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Interleukin-18 (IL-18) is a member of the IL-1 family of cytokines. Similar to IL-1β, IL-18 is syn-
thesized as an inactive precursor requiring processing by caspase-1 into an active cytokine
but unlike IL-1β, the IL-18 precursor is constitutively present in nearly all cells in healthy
humans and animals. The activity of IL-18 is balanced by the presence of a high affinity,
naturally occurring IL-18 binding protein (IL-18BP). In humans, increased disease severity
can be associated with an imbalance of IL-18 to IL-18BP such that the levels of free IL-18 are
elevated in the circulation. Increasing number of studies have expanded the role of IL-18 in
mediating inflammation in animal models of disease using the IL-18BP, IL-18-deficient mice,
neutralization of IL-18, or deficiency in the IL-18 receptor alpha chain. A role for IL-18 has
been implicated in several autoimmune diseases, myocardial function, emphysema, meta-
bolic syndromes, psoriasis, inflammatory bowel disease, hemophagocytic syndromes,
macrophage activation syndrome, sepsis, and acute kidney injury, although in some mod-
els of disease, IL-18 is protective. IL-18 plays a major role in the production of interferon-γ
fromT-cells and natural killer cells.The IL-18BP has been used safely in humans and clinical
trials of IL-18BP as well as neutralizing anti-IL-18 antibodies are in clinical trials. This review
updates the biology of IL-18 as well as its role in human disease.
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INTRODUCTION TO IL-18
Interleukin-18 (IL-18) was first described in 1989 as “IFNγ-
inducing factor” isolated in the serum of mice following an
intraperitoneal injection of endotoxin. Days before, the mice had
been pretreated with Propionibacterium acnes, which stimulates
the reticuloendothelial system, particularly the Kupffer cells of the
liver. Many investigators concluded that the serum factor was IL-
12. With purification from mouse livers and molecular cloning
of “IFNγ-inducing factor” in 1995 (1), the name was changed to
IL-18. Surprisingly, the new cytokine was related to IL-1 and par-
ticularly to IL-1β. Similar to IL-1β, IL-18 is first synthesized as
an inactive precursor and without a signal peptide, remains as an
intracellular cytokine. The tertiary structure of the IL-18 precursor
is closely related to the IL-37 precursor and the intron-exon bor-
ders of the IL-18 and IL-37 genes suggest a close association. Since
1995, many studies have used neutralization of endogenous IL-18
or IL-18-deficient mice to demonstrate the role for this cytokine
in promoting inflammation and immune responses [reviewed in
Ref. (2–4)]. However, the biology of IL-18 is hardly the recapitu-
lation of IL-1β. There are several unique and specific differences
between IL-18 and IL-1β. For example, in healthy human sub-
jects and also in healthy mice, gene expression for IL-1β in blood
mononuclear cells and hematopoietic cells is absent and there is
no evidence that the IL-1β precursor is constitutively present in
epithelial cells (5). In contrast, the IL-18 precursor is present in
blood monocytes from healthy subjects and in the epithelial cells

of the entire gastrointestinal tract. Peritoneal macrophages and
mouse spleen also contain the IL-18 precursor in the absence of
disease (5). The IL-18 precursor is also present in keratinocytes
and nearly all epithelial cells. In this regard, IL-18 is similar to
IL-1α and IL-33.

PRODUCTION AND ACTIVITY OF IL-18
PROCESSING OF THE IL-18 PRECURSOR BY CASPASE-1
The IL-18 precursor has a molecular weight of 24,000 and is
processed by the intracellular cysteine protease caspase-1, which
cleaves the precursor into an active mature molecule of 17,200. As
with the processing of IL-1β, inactive pro-caspase-1 is first acti-
vated into active caspase-1 by the nucleotide-binding domain and
leucine-rich repeat pyrin containing protein-3 (NLRP3) inflam-
masome. Following cleavage by active caspase-1, mature IL-18 is
secreted from the monocyte/macrophage, although over 80% of
the IL-18 precursor remains unprocessed inside the cell. Com-
pared to wild-type mice, mice deficient in caspase-1 do not release
circulating IFNγ following endotoxin. IL-12-induced IFNγ is also
absent in caspase-1-deficient mice (6). Importantly, any pheno-
typic characteristic of caspase-1-deficient mice must be studied as
whether the deficiency is due to reduced IL-1β or IL-18 activity.
For example, the caspase-1-deficient mouse is resistant to coli-
tis (7) but the IL-1β-deficient mouse is susceptible in the same
disease model (8). Since neutralizing antibodies to IL-18 are pro-
tective in the dextran sodium sulfate (DSS) colitis model, caspase-1
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deficiency appears to prevent processing of IL-18 (7, 9). On the
other hand, there are examples where caspase-1 processing of IL-
18 is not required. For example, Fas ligand (FasL) stimulation
results in release of biologically active IL-18 in caspase-1-deficient
murine macrophages (10).

Similar to IL-1α and IL-33, the IL-18 precursor is constitutively
expressed in endothelial cells, keratinocytes, and intestinal epithe-
lial cells throughout the gastrointestinal tract. Macrophages and
dendritic cells are the primary sources for the release of active
IL-18, whereas the inactive precursor remains in the intracellu-
lar compartment of mesenchymal cells. Also, similar to IL-1α

and IL-33, the IL-18 precursor is released from dying cells and
processed extracellularly, most likely by neutrophil proteases such
as proteinase-3 (11).

Although Fas signaling triggers apoptosis, Fas signaling induces
inflammatory cytokine production, including IL-18. In addition to
inducing IL-18, Fas signaling activates caspase-8 in macrophages
and dendritic cells, which results in processing and release of
mature IL-1β and IL-18 (12). It was also reported that the pro-
cessing of IL-1β and IL-18 takes place independently of NLRP3 or
RIP3 (12).

PROCESSING AND SECRETION OF THE IL-18 PRECURSOR BY ADAM
33-MEDIATED VEGF-DEPENDENT MECHANISM
Because IL-18 stimulates vascular endothelial cells and promotes
metastatic tumor cell invasion, studies had examined the mech-
anisms of IL-18 secretion from gastric cancer cell line. Vascular
endothelial cell growth factor-D (VEGF-D) increased the expres-
sion as well as the secretion of IL-18 from the gastric cancer cell
line (13). Since VEGF-D has a metalloprotease domain, knock-
down of ADAM33 was examined and prevented the secretion of
IL-18. Moreover, cell proliferation was reduced using ADAM33
small interfering RNA transfectants (13).

SIGNAL TRANSDUCTION BY IL-18
As shown in Figure 1, IL-18 forms a signaling complex by binding
to the IL-18 alpha chain (IL-18Rα), which is the ligand binding
chain for mature IL-18; however, this binding is of low affinity. In
cells that express the co-receptor, termed IL-18 receptor beta chain
(IL-18Rβ), a high affinity complex is formed, which then signals.
The complex of IL-18 with the IL-18Rα and IL-18Rβ chains is
similar to that formed by other members of the IL-1 family with
the co-receptor, the IL-1R accessory chain IL-1RAcP. Following
the formation of the heterodimer, the Toll-IL-1 receptor (TIR)
domains approximate and it appears that the cascade of sequen-
tial recruitment of MyD88, the four IRAKs and TRAF-6 followed
by the degradation of IκB and release of NFκB are nearly identical
as that for IL-1 (14). However, there are differences between IL-1
and IL-18 signaling. With few exceptions, IL-1α or IL-1β are active
on cells in the low nanograms per milliliter range and often in the
picograms per milliliter range. In contrast, IL-18 activation of cells
expressing the two IL-18 receptor chains requires 10–20 ng/mL
and sometime higher levels (15, 16).

Although nearly all cells express the IL-1RI, not all cells express
IL-1RAcP. Similarly, most cells express the IL-18Rα but not all
cell express the IL-18Rβ. IL-18Rβ is expressed on T-cells and den-
dritic cells but not commonly expressed in mesenchymal cells.

FIGURE 1 | Interleukin-18 signal transduction. IL-18 forms a signaling
complex by binding to the IL-18 alpha chain (IL-18Rα). The co-receptor,
termed IL-18 receptor beta chain (IL-18Rβ), is recruited to form a high affinity
complex. Following the formation of the heterodimer, the Toll-IL-1 receptor
(TIR) domains approximate triggering the binding of MyD88,
phosphorylations of the four IRAKs, TRAF-6, and activation of NFκB. The
IL-18BP is present in the extracellular compartment where it binds mature
IL-18 and prevents binding to the IL-18 receptor.

The human lung epithelial cells line A549, derived from a lung
carcinoma epithelial cell, does not express IL-18Rβ (17) and there
is no signal unless IL-12 is present to induce IL-18Rβ (18). In
the absence of IL-18Rβ, IL-18 binds to IL-18Rα without a pro-
inflammatory signal. In A549 cells transfected with IL-18Rβ, IL-18
induces IL-8 and a large number of genes. One of these genes is
the former IL-2-induced gene termed NK4 (19) now termed IL-32
(17). IL-32 is not a member of the IL-1 family but plays an impor-
tant role in the regulation of cytokines such as IL-1β and TNFα.
Importantly, IL-32 is an IL-18-inducible gene.

IL-18 AS AN IMMUNOREGULATORY CYTOKINE
ROLE OF IL-18 IN THE PRODUCTION OF IFNγ

Together with IL-12, IL-18 participates in the Th1 paradigm. This
property of IL-18 is due to its ability to induce IFNγ either with IL-
12 or IL-15. Without IL-12 or IL-15, IL-18 does not induce IFNγ.
IL-12 or IL-15 increases the expression of IL-18Rβ, which is essen-
tial for IL-18 signal transduction. Importantly, without IL-12 or
IL-15, IL-18 plays a role in Th2 diseases (20). The importance of IL-
18 as an immunoregulatory cytokine is derived from its prominent
biological property of inducing IFNγ from NK cells. Macrophage
colony stimulating factor (M-CSF) induces human blood mono-
cytes to differentiate into a subset of macrophages; these cells
express a membrane-bound form of IL-18 (21). Membrane IL-
18 is expressed in 30–40% of M-CSF-primed macrophages. In
contrast, monocytes, dendritic cells, and monocytes differentiated
into M1 macrophages did not express membrane IL-18. Although
the expression of membrane IL-18 is caspase-1 dependent (21),
LPS treatment was necessary for the release of membrane IL-18
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(21). A major immunoregulating role for IL-18 is on the NK cell.
Upon shedding of membrane IL-18 into a soluble form, NK cells
expressed CCR7 and produced high levels of IFNγ. As expected,
IFNγ production was prevented by neutralization of IL-18. This
mechanism may account for the role of IL-18 as major IFNγ induc-
ing factor from NK cells and the role of NK cells in the pathogenesis
of autoimmune diseases.

The induction of IFNγ by IL-18 has been studied with co-
inducer IL-12. For example, mice injected with the combination
of IL-18 plus IL-12 develop high levels of IFNγ and die with hypo-
glycemia, intestinal inflammation, and inanition (22). In leptin-
deficient mice, IL-18 plus IL-12 induce acute pancreatitis (23).
Several human autoimmune diseases are associated with elevated
production of IFNγ and IL-18. Diseases such as systemic lupus
erythematosus, rheumatoid arthritis, Type-1 diabetes, Crohn’s dis-
ease, psoriasis, and graft versus host disease are thought to be
mediated, in part, by IL-18.

IL-18, IL-17, AND GAMMA/DELTA T-CELL ACTIVATION
The role for IL-17 in the pathogenesis of autoimmune diseases
has been studied in animal models but also validated in humans
treated with either neutralizing antibodies to IL-17 or the IL-17
receptor. However, blockade of IL-1 often prevents or markedly
reduces the production of IL-17 in vitro as well as the develop-
ment of autoimmunity in animal models (24–27). Indeed, there
is increased IL-1β as well as increased IL-17 in children born with
mutations in the naturally occurring IL-1Ra resulting in a severe
inflammatory disease due to excessive IL-1β activity (28, 29). The
high production of IL-17 in these children is thought to con-
tribute to the severity of the disease. Is there a role for IL-18 in the
production of IL-17?

Attention has focused on a role for IL-18 in Th17 responses
primarily because both IL-1β and IL-18 are processed into active
cytokines via caspase-1. Using a model for multiple sclerosis
termed experimental autoimmune encephalomyelitis (EAE) (26),
a role for IL-18 was studied. As expected, using the adjuvant of
Mycobacterium tuberculosis plus the myelin-derived immunogen
for EAE, bone marrow derived mouse dendritic cells released IL-
1β and IL-18, which was dependent on caspase-1 (30). The primed
dendritic cells induced IL-17 from T-cells, which when transferred
to non-immunized mice resulted in the encephalomyelitis. How-
ever, the disease did not develop when the dendritic cells were
exposed to a caspase-1 inhibitor (30). Treating the mice with either
IL-1β or IL-18 restored the ability of the T-cell transfer to induce
the disease. Moreover, treating the recipient mice with the caspase-
1 inhibitor reduced the disease as well as reduced the production
of IL-17 from CD4 positive T-cells as well as from gamma-delta
T-cells. Gamma-delta T-cells produce IL-17 when stimulated with
IL-18 plus IL-23, as these T-cells express high levels of the IL-18
receptor alpha chain. Thus, similar to caspase-1 dependent IL-1β,
IL-18 induces T-cells to produce IL-17 and promote autoimmune
responses to specific antigens.

IL-18 AND INFLAMMATION
PRO-INFLAMMATORY PROPERTIES OF IL-18
Interleukin-18 exhibits characteristics of other pro-inflammatory
cytokines, such as increases in cell adhesion molecules, nitric oxide

synthesis, and chemokine production. Blocking IL-18 activity
reduces metastasis in a mouse model of melanoma; this is due
to a reduction in IL-18-induced expression of vascular call adhe-
sion molecule-1 (31). A unique property of IL-18 is the induction
of FasL, which may account for the hepatic damage that takes place
in macrophage activation syndrome (MAS) (10, 32). The induc-
tion of fever, a well-studied property of IL-1α and IL-1β as well as
acute phase proteins, TNFα and IL-6, is not a significant property
of IL-18. Injection of IL-18 into mice or rabbits does not produce
fever (33, 34). In a clinical study of intravenous IL-18 dosing in
patients with cancer, chills, and fevers were not common and were
Grade 1 (low fevers). Unlike IL-1 and TNFα, fever in humans is
observed in all patients at doses of 10 ng/kg whereas IL-18 fevers
were observed in 3 of 21 patients and only at doses of 100 and
200 µg/kg (35).

Unlike IL-1 and TNFα, IL-18 does not induce cyclooxygenase-2
and hence there is no production of prostaglandin E2 (16, 36). IL-
18 has been administered to humans for the treatment of cancer
in order to increase the activity and expansion of cytotoxic T-cells.
Not unexpectedly and similar to several cytokines, the therapeutic
focus on IL-18 has shifted from its use as an immune stimulant to
inhibition of its activity (3, 37).

Because IL-18 can increase IFNγ production, blocking IL-18
activity in autoimmune diseases is an attractive therapeutic target
since anti-IL-12/23 reduces the severity of Crohn’s disease as well
as psoriasis. As discussed below, there appears to be a role for block-
ing IL-18 in Crohn’s disease. However, there are several activities
of IL-18 that are independent of IFNγ. For example, IL-18 inhibits
proteoglycan synthesis in chondrocytes (38) and proteoglycan
synthesis is essential for maintaining healthy cartilage. IL-18 also
increases vascular cell adhesion molecule-1 (VCAM-1) expression
in endothelial cells independently of IFNγ. VCAM-1 plays a major
role in multiple sclerosis, other autoimmune diseases as well as in
the metastatic process (39).

ROLE OF IL-18 IN MODELS OF INFLAMMATORY BOWEL DISEASE
Inflammatory bowel disease such as Crohn’s disease is a complex
autoimmune disease. Treatment is initially based on immunosup-
pressive drugs. Not surprisingly, anti-cytokines such as neutraliz-
ing monoclonal antibodies to TNFα (40) or to IL-12/23 provide
effective treatment for many patients (41, 42). The reduction of
IFNγ in Crohn’s disease is linked to the clinical response to these
agents (42). IL-18 is found in affected intestinal lesions from
Crohn’s disease patients as a mature protein but the IL-18 pre-
cursor form is present in uninvolved intestinal tissues (43). This
observation was confirmed in a similar assessment of mucosal
biopsies from Crohn’s disease patients (44). Antisense RNA to IL-
18 decreased IFNγ production in lamina propria mononuclear
cells (44).

A commonly used mouse model for colitis is DSS, which is
added to the drinking water and which damages the intestinal
wall. Thus in DSS-induced colitis, the epithelial barrier defenses
against luminal bacterial products are breeched. In this model,
reducing IL-18 with a neutralizing antibody is protective and
linked to a reduction in IFNγ (9). Blocking IL-18 with the IL-
18 binding protein (IL-18BP) (see Figure 1) also reduces colitis
induced by antigen sensitization (45). Since generation of active
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IL-18 requires caspase-1, studies have also been performed in mice
deficient in caspase-1 and subjected to DSS colitis. Nevertheless,
despite many studies, the role of caspase-1 in DSS colitis remains
unclear. The first study showed that mice deficient in caspase-1
were protected (7, 46). In addition, treatment of mice with a spe-
cific caspase-1 inhibitor was also effective in protecting against
the colitis (47–49). In both studies, the effect of caspase-1 defi-
ciency was linked to reduced IL-18 activity, whereas reducing IL-1
activity with the IL-1Ra was ineffective (7). In support of the role
of IL-18 in DSS colitis, inhibition of endogenous merprin β to
reduce the generation of active IL-18 was protective in DSS colitis
(50).

However, a conundrum has developed whether caspase-1 defi-
ciency is protective or detrimental in DSS colitis. DSS colitis is
not the optimal model for Crohn’s disease as the model is one
of rapid loss of the protective barrier of the intestinal epithelium
exposing the lamina propria mononuclear cells to a large amount
and variety of bacterial products. Using the same DSS model,
mice deficient in the adapter protein inflammasome component
ASC experienced increased disease, morbidity, and precancerous
lesions compared to wild-type mice exposed to DSS (51). Simi-
larly, mice deficient in caspase-1 died rapidly from DSS compared
to wild-type mice (52) whereas mice deficient in caspase-12, in
which caspase-1 is enhanced were protected (52). Administra-
tion of exogenous IL-18 restored mucosal healing in caspase-1-
deficient mice (52). Also, mice deficient in NLRP3 were more
susceptible to either DSS or TNBS-induced colitis and exhib-
ited decreased IL-1β as well as decreased beta-defensins (53).
Macrophages from NLRP3-deficient mice failed to respond to
MDP (53). Mice deficient in NLRP6 are also more vulnerable to
DSS (54, 55) and the susceptibility appears to be due to lack of
sufficient IL-18.

How to reconcile these data in mouse models of colitis was
addressed by Siegmund (56). It is likely that IL-18, being consti-
tutive in the intestinal epithelium, has a protective role in that the
cytokine contributes to maintaining the intestinal barrier. With
loss of the barrier, the microbial products stimulate macrophages
in the lamina propria and caspase-1 dependent processing of IL-18
results in inflammation. In this model, inhibition of IL-18 produc-
tion in caspase-1-deficient mice or treatment of wild-type mice
with anti-IL-18 antibodies or caspase-1 inhibitors is protective.
Worsening of disease in mice deficient in caspase-1 or NLRP3 or
NLRP6 may lower the levels of active endogenous IL-18 needed
to protect the epithelial barrier. Similarly, active endogenous IL-
1β may be needed to protect to maintain the epithelial barrier by
inducing growth factors.

Although it remains unclear why caspase-1 deficiency wors-
ens DSS colitis, in humans with Crohn’s disease, natalizumab, the
antibody that blocks the very late antigen-4 (VLA-4), is highly
effective in treating the disease. VLA-4 is the α4 subunit of the
β-1 integrin. Anti-VLA-4 binds to the surface of macrophages
and other myeloid cells and prevents the binding of these cells
to the VLA-4 receptor on endothelial cells known as VCAM-1.
Thus, the antibody disables the function of VCAM-1 and pre-
vents the passage of macrophages and other myeloid cells into
tissues such as the intestine in Crohn’s disease and the brain in
multiple sclerosis. Since IL-18 induces VCAM-1, blocking IL-18

would also reduce the passage of cells through the endothelium
into to intestine.

IL-18, HYPERPHAGIA, AND THE METABOLIC SYNDROME
Whereas there is no constitutive gene expression for IL-1β in
freshly obtained human PBMC, the same cells express constitu-
tive mRNA for IL-18 (5). In western blot analysis from the same
cells, the IL-18 precursor was present but not the IL-1β precursor.
Similar observations were also made in mice (5). These findings
suggest that IL-18 may act as regulator of homeostasis. Start-
ing at age 16 weeks of age, IL-18-deficient mice start to overeat,
become obese, and exhibit lipid abnormalities; there is increased
atherosclerosis, insulin resistance, and diabetes mellitus reminis-
cent of the metabolic syndrome (57). IL-18Rα deficient mice also
develop a similar phenotype. The higher body weight is attributed
to enhanced food intake, in which the IL-18-deficient mice begin
to diverge from wild-type animals at a relatively early age, and
to reach values 30–40% higher than that of wild-type mice. Oth-
ers have observed similar findings (58). A striking finding was an
increase of more than 100% in the percent of adipose tissue in the
IL-18-deficient animals that was accompanied by fat deposition
in the arterial walls. The insulin resistance in these mice is cor-
rected by exogenous recombinant IL-18. Mice deficient in IL-18
respond normally to a challenge with exogenous leptin suggesting
that expression of the leptin receptor is unaffected. The unex-
pected and unique mechanism is responsible for the higher food
intake in the IL-18-deficient animals appears to be due a central
nervous system loss of appetite control. IL-18-deficient mice eat
throughout the day whereas wild-type mice eat once, nocturnally.

IL-18 IN HEART DISEASE
Heart disease includes coronary vessel disease with associated
myocardial infarction, post viral myocardiopathies, autoimmune
heat disease, and chronic heart failure. Although survival from
an acute myocardial infarction has decreased dramatically due to
improved acute care, patients often progress to heart failure due to
post infarction remodeling of the ventricles. Treatment options for
heart failure vary but reducing cytokines is now being tested as a
possible therapy. Based on pre-clinical as well as pilot clinical trials,
blocking TNFα was tested in large trials but failed; using a higher
dose of an antibody to TNFα (infliximab), there were more deaths
compared to the placebo-treated patients. There are also pre-
clinical studies demonstrating that blockade of IL-1β is effective
(59, 60) and clinical trials using anakinra have revealed that block-
ade of IL-1 is effective in reducing post infarction remodeling (61,
62) as well as increased exercise tolerance (63). In fact, the largest
trial in 17,200 patients using a neutralizing antibody to IL-1β aims
to reduce cardiovascular events in high risk patients (64).

Increasing numbers of animal and clinical studies indicate a
role for IL-18 in heart disease. The myocardium of patients with
ischemic heart failure express the alpha chain of the IL-18 receptor
and have elevated levels of circulating IL-18 and associated with
death (65). Daily administration of IL-18 results in ventricular
hypertrophy, increased collagen (66), and elevated left ventricular
diastolic pressure in mice (67). As with all cytokine studies, valida-
tion of the role of a cytokine in a disease process is best assessed by
specific blockade. In a model of myocardial suppression associated
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with septic shock, mice were injected with LPS and a neutralizing
antibody to murine IL-18 was administered (68). The rationale for
the experiment was that IL-18 mediates the production of TNFα

and IL-1β and to induce the expression of intercellular adhesion
molecule-1 (ICAM-1) and VCAM-1. Mice were injected with LPS
and left ventricular developed pressure was determined. Left ven-
tricular developed pressure was depressed by 38% 6 h after LPS
but pretreatment with anti-mouse IL-18 antibody attenuated LPS-
induced myocardial dysfunction (by 92%) and ICAM-1/VCAM-1
expression (50 and 35% reduction, respectively).

In another study, human atrial muscle strips were obtained
from patients undergoing by-pass surgery and the tissue was
exposed to ischemia while contractile strength was measured.
The addition of IL-18BP to the perfusate during and after the
ischemic event resulted in improved contractile function from
35% of control to 76% with IL-18BP (69). IL-18BP treatment
also preserved intracellular tissue creatine kinase levels (by 420%).
Steady-state mRNA levels for IL-18 were elevated after ischemic
and the concentration of IL-18 in myocardial homogenates was
increased (control, 5.8 pg/mg versus I/R, 26 pg/mg). Active IL-18
requires cleavage of its precursor form by caspase-1; inhibition of
caspase-1 also attenuated the depression in contractile force after
ischemia (from 35% of control to 75.8% in treated atrial muscle).
Because caspase-1 also cleaves the IL-1β precursor, IL-1 receptor
blockade was accomplished by using the IL-1 receptor antagonist.
IL-1 receptor antagonist added to the perfusate also resulted in a
reduction of ischemia-induced contractile dysfunction.

In summary, these studies demonstrate a role for IL-18 in
heart disease. Moreover, endogenous IL-18 is induced by IL-1β

via caspase-1 under ischemic conditions in human myocardial
tissue and that inhibition of caspase-1 reduces the processing of
endogenous precursors of IL-18 and IL-1β and thereby prevents
ischemia-induced myocardial dysfunction.

IL-18 AS A PROTECTIVE CYTOKINE
As stated above, mice deficient in caspase-1 experience increased
disease severity when subjected to DSS colitis and that admin-
istration of exogenous IL-18 restored mucosal healing in these
mice (52). In addition, IL-18 deficiency or IL-18 receptor defi-
ciency results in the development of a metabolic syndrome in
mice. Mice deficient in NLRP3 are more susceptible to DSS col-
itis, which is thought to be due to decreased IL-18 (53). Mice
deficient in NLRP6 are also more vulnerable to DSS (54, 55) and
the susceptibility appears to be due to lack of sufficient IL-18. As
discussed below, a protective role for IL-18 is not limited to the gas-
trointestinal track. In the eye, a condition resembling “wet macula
degeneration” worsens with antibodies to IL-18 (70).

Thus, there are a growing number of studies, which support
a protective role for IL-18. The fact that mice deficient in IL-18
develop a metabolic syndrome-like phenotype is consistent with
a role for IL-18 in homeostasis. A study in age related macular
degeneration is also consistent with a protective role for IL-18.
In that study, drusen, which is mixture of complement-derived
and apolipoproteins and lipids, were shown to activate NLRP3
and induce the production of mature IL-1β and IL-18 (70). In
a mouse model of “wet” age related macular degeneration, the
disease was worse in mice deficient in NLRP3 but not in IL-1RI

deficient mice (70). Therefore, IL-18 rather than IL-1α or IL-1β

were protective and upon administration of IL-IL-18, the disease
severity improved. Taken together, there is a case for IL-18 being a
protective rather than inflammatory cytokine.

IL-18 BINDING PROTEIN
THE DISCOVERY OF THE IL-18BP
The discovery of the IL-18BP took place during the search for the
soluble receptors for IL-18 (71). IL-18BP is a constitutively secreted
protein, with an exceptionally high affinity for IL-18 (400 pM) (72)
(Figure 1). Present in the serum of healthy humans at a 20-fold
molar excess compared to IL-18 (73), IL-18BP may contribute to a
default mechanism by which a Th1 response to foreign organisms
is blunted in order to reduce triggering an autoimmune responses
to a routine infection. IL-18BP deviates from the classical def-
inition of soluble receptors since it does not correspond to the
extracellular ligand binding domain of the IL-18 receptor, but is
rather encoded by a separate gene. Thus IL-18BP belongs to a sep-
arate family of secreted proteins. As shown in Figure 1, IL-18BP
contains only one IgG domain whereas the Type II IL-1 receptor
contains three domains. In this regard, the single IgG domain of
IL-18BP is similar to SIGIRR, which also has a single IgG domain
and also functions as a decoy receptor. The salient property of IL-
18BP in immune responses is in down-regulating Th1 responses
by binding to IL-18 and thus reducing the induction of IFNγ (20).
Since IL-18 also affects Th2 responses, IL-18BP also has properties
controlling a Th2 cytokine response (20).

BALANCE OF IL-18 AND IL-18BP IN HUMAN DISEASE
IL-18 binding protein has a classic signal peptide, and therefore is
readily secreted. Serum levels in healthy subjects are in the range
of 2,000–3,000 pg/mL compared to the levels of IL-18 in the same
sera of 80–120 pg/mL (73). Moreover, IL-18BP binds IL-18 with
an affinity of 400 pM, an affinity significantly higher than that of
IL-18Rα. Because a single IL-18BP molecule binds a single IL-18
molecule, one can calculate bound versus free IL-18 in a mixture
of both molecules (73).

If one examines immunologically mediated diseases where
IFNγ plays a pathological role such as Wegener’s granulomato-
sis and systemic lupus erythematosus, one must consider the level
of free IL-18 compared to IL-18 bound to IL-18BP. In fact, in
these diseases both IL-18BP and IL-18 are high (74, 75) but the
level of IL-18BP is not sufficiently high enough to neutralize IL-
18 and therefore, the level of free IL-18 is higher than in healthy
subjects. In MAS where IFNγ plays a pathological role, both IL-
18BP and IL-18 are also high but the clinical and hematological
abnormalities correlate with elevated free IL-18 (32).

A unique property of IL-18BP is that the molecule also binds IL-
37 (76) and in doing so, enhances the ability of IL-18BP to inhibit
the induction of IFNγ by IL-18. IL-37 binds to the IL-18Rα with
a very low affinity but in mice expressing human IL-37, a pro-
found anti-inflammatory effect is observed (77), particularly of
LPS-induced cytokines and dendritic cell maturation (77). Human
IL-37-expressing mice are also resistant to colitis (78). Thus, the
anti-inflammatory property of IL-37 can be affected by the con-
centration of IL-18BP. As the concentration of IL-18BP increases
and binds IL-37, there is the possibility that IL-37 becomes less
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available as an anti-inflammatory cytokine. Indeed this has been
observed in mice injected with IL-18BP. At low dosing of IL-18BP,
there is reduced inflammation in a model of rheumatoid arthri-
tis but as the doing of IL-18BP increases, the anti-inflammatory
properties of IL-18BP are lost (79). Table 1 summarizes several
disease states in which IL-18 as well as IL-18BP are measured and
in some studies, the level of free IL-18 has been reported.

REGULATION OF IL-18BP
IL-18 binding protein is highly regulated at the level of gene
expression and unexpectedly, IFNγ increases gene expression and
synthesis of IL-18BP (80, 81). Therefore, IFNγ driving an increase
in the natural and potent inhibitor of IL-18 falls into the category
of a negative feed-back loop. The concept is supported by clinical
data showing that patients being treated with IFNα for hepatitis
have elevated levels of IL-18BP (82, 83). IL-27, like IFNγ, functions
as both a pro- as well as an anti-inflammatory cytokine and both
may accomplish their roles as anti-inflammatory cytokines at the
level of increased production of IL-18BP. In the skin, IL-27 also
acts through a negative feed-back loop for inflammation. IL-27 is
acting, as is IFNγ, by induction of IL-18BP gene expression and
synthesis (84).

VIRAL IL-18BP
Natural neutralization of human IL-18 by IL-18BP takes place
during a common viral infection. In Molluscum contagiosum infec-
tion, characterized by raised but bland eruptions, there are large
numbers of viral particles in the epithelial cells of the skin but his-
tologically there are few inflammatory or immunologically active
cells in or near the lesions. Clearly, the virus fails to elicit an inflam-
matory or immunological response. Amino acid similarity exists
between human IL-18BP and a gene found in various members
of the poxviruses; the greatest degree of homology is found to be
expressed by M. contagiosum gene (85). The ability of viral IL-18BP
to reduce the activity of mammalian IL-18 likely explains the lack
of inflammatory and immune cells in the virally infected tissues
and provides further evidence for the natural ability of IL-18BP to
interfere with IL-18 activity.

HEMOPHAGOCYTIC LYMPHO HISTIOCYTOSIS AND
MACROPHAGE ACTIVATION SYNDROME
Hemophagocytic lympho histiocytosis (HLH) syndrome is a
rare life-threatening condition characterized by a severe hyper-
inflammatory state. There is a genetic form of HLH called familial
hemophagocytic lympho histiocytosis (fHLH). However,HLH can

Table 1 | Levels of IL-18 and IL-18BP in human disease.

Disease IL-18a IL-18BPb Free IL-18a Reference

Sepsis 500–2,000 ND ND Emmanuilidis et al. (100)

Sepsis 250–10,000 22.5 250–3,000 Novick et al. (73)

Trauma 300–600 ND ND Mommsen et al. (101)

Schizophrenia 518 10 253 Palladino et al. (102)

Ulcerative colitis 274 ND ND Haas et al. (103)

Ulcerative colitis 393 4.7 250 Ludwiczek et al. (104)

Crohn’s disease 387 ND ND Haas et al. (103)

Crohn’s disease 546 5 340 Ludwiczek et al. (104)

Wegener’s disease 240 14.5 84 Novick et al. (74)

Rheumatoid arthritis 230–400 ND ND Bokarewa and Hultgren (105)

SLEc 700 7.5 408 Favilli et al. (99)

SLEc 400 15 167 Novick et al. (75)

MASd 2,200 35 660 Mazodier et al. (32)

Systemic JIAe 1,600–78,000 ND ND Jelusic et al. (106)

Adult Still’s disease 1,000–6,000 ND ND Kawashima et al. (107)

Myocardial infarction 238 ND ND Blankenberg et al. (108)

Myocardial infarction 355 ND ND Narins et al. (109)

Coronary artery disease 356 13.7 125 Thompson et al. (110)

Metabolic syndrome 380 ND ND Troseid et al. (111)

Acute kidney injuryf 500 ND ND Parikh et al. (112)

Acute kidney injuryf 2,000 ND ND Vaidya et al. (113)

Acute kidney injuryf >360 ND ND Parikh et al. (114)

Acute kidney injuryf 884 ND ND Sirota et al. (115)

aLevels in picograms per milliliter, range, or mean.
bLevels in nanograms per milliliter, range, or mean.
cSystemic lupus erythematosus.
dMacrophage activation syndrome.
eSystemic juvenile idiopathic arthritis.
fUrine levels (mean in picograms per milliliter).
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be secondary to infections and lymphoma, and is called secondary
MAS. The development of MAS is associated with several infec-
tious diseases, notably due to Epstein–Barr virus, cytomegalovirus,
herpes virus, or intracellular bacteria and parasites and also
of various lymphomas, especially of T-cell lineage. In addition,
patients with rheumatological conditions, particularly systemic
onset juvenile arthritis (sJIA), but also systemic lupus erythe-
matosus, Kawasaki disease, or systemic vasculitis can develop MAS
(86–89). One of the most prominent hematologic and metabolic
characteristics of MAS is thrombocytopenia and hepatic injury,
respectively. Indeed, IFNγ may be responsible for the thrombocy-
topenia as well as several of the immunological abnormalities of
the disorder.

IL-18 IN THE HEMOPHAGOCYTIC SYNDROMES
In the case of fHLH or MAS, gene expression for IL-18 is up-
regulated in peripheral mononuclear cells (90, 91) and serum
IL-18 is unusually elevated (32, 92–95). Although levels of IL-
18 in the circulation are below 1 ng/mL in inflammatory diseases
such as severe sepsis, in active phase of fHLH or EBV-HLH, serum
IL-18 is usually in the range of 5–7 ng/mL, and in fHLH com-
plicating XIAP gene mutations as well as in MAS complicating
sJIA, levels of circulating IL-18 can be in 20–30 ng/mL range
(32, 96–98). However, it is necessary to calculate the level of free
IL-18 since IL-18BP is present in the circulation in health and
disease (73) (see Table 1) in lupus (75, 99), Wegener’s granu-
lomatosis (74). In patients with MAS, free IL-18 but not IL-12

concentrations significantly correlated with clinical status and
the biologic markers of MAS such as anemia (p < 0.001), hyper-
triglyceridemia, and hyperferritinemia (p < 0.01) and also with
markers of Th1 lymphocyte or macrophage activation, such as ele-
vated concentrations of IFNγ and soluble IL-2 and TNFα receptor
concentrations (32).

CONCLUDING REMARKS
Although clinical trials of IL-1 blocking therapies have focused
attention on the biology IL-1, the role of IL-18 in health and dis-
ease is derived from animal models and measurements of IL-18 in
various disease conditions. Nevertheless, with clinical trials of IL-
18BP as well as neutralizing antibodies to IL-18 now underway, the
role for this cytokine in treating human disease will become appar-
ent. Certainly validated animal models support a role for IL-18 in
acute renal injury, psoriasis, heart failure, MAS, and inflammatory
bowel disease. Whether suppression of IL-18 will affect IL-17-
mediated diseases such as multiple sclerosis or reduce metastatic
melanoma will also be determined in clinical trials.
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