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In 1986, Mosmann and Coffman introduced the concept of distinct 
types of helper T cells, which was based on the types of cytokines that T cells 
produce when they are stimulated to differentiate. They named these lympho-

cytes type 1 helper T cells (Th1 cells) and type 2 helper T cells (Th2 cells).1 Th1 cells 
produce large quantities of interferon-γ, induce delayed hypersensitivity reactions, 
activate macrophages, and are essential for the defense against intracellular patho-
gens (Fig. 1). Th2 cells produce mainly interleukin-4 and are important in inducing 
IgE production, recruiting eosinophils to sites of inflammation, and helping to 
clear parasitic infections (Fig. 1). These distinctions allowed the assignment of a 
specific functional phenotype to helper T cells based on the effector cytokines that 
they produce. The production of effector cytokines underlies the term “effector 
helper T cells.”

Or igins a nd Func tions of Th17 Cell s

Helper T-Cell Subgroups

More recently, T cells were shown to produce cytokines that could not be classified 
according to the Th1–Th2 scheme. Interleukin-17 was among these cytokines,2 and 
the T cells that preferentially produce interleukin-17, but not interferon-γ or inter-
leukin-4, were named Th17 cells.3,4 Since these T cells constitute a distinct lineage, 
we now have three types of effector helper T cells: Th1, Th2, and Th17 5 (Fig. 1).

The mechanism of induction and the effector functions of this new class of 
effector helper T cells are just beginning to be understood. Their function in clear-
ing specific types of infectious organisms, their role in inducing inflammation, 
and the molecular events that cause them to differentiate are the focus of impor-
tant studies in immunology. Like Th1 and Th2 cells, Th17 cells produce a group 
of distinctive cytokines — interleukin-17 (also called interleukin-17A), interleukin-
17F, interleukin-22, and interleukin-21 — all of which participate in orchestrating 
a specific kind of inflammatory response (Table 1).

Differentiation of Th17 Cells

We will first describe Th17 cells in mice, since the first discoveries involving these 
cells were made in mice. Although there are major analogies to the development of 
Th17 cells in humans, some differences have been observed. Cytokines produced 
by cells of the innate immune system govern the differentiation of helper T cells. 
The cells of the innate immune system are the first line of defense against patho-
gens; their pattern-recognition receptors, which are not specific for any particular 
epitope, allow them to respond to a wide variety of microbial invaders by producing 
cytokines that activate T cells of the adaptive immune system. Interferon-γ and 
interleukin-12 drive naive T cells into the Th1 pathway, whereas interleukin-4 initi-
ates the differentiation of naive T cells into Th2 cells6 (Fig. 2). At the molecular 
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level, the differentiation of Th1 and Th2 cells re-
quires lineage-specific transcription factors: T-
bet for Th1 cells7 and GATA3 and c-Maf for Th2 
cells.8,9 These factors activate the hallmark Th1 
and Th2 cytokine genes, IFN-γ and IL-4, respec-
tively (Fig. 2).

Interleukin-12 is also important for the dif-
ferentiation of Th1 cells. It has two subunits, 
p35 and p40. Another protein, p19, which has no 
activity of its own, combines with the p40 sub-
unit of interleukin-12 to form a unique hetero
dimeric cytokine called interleukin-23.10 Thus, 
interleukin-12 and interleukin-23 have in common 
the p40 subunit, but they also have unique sub-
units, p35 (interleukin-12) and p19 (interleukin-
23). In studies of genetically deficient mice that 
specifically lacked interleukin-23 or interleukin-
12, the loss of interleukin-23 made the animals 
highly resistant to the development of autoim-
munity and inflammation, whereas the loss of 
interleukin-12 did not.11,12 These results suggest 
that it is not interleukin-12 and Th1 cells that are 
required for the induction of autoimmune-medi-
ated inflammation but rather interleukin-23. They 
also suggest that T cells that differentiate under 
the influence of interleukin-23 are key players in 

the induction of autoimmunity. This concept is 
supported by experiments in which the induc-
tion of inflammation and autoimmunity in mice 
was made possible by injecting interleukin-17–
producing T cells that had been induced to differ
entiate and proliferate in vitro by interleukin-23.13 
Thus, it appears that the interleukin-23–Th17 
axis is a predominant pathway to the induction 
of autoimmune disease.

Interleukin-23 can expand a population of 
Th17 cells in vitro even when they are rendered 
genetically deficient in the master transcription 
factors of Th1 and Th2 cells3,4; this observation 
confirms that Th17 cells are a lineage that is 
distinct from Th1 and Th2 cells. The finding 
that interleukin-23 is a differentiating cytokine 
for Th17 cells poses a major conceptual problem, 
however, because naive T cells do not express 
receptors for interleukin-23; thus, highly puri-
fied naive T cells cannot differentiate into Th17 
cells in the presence of interleukin-23.14

The problem took a new turn when three in-
dependent groups simultaneously discovered that 
a combination of transforming growth factor β 
(TGF-β) plus interleukin-6 induced the differen-
tiation of naive T cells into Th17 cells.14-16 This 

Figure 1. Helper T-Cell (Th) Subgroups and Effector Functions.

The cytokine profile (including key cytokine receptors as denoted by R), the effector cell type that is activated, and 
the corresponding types of infections are shown for each Th subgroup.
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finding was surprising, since TGF-β had been 
classified as an immunosuppressive cytokine, not 
as an inducer of T-cell differentiation. Further-
more, naive T cells that are exposed to TGF-β 
alone express forkhead box P3 (Foxp3), the mas-
ter transcription factor that induces regulatory 
T cells — T cells that suppress inflammation 
and inhibit autoimmunity.17 A relevant finding is 
that interleukin-6 is a potent inhibitor of TGF-β–
driven induction of Foxp3+ regulatory T cells.16 
Interleukin-6 not only suppresses the generation 
of these cells, but together with TGF-β, it also 
forces naive T cells to express interleukin-17 and to 
become Th17 cells. Thus, Th17 cells and Foxp3+ 
regulatory T cells are reciprocally related: TGF-β 
induces naive T cells to develop into suppressor 
regulatory T cells, whereas interleukin-6 switches 
the transcriptional program initiated by TGF-β 
in a way that induces the development of Th17 
cells.

Th17 cells express a unique transcription fac-

tor, ROR-γt,18 which induces transcription of the 
IL-17 gene in naive helper T cells and is required 
for the development of interleukin-17 producing 
cells in the presence of interleukin-6 and TGF-β.19 
ROR-γt must act in cooperation with other tran-
scription factors, including ROR-α, signal trans-
ducer and activator of transcription 3 (STAT3), 
IRF-4, and runt-related transcription factor 1 
(Runx1), for full commitment of precursors to the 
interleukin-17 lineage.20-23 Activation of ROR-γt 
also causes expression of the receptor for inter-
leukin-23, indicating that interleukin-23 acts on 
T cells that are already committed to the Th17 
lineage. Exposure of developing Th17 cells to 
interleukin-23 not only enhances the expression 
of interleukin-17 but also induces interleukin-22 
and suppresses interleukin-10 and interferon-γ, 
which are not normally associated with the Th17 
phenotype.24 Thus, interleukin-23 is essential for 
stabilizing the Th17 phenotype.

The interferon-γ and interleukin-4 produced 

Table 1. Sources and Functions of Key Cytokines.*

Cytokine Main Cell Source Function

Interferon-γ Th1 cells, natural killer cells, 
natural killer T cells

Cell-mediated immunity; control of intracellular pathogens; in­
hibition of Th17 pathway

Interleukin-1 Monocytes, other cells Proinflammatory cytokine; induction of Th17 cells

Interleukin-4 Th2 cells, natural killer T cells Antibody-mediated immunity; control of parasitic infections; 
antiinflammatory effect by inhibition of interleukin-1, TNF, 
and interleukin-6 production by monocytes; inhibition of 
Th17 pathway

Interleukin-6 Monocytes, other cells Induction of acute-phase proteins; effects on B cells; induction 
of Th17 cells

Interleukin-8 Monocytes, other cells Major chemokine for neutrophils

Interleukin-12 Monocytes, dendritic cells Induction of Th1 pathway; acts in synergy with interleukin-18

Interleukin-17 Th17 cells, natural killer cells, 
natural killer T cells

Proinflammatory cytokine; control of extracellular pathogens; 
induction of matrix destruction; synergy with TNF and inter­
leukin-1

Interleukin-18 Monocytes, dendritic cells Induction of Th1 pathway; acts in synergy with interleukin-12

Interleukin-21 Th17 cells Amplification of Th17 pathway in autocrine fashion

Interleukin-22 Th17 cells Induction of epithelial-cell proliferation and of antimicrobial 
proteins in keratinocytes

Interleukin-23 Monocytes, dendritic cells Th17 expansion and stabilization

Interleukin-25 Th2 cells Interleukin-17 family member; induction of Th2-associated cyto­
kines; inhibition of interleukin-1 and interleukin-23

TGF-β Many cells Induction of Foxp3+ regulatory T cells in the absence of inter­
leukin-6; together with interleukin-6, interleukin-21, and 
interleukin-1β, induction of Th17 cells

TNF Monocytes, dendritic cells Proinflammatory cytokine; acts synergistically with interleukin-17

*	TGF-β denotes transforming growth factor β, and TNF tumor necrosis factor.
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by Th1 and Th2 cells, respectively, amplify the 
differentiation of these cells in an autocrine loop. 
Interleukin-17, by contrast, is neither a growth 
factor nor a differentiation factor for Th17 cells; 
thus, it cannot amplify Th17 responses. However, 
a member of the interleukin-2 cytokine family 
— interleukin-21, which is produced in large 
amounts by mature Th17 cells — can, together 
with TGF-β, amplify Th17-cell differentiation25‑27 
(Fig. 2); in the absence of interleukin-21, the ex-
pansion of Th17 cells is defective. In short, there 
is also an autocrine loop for Th17 cells, but in this 
loop, TGF-β and interleukin-21 are major factors.

Human Th17 Cells

Initially, TGF-β plus interleukin-6 were not con-
sidered to be differentiation factors for human 
Th17 cells. On the contrary, it was thought that 
the generation of human Th17 cells from naive 
precursors was inhibited by TGF-β and promot-
ed by interleukin-6 plus interleukin-1β.28,29 The 
studies underlying these ideas, however, did not 
use genuinely naive T cells as a starting popula-

tion and did not control for endogenous sources 
of TGF-β such as serum and platelets. When naive 
T cells from cord blood were cultured in serum-
free medium, the generation of Th17 cells as a 
result of the interaction between TGF-β and an 
“inflammatory” cytokine was confirmed in hu-
man T cells.30,31 It appears that TGF-β plus inter-
leukin-21,30 TGF-β plus a combination of inter-
leukin-6 and interleukin-23, or interleukin-6 plus 
interleukin-2131 can induce the expression of 
ROR-c, the human counterpart of murine ROR-γt 
(Fig. 3).

As with Th1 and Th2 cells, no single surface 
marker is specific for Th17 cells. However, coex-
pression of the chemokine receptors CCR4 and 
CCR632 or expression of CCR2 in the absence of 
CCR533 appears to define human Th17 cells. 
(Chemokines induce chemotactic responses in 
neighboring cells that display receptors for 
chemokines, of which there are four main types: 
CXC, CC, CX3C, and XC.) Some memory helper 
T cells produce both interferon-γ and interleu-
kin-17,34 and these cells express CXCR3 in addi-

Figure 2. Differentiation of Mouse Th17 Cells.

Naive mouse T cells can differentiate into one of three effector helper T-cell (Th) subgroups. Each pathway is under 
the control of a different set of cytokines. The Th17 pathway is under the control of transforming growth factor β 
(TGF-β) plus interleukin-6 and interleukin-1 or TGF-β plus interleukin-21 followed by interleukin-23. This pathway is 
inhibited by interferon-γ and interleukin-4. The transcription factor (T-bet, ROR-γt, or GATA3) characteristic of each 
pathway is shown. R denotes receptor.
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tion to CCR4 and CCR6. They also appear to ex-
press both the T-bet and ROR-c transcription 
factors. In reactive lymph nodes and inflamed 
tissues, large cells with a resemblance to plasma 
cells produce interleukin-17 (Fig. 3), suggesting 
that Th17 cells acquire an activated phenotype at 
the tissue site.35

In ter leuk in-17 a nd Th17 Cell s  
in Dise a se

Responses to Infectious Agents

Th17 cells can rapidly initiate an inflammatory 
response that is dominated by neutrophils (Fig. 1); 
indeed, acute inflammation in which neutrophils 
are prominent is typical of Th17-driven inflam-
mation. Immunity mediated by Th17 cells is par-
ticularly important at epithelial and mucosal sur-
faces, as indicated by the pattern of expression 
of their chemokine receptors and effector cyto
kines.36,37

A number of pathogens induce mainly Th17 
responses (Fig. 1). They include gram-positive 

Propionibacterium acnes, gram-negative Citrobacter 
rodentium, Klebsiella pneumoniae, bacteroides species 
and borrelia species, Mycobacterium tuberculosis, 
and fungi such as Candida albicans.14,38-42 To rid 
the body of fungi and certain extracellular bac-
teria requires inflammation of the type engen-
dered by Th17 cells. The role of interleukin-17 
and Th17 cells in clearing infections has been 
shown in the hyper-IgE syndrome, in which a 
mutation in STAT3, one of a family of transcrip-
tion activators, nullifies the ability to mount Th17 
responses. Patients with this disorder have re-
current C. albicans and Staphylococcus aureus infec-
tions in the skin and lungs.43,44

The Interleukin-23–Th17 Pathway in Chronic 
Inflammation and Autoimmunity

Unregulated Th17 responses or overwhelming 
interleukin-17 production from T cells and other 
sources is associated with chronic inflammation 
and severe immunopathologic conditions. Inter-
leukin-17 was first shown to induce interleukin-6 
in fibroblasts2 and in cultured synoviocytes in 

Figure 3. Differentiation of Human Th17 Cells.

Key cytokines for the development of human Th17 cells are transforming growth factor β (TGF-β) plus interleukin-6, interleukin-21, and 
the inflammatory cytokine interleukin-1, followed by interleukin-23. In addition to the classic Th1 and Th17 subgroups, a mixed Th1–Th17 
subgroup has been identified, which expresses both T-bet and ROR-c. In inflammatory tissues, fully differentiated cytokine-producing 
cells have been observed. The micrographs show immunohistochemical staining of the cytoplasm for antibodies against interleukin-17 
(brown) in human blood CD4+ T cells activated in vitro for 24 hours and a plasma-cell–like cell in a section of rheumatoid synovium. 
These cell have lost their T-cell receptor (TCR) and the CD3 complex. TNF denotes tumor necrosis factor.
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patients with rheumatoid arthritis45 (Fig. 4). Most 
parenchymal cells express interleukin-17 recep-
tors46 (Table 2), and signaling through these 
receptors induces target cells to produce pro
inflammatory factors such as interleukin-6, inter-
leukin-1, tumor necrosis factor (TNF), CXCL8 (in-
terleukin-8), and matrix metalloproteinases.2,3,56 
Through the production of matrix proteinases, 
interleukin-17 can also destroy extracellular ma-
trix and cause bone resorption. In bone, interleu-
kin-17 stimulates osteoblasts to express the re-
ceptor activator of nuclear factor-κB (RANK) 
ligand (RANKL).57 Such osteoblasts can activate 
osteoclasts, which express the membrane pro-
tein RANK, a receptor for RANKL, at their sur-
face. Th17 cells also express RANKL, but they 
may not activate osteoclasts by a RANKL–RANK 

interaction. Rather, secretion of interleukin-17 
by Th17 cells and induction of RANKL on cells 
such as osteoblasts that support the activation of 
osteoclasts appear to be required for bone loss. 
Through the RANKL–RANK system, interleukin-
17 may have a role in rheumatoid arthritis, peri-
odontal disease, and loosening of joint prosthe-
ses.58 In rheumatoid arthritis, the production of 
TNF, interleukin-1, and interleukin-17 by syn-
ovial cells is predictive of joint destruction.59

Interleukin-6 is both a target of interleukin-
17 and a differentiation factor for Th17 cells. By 
inducing the production of interleukin-6 or 
interleukin-1β, interleukin-17 activates a positive 
feedback loop that commits naive T cells to the 
Th17 lineage. Moreover, by inducing chemokine 
production, Th17 cells attract numerous effector 

Figure 4. Effects of Interleukin-17 on Cell Functions and Its Role in the Pathophysiology of Diseases.

For each key effect of interleukin-17, the target-cell type involved and the products released in response to interleu­
kin-17 are shown. Each biologic effect is linked to examples of conditions in which an association with the presence 
of interleukin-17 has been observed. CRP denotes C-reactive protein, MMP matrix metalloproteinase, RANKL recep­
tor activator of nuclear factor-κB ligand, and TNF tumor necrosis factor.
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T cells into inflamed tissue; acting in synergy 
with TNF and interleukin-1β, interleukin-17 is a 
potent inducer of the chemokine CCL20, which 
is strongly chemotactic for lymphocytes, includ-
ing Th17 cells. These Th17 cells are drawn to sites 
of interleukin-17–driven inflammation through 
CCR6, the receptor for CCL20, which is detected 
on Th17 cells.32 In addition, chemokines such as 
interferon-inducible protein-10 (IP-10), a member 
of the CXC chemokine family, attract other im-
mune cells such as Th1 cells and monocytes into 
inflamed tissues.41

There is evidence that, apart from rheumatoid 
arthritis,59 Th17 cells are involved in psoriasis,60 
multiple sclerosis,61 and inflammatory bowel dis
ease.62 They may also participate in the develop-
ment of corticosteroid-resistant asthma.63,64 Ge-
netic studies have linked certain sequence variants 
of the interleukin-23–receptor gene to suscepti-

bility to Crohn’s disease, psoriasis, and psoriatic 
arthritis.62,65,66

The predominant T-cell population that can 
be isolated from the skin lesions of patients with 
psoriasis has a Th17 phenotype,67 which accords 
with the attraction of inflammatory cells to epi-
thelial tissues by CCL20–CCR6 signaling. In pre-
clinical models of inflammatory hyperkeratosis, 
the pathogenic role of interleukin-22 production 
by Th17 cells, driven by interleukin-23, has been 
shown conclusively.68

In multiple sclerosis, the role of Th17 cells, if 
any, has been difficult to explore. IL-17 and IL-6 
are among the most highly expressed genes in 
brain lesions in patients with the disease,69 and 
elevated levels of interleukin-17 have been de-
tected in serum and cerebrospinal fluid from pa-
tients with multiple sclerosis.61 In patients with 
multiple sclerosis in whom lesions are restricted 

Table 2. Receptors of Th17-Associated Cytokines.*

Receptor and Its Structure, Distribution, and Function Reference

Interleukin-17A receptor

Interleukin-17RA, the cognate receptor for interleukin-17A, is highly expressed on hematopoietic 
cells and expressed at lower levels on osteoblasts, fibroblasts, and endothelial and epithelial 
cells

Yao et al.2

Human interleukin-17RC binds human interleukin-17A with high affinity, but mouse interleukin-
17RC does not bind mouse interleukin-17A

Kuestner et al.47

Human interleukin-17RA and interleukin-17RC can form a heterodimer that binds human inter­
leukin-17A

Toy et al.48

Interleukin-17RA appears to be part of the functional interleukin-25 receptor (a heterodimer consist­
ing of interleukin-17RA and interleukin-17RB)

Rickel et al.49

Interleukin-17F receptor

Interleukin-17RC, the cognate receptor for interleukin-17F, is expressed at low levels on he­
matopoietic cells and at high levels on nonhematopoietic cells

Toy et al.48

Human interleukin-17RA–interleukin-17RC heterodimers can bind human interleukin-17F Toy et al.48

Interleukin-21 receptor

This receptor is a heterodimer consisting of the common cytokine-receptor γ chain (γ
c
) and inter­

leukin-21R
Leonard and 

Spolski50

γ
c
 is expressed on lymphoid cells Takeshita et al.51

Interleukin-21R is restricted to hematopoietic cells (but not only lymphoid cells) with highest 
levels of expression on B cells, but also on T cells, natural killer cells, and some populations 
of myeloid cells

Parrish-Novak  
et al.52

Interleukin-22 receptor Kotenko et al.53

This receptor is a heterodimer of interleukin-22R1 and interleukin-10R2

Interleukin-10R2 is ubiquitously expressed on hematopoietic and nonhematopoietic cells Moore et al.54

Interleukin-22R1 is expressed on a variety of epithelial and parenchymal tissues (skin, liver, kidney, 
pancreas, intestine, lung)

Wolk et al.55

*	Some Th17 cytokines, such as interleukin-21, might exclusively target lymphoid cells, whereas the Th17-associated effector 
cytokines interleukin-17, interleukin-17F, and interleukin-22 have widespread effects on many tissues.
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to the optic nerves and spinal cord, the levels of 
interleukin-17 and interleukin-8 (CXCL8) in se-
rum and cerebrospinal fluid are higher than in 
conventional multiple sclerosis,70 and the level of 
interleukin-17 in the cerebrospinal fluid corre-
lates with the extent of spinal lesions as mea-
sured by means of magnetic resonance imag-
ing.70 An in vitro study suggested that Th17 cells 
have the capacity to breach the blood–brain bar-
rier and infiltrate the parenchyma of the central 
nervous system.71 The expression of the p19 chain 
of interleukin-23 is increased in monocyte-derived 
dendritic cells in blood samples from patients 
with multiple sclerosis, and this increase corre-
lates with an augmented capacity of the dendritic 
cells to induce the production of interleukin-17 
by T cells.72

Ther a peu tic Po ten ti a l

Targeting the interleukin-6 receptor with a mono-
clonal antibody (e.g., tocilizumab, a humanized 
monoclonal antibody against the receptor) and 
preempting the interleukin-1 receptor with an 
interleukin-1–receptor antagonist (e.g., anakinra, 
a recombinant human interleukin-1–receptor 
antagonist) are two effective approaches to the 
treatment of rheumatoid arthritis and other auto-
immune inflammatory diseases.73,74 Given that 
interleukin-6 regulates the balance between Th17 
and regulatory T cells,75,76 it is possible that 
blocking interleukin-6–induced intracellular sig-
nals by a monoclonal antibody against the inter-
leukin-6 receptor ameliorates the function of reg-
ulatory T cells, thereby bringing the immune 
system into physiologic balance.

Since interleukin-23 enhances interleukin-17 
production and induces production of other effec-
tor cytokines in Th17 cells, inhibition of inter-
leukin-23 is another way to control Th17 cells. 
Treatment with a monoclonal antibody against 
p40, a polypeptide common to interleukin-12 and 
interleukin-23 (e.g., treatment with ustekinumab), 
has been shown to have efficacy in psoriasis and 
Crohn’s disease.77,78 In Crohn’s disease, the an-
tibody caused a local reduction of the levels of 
interleukin-12 and interleukin-23. However, since 
it neutralizes both interleukin-12 and interleukin-
23, the effects cannot be attributed specifically 
to the interleukin-23–Th17 axis. Nevertheless, 
studies of a psoriasis-like skin disease and pre-
clinical models of inflammatory bowel disease 

in mice suggest that interleukin-23–driven inflam-
mation dominates these models of psoriasis and 
Crohn’s disease rather than the interleukin-12–
interferon-γ axis.67,68,79,80

The most direct way to control the biologic 
effects of Th17 cells would be to target the ef-
fector cytokines that they produce. Monoclonal 
antibodies against interleukin-17 or the interleu-
kin-17 receptor and a soluble interleukin-17 recep-
tor (Table 2) have been developed for clinical 
application. Phase 2 trials of a monoclonal anti-
body against interleukin-17 (AIN457) for psoria-
sis, rheumatoid arthritis, Crohn’s disease, and 
psoriatic arthritis are under way. So far, inhibi-
tors of interleukin-21 and interleukin-22 have 
been tested only in preclinical models of auto-
immune diseases,81,82 and we will have to await 
further results to determine whether these in-
hibitors are clinically useful.

Some cytokines have anti–interleukin-17 prop-
erties and control the development of Th17 cells. 
Interleukin-4, for example, inhibits the produc-
tion and functions of interleukin-17,3 and inter-
leukin-25, which is produced by Th2 cells, also 
inhibits the production of interleukin-17 by down-
regulating interleukin-23, interleukin-1, and in-
terleukin-6.83 Treatment with interleukin-25 can 
suppress autoimmune inflammation of the brain 
in mice.83 In the inflamed central nervous sys-
tem, resident microglial cells are the major source 
of interleukin-25.

Another cytokine, interleukin-27, a member 
of the interleukin-12–interleukin-23 family and a 
heterodimer of p28 and EBI3 (a glycoprotein relat
ed to p40), specifically inhibits the development 
of Th17 cells.84,85 In addition, interleukin-27 par-
ticipates in the induction and differentiation of 
Tr1 cells, which resemble regulatory T cells and 
produce interleukin-10 and interferon-γ. The inter-
action with Tr1 cells may allow interleukin-27 to 
suppress inflammation indirectly.86-88

Future treatments could target the effector 
functions of Th17 cells. Interleukin-17 induces 
the production of interleukin-1 and TNF-α. Inter-
leukin-1 and TNF-α may not directly block the 
generation of Foxp3+ regulatory T cells; however, 
they inhibit the functions of regulatory T cells. 
This phenomenon may explain the recurrence of 
immunoinflammatory disease when treatment 
with TNF inhibitors is discontinued.89 A combi-
nation of interleukin-17 and TNF inhibitors, ad-
ministered either simultaneously or sequentially, 
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might better control inflammation and might 
even restore the function of regulatory T cells90,91 
(see figure in the Supplementary Appendix, avail-
able with the full text of this article at NEJM.org).

Conclusions

In 1995, the newly discovered interleukin-17 was 
thought to be of minimal importance because it 
lacked immediate effects on T cells and B cells.57 
Interest in this molecule began to emerge when 
its role in inducing inflammation was established. 
Now, there is agreement that interleukin-17 has 
an important role in providing protection against 
infection and in inducing and maintaining chron-
ic inflammatory diseases.

Molecules involved in the induction of Th17 
cells and their effector functions (i.e., interleu-
kins 6, 17, 21, 22, and 23) have been identified, 
and this knowledge will allow the rational devel-
opment of strategies for modulating Th17 cells. 
The reciprocal relationship between regulatory T 
cells and Th17 cells suggests possibilities for 
shifting the balance between them in a manner 
that restores the function of regulatory T cells in 
autoimmune diseases.
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