAGAZINE

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cropping
S

y
m

b
o
l 
E

rr
o
r 

R
a
te

With 2D Interleaving   

Without 2D Interleaving

Figure 13. Test results of cropping.

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Number of Rows/Columns Randomly Removed

S
y
m

b
o
l 
E

rr
o
r 

R
a
te

With 2D Interleaving  

 

Without 2D Interleaving

Figure 14. Test results of random rows/columns removal.



cially when the video is transmitted through a bursty and

noisy channel. The second type of error bursts is what is

known as 3-D error bursts. Since there is a high correla-

tion among the successive frames, a 2-D error burst

sometimes leads to  errors approximately in the same

location of the succeeding frames, thus causing a 3-D

error burst.

For these two types of error, again, we conducted our

simulation in a way similar to that used for image data

hiding. The testing video sequence has 32 frames. Each

frame is a gray image of 256×256. We split each frame

into non-overlapping blocks of 8×8 pixels each. As a

result, we have 32×32×32 blocks within the entire

sequence. DCT transform is applied to each block and

the data bits are embedded into the three largest AC

DCT coefficients in each block. Again, six bits are used

to represent one symbol and the BCH (31, 6) code is

used. Data embedding is carried out in three scans. In

each scan, we embed 32 × 32 × 32 = 32, 768 bits (equiv-

alent to 1,057 symbols) in an AC coefficient having the

same position in each block. These 32,768 bits are first

interleaved using the 3-D SP interleaving technique,

which is a straightforward extension from 2-D SP to the

3-D case [22, 23], before being embedded into the AC

coefficients. In the data extraction, error parts are filled

with “0”s. Without 3-D interleaving, we simply embed

bits block by block, say, from left to right, from top to

bottom, and from front to rear. In each block, we embed

three bits. Figures 15–16 show the simulation results,

demonstrating that 3-D interleaving can greatly improve

the robustness of data hiding.

In Figure 15, the horizontal axis denotes the number of

lost frames (that are consecutive). From this figure, it is

seen that when eight frames are lost, the SER with inter-

leaving is almost zero while that without interleaving is

about 25 percent. Note that when 15 frames are lost, the

error rate with interleaving will be higher than that with-

out interleaving, in which case almost half of the 32

frames are lost. The SER for both algorithms with and

without interleaving is almost 50%, implying that the hid-

den data have been severely damaged.

In Figure 16, the horizontal axis is the size of the 3-D

error burst. For example, size 2 means that the error

burst is a cubic volume of 2×2×2 blocks (each block is of

8×8 pixels). That is, the cubic error burst has the  size of

16×16 pixels in two consecutive frames. With interleav-

ing, the SER is still zero even when the error burst size is

16 (one eighth of the blocks is lost), while without inter-

leaving the SER is more than 12%. Clearly, the significant

improvement on the robustness of hidden data against 3-

D bursts of errors has been achieved. 

Summing up, our initial investigation of applying 2-

D/3-D SP interleaving techniques to enhance the robust-

ness of hidden data in still images/video sequences has

been reported. It is shown that either in still image or in

video sequence data hiding, the SP interleaving can

greatly enhance the robustness of hidden data against

bursts of errors. Therefore, 2-D/3-D successive packing

interleaving can play a promising role in enhancement of

robustness in image/video data hiding. It is expected that

the 2-D interleaving that can make 2-D data more robust

and reliable can also find important applications in the

areas such as 2-D bar-codes and holographic storage.

Conclusions

In this article,  we first distinguish bursts of errors from

random errors. Then we illustrate the philosophy of inter-

leaving by means of an example, i.e., interleaving can

convert a bursty channel into a random-like one. Conse-

quently, interleaving, together with a wide spectrum of

readily available random error correction codes, can

combat  effectively bursts of errors.
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Figure 15. Test results of video frame loss.
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Figure 16. Test results of 3-D error burst.



This article focuses on the state of the art of 2-D/3-D

interleaving techniques, i.e., the fundamental ideas, algo-

rithms, and performances of the t-interleaved array and

the successive packing techniques. In a former technique,

Blaum, Bruck and Vardy have defined an M-D burst of

errors as an arbitrarily-shaped connected volume, and

the optimality of M-D interleaving. They have formulated

fundamental building blocks and proposed to tile closely

building blocks to form t-interleaved arrays to combat

bursts of errors. They have proved that the optimality

can be guaranteed in the 2-D case, but not in the 3-D case.

In the two-dimensional case, for each given burst size, t0,

a specific algorithm is implemented, which can correct

arbitrarily-shaped error burst of size t0 and is optimal.

When t increases (t > t0), the algorithm with a set of new

parameters needs to be implemented once again in order

to correct  larger error bursts. When t decreases (t < t0),

the interleaved array obtained with t0 is not optimal any

more. However, in reality the size of error bursts is nor-

mally not known in advance, while the size of 2-D/3-D

arrays is often given. This somewhat restricts the practi-

cal utilization of the technique. Based on these observa-

tions, the successive packing approach has been

developed by Shi and Zhang. It can be implemented for a

given 2-D/3-D array once, and has been proved to remain

optimal for a set of bursts of errors of different sizes.

Therefore, it is practical. The performance comparison

between the UPS' approach (using 1-D block interleaving

plus a 2-D writing procedure), the t-interleaved array

approach, and the successive packing approach is illus-

trated via an example along with observations and com-

ments. It has been observed that both the t-interleaved

array technique and the successive packing technique

can be applied to a square array of 22p−1
× 22p−1 where p

is a positive integer, and both can correct an arbitrarily-

shaped error burst of size 2p with the same interleaving

degree. The SP technique, however, can correct optimal-

ly some other error bursts of different sizes. Therefore, SP

is versatile. Successive doubling and 2×2 basic array are

the key elements of the successive packing technique,

bearing a resemblance to the mechanism of the fast Fouri-

er transform. Some future research on the successive

packing approach has been discussed.

As a practical application, we have applied succes-

sive packing 2-D/3-D interleaving to enhance the robust-

ness of still image/video sequence data hiding. The

initial investigation in this regard is promising and has

demonstrated significant improvements of the robust-

ness of image/video data hiding.
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