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Abstract

Interleukin (IL)-18 is a cytokine isolated as an important modulator of immune responses and subsequently shown

to be pleiotropic. IL-18 and its receptors are expressed in the central nervous system (CNS) where they participate

in neuroinflammatory/neurodegenerative processes but also influence homeostasis and behavior. Work on IL-18

null mice, the localization of the IL-18 receptor complex in neurons and the neuronal expression of decoy isoforms

of the receptor subunits are beginning to reveal the complexity and the significance of the IL-18 system in the

CNS. This review summarizes current knowledge on the central role of IL-18 in health and disease.

Introduction

Interleukin (IL)-18 was isolated in 1995 as a co-factor

that, in synergism with IL-12, stimulated the production

of gamma interferon (INF-g) in Th1 cells [1]. Since then

extensive in vitro and in vivo studies have identified IL-

18 as an important link between innate and adaptive

immune responses and a regulator of both cellular and

humoral immunity [2-4]. Constitutively produced as an

inactive precursor by several cell types IL-18 is secreted

in its active form following maturation by caspase 1 in

response to inflammatory and infectious stimuli. In

addition to its effects on Th1 cells, IL-18 is a strong sti-

mulator of the activity of natural killer cells alone or in

combination with IL-15, and of CD8+ lymphocytes.

Together with IL-2, IL-18 can also stimulate the pro-

duction of IL-13 and of other Th2 cytokines. Thus, it is

perhaps not surprising that IL-18 was found to be asso-

ciated with or demonstrated to contribute to numerous

inflammatory-associated disorders. These include infec-

tions, autoimmune diseases, rheumatoid arthritis, can-

cer, as well as metabolic syndrome and atherosclerosis

[5-11].

IL-18 had not originally been expected to cross an

intact blood brain barrier and its immunological effector

cells are not normally found in the healthy brain. Yet,

studies on the possible role of IL-18 in the central ner-

vous system (CNS), initiated soon after its cloning, were

prompted primarily by its similarities with IL-1, which

was already demonstrated to have central action. It was

soon found that IL-18 could be synthesized centrally

and its receptor subunits were now demonstrated to be

broadly expressed in neurons. When recombinant inter-

leukin 18 became available it also became clear that IL-

18 was active centrally. Work on mice null for IL-18 or

its receptor subunit alpha is helping to decipher the

action of this cytokine in the brain. Finally, the recent

discovery of novel IL-18 receptor subunits in the brain

has revealed the complexity of the IL-18 system and

may lead to better understanding of both the similarities

and opposing actions of IL-1 and IL-18. This review

summarizes more than a decade of work aimed at

understanding how the IL-18 system contributes to local

central inflammatory processes or can influence neuro-

nal function and behavior. A summary of the literature

supporting the involvement of IL-18 in neurophysiologi-

cal and neuropathological conditions is presented in

Table 1.

Components of the IL-18 system

IL-18 is synthesized as an inactive 24-kDa precursor

protein that is subsequently processed by caspase-1 into

its mature secretable form, which has a molecular

weight of 18 kDa [4,12-16]. Pro-IL-18 can also be pro-

cessed into its active form by various extracellular

enzymes including protease 3 (PR-3), serine protease,

elastase and cathepsin G [17-19]. Only the mature pep-

tide is reported to be biologically active.

The existence of a putative short isoform of IL-18

resulting from alternative splicing removing 57 bp/19 aa

was first described in rat adrenal glands (IL-18a) [20]

and subsequently in mouse spleens (IL-18s) [21]. Recom-

binant IL-18s did not display IL-18-like activity in stimu-

lating INF-g production when tested alone but appeared
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to have a modest synergistic action with IL-18. To this

date this isoform has not been reported in the CNS.

The IL-18 receptor (IL-18R) belongs to the interleukin

1 receptor/Toll like receptor superfamily. It is comprised

of two subunits, IL-18Ra (also known as IL-1Rrp1, IL-

18R1 or IL-1R5) and IL-18Rb (also termed IL-18RacP,

IL-18RII or IL-1R7) both with three extracellular

immunoglobuling-like domains and one intracellular

Toll/IL-1 receptor (TIR) domain [22,23]. IL-18 is

believed to bind directly only to IL-18Ra with signal

transduction occurring after recruitment of IL-18Rb to

form a high-affinity heterotrimeric complex with IL-

18Ra/IL-18 [23-25].

Isoforms of both IL-18Ra and IL-18Rb were recently

described in vivo in the CNS. They include a short tran-

script for IL-18Ra encoding for a receptor subunit lack-

ing the TIR domain arbitrarily named IL-18Ra type II

[26]. Since the TIR domain is required for signaling, IL-

18Ra type II was proposed to be a decoy receptor, simi-

lar to the type II IL-1R [27]. In addition, a truncated

form of IL-18Rb comprising only one of the three

immunoglobulin domains was described in rat and

human tissues including the brain [28,29]. This form

was proposed to act as a soluble negative regulator of

IL-18 action by stabilizing IL-18 binding to IL-18Ra yet

preventing signaling.

Another negative regulator of IL-18 action is the IL-18

binding protein (IL-18BP). Isolated as cytokine-binding

molecules, this 38-kDa soluble protein displays some

sequence homology with IL-18Ra [30-32]. IL-18BP

binds selectively and with high affinity to mature IL-18,

but not to pro-IL-18, preventing its interaction with IL-

18Ra. Four human (18BPa-d) and two murine (IL-

18BPc and d) IL-18BP isoforms have been described

[33]. Of these human IL-18BPb and d lack the structural

requirement to inhibit IL-18 action and their role

remains to be determined [5].

A different member of the IL-1 family, IL-1F7, is also

a negative regulator of IL-18 action. IL-1F7 is able to

bind IL-18BP and the IL-18BP/IL-1F7 complex can

interact with the IL-18Rb chain preventing the forma-

tion of the funtional IL-18R complex [34]. Several

human IL-1F7 splice variants (IL-1F7a-e) have been

described [35-39] whereas no murine homologue of IL-

1F7 has yet been found. Of these, IL-1F7b (also known

as IL-1H, IL-1H4 and IL-1RP1) matured by caspase-1 is

capable of binding IL-18Ra [37,40]. Yet, the IL-1F7/IL-

18Ra complex failed to recruit IL-8Rb and no direct

agonistic nor antagonistic activity of IL-1F7b for IL-18R

was described [37,40].

IL-18 signaling

Canonical IL-18 action occurs via recruitment of the

adaptor myeloid differentiation factor (MyD88). This

event allows activation of the IL-1R-associated kinase

(IRAK)/tumor necrosis factor receptor-associated fac-

tor 6 (TRAF6) pathway leading to nuclear transloca-

tion of the nuclear factor kappa beta (NF-�B) and

subsequent modulation of gene transcription

[4,5,41,42] (Fig 1).

IL-18 has also been reported to signal via the activa-

tion of the transcription factor tyk-2 [43], STAT3 [44]

Table 1 Representative neurophisiological and

neurophatological conditions involving IL-18

Condition Species Citation

Behavior

Sleep Rat/Rabbit [72]

Fever Mouse [73,162]

Feeding Mouse [10,11]

Learning and memory Mouse [77]

Rat [48,74,75]

Human [108,111,163]

Stress and HPA axis

Rat [56,57,81]

Rat/Mouse [62]

Holstein cattle [80]

Pig [54,55]

Human [136]

Neuroinflammation

Brain injury

Hypoxia-ischemia Mouse [67,84,164-167]

Rat [67,168]

Thromboembolic stroke Mouse [83]

Spinal cord injury Rat [87]

Focal brain ischemia Rat [86]

Stroke Mouse [59,85]

Human [169]

Nerve injury Rat [47]

Viral infection Chicken [170]

Human [59,171]

Autoimmune neurodegenerative disease

Multiple Sclerosis Human [95-99,101]

EAE Mouse [91,93,100]

Rat [89,90,92,94]

Neurodegenerative disease

Alzheimer’s disease Human [50,106-109,111-114]

Parkinson’s disease Mouse [117]

Neuropsychiatric disorders

Depression Rat [133]

Human [136,137,139]

Schizophrenia Human [134,135]

Other central actions

Excitotoxic damage

Ataxia Mouse [53]

Neurodegeneration Mouse [150]

Glioma Rat [156,157]

Mouse [152-155]
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and NFATc4 [45]. In addition, a role for mitogen-acti-

vated protein kinases (MAPK) (i.e., extracellular signal-

regulated kinase, ERK1/2 and p38), and phosphatidyli-

nositol-3 kinase (Pi3K) in IL-18 signalling has been sug-

gested [4,44-46].

While these data on peripheral cells were consolidated

over a decade of work with the immune system, knowl-

edge of the IL-18-dependent signaling in the CNS is

only beginning to emerge. Activation of the IL-18R

increased NF-�B phosphorylation and induced hypertro-

phy in astrocytes [47]. In the rat dentate gyrus, the func-

tional effects of IL-18 were significantly attenuated by

prior application of c-jun-n-terminal kinase (JNK) path-

way, cyclooxygenase-2 (COX-2) and inducible nitric

oxide synthase (iNOS) inhibitors, and a role for p38

MAPK was also suggested [48,49]. Moreover, human

neuron-like differentiated SH-SY5Y neuroblastomas

exhibited an IL-18-dependent increase in the levels of

several kinases including p35, Cdk5, GSK-3beta, and

Ser15-phosphorylated p53 [50].

IL-18 system in the CNS

IL-18 transcript was demonstrated by RT-PCR in a vari-

ety of brain regions including the hippocampus, the

hypothalamus and the cerebral cortex [51,52]. In in vivo

Figure 1 The IL-18 system. Active IL-18 is produced and secreted after proteolitic cleavage of the biological inactive precursor Pro-IL-18 by

caspase-1. IL-18 action can be regulated by the IL-18 binding protein (IL18-BP) that binds IL-18 with high affinity and inhibits its function. Free

IL-18 binds to a specific heterodimeric cell surface receptor, a member of the IL-1 receptor/Toll like receptor superfamily comprised of two

subunits, IL-18Ra (here referred to as IL-18RaI) and IL-18Rb, both with three extracellular Ig-like domains and one intracellular portion containing

the Toll/IL-1R domain (TIR). Interaction of IL-18 with the IL-18Ra stabilizes its interaction with IL-18Rb and with the adaptor protein MyD88 via

the TIR domain. This initiates signal transduction by recruitment of the IL-1 receptor activating kinase (IRAK). IRAK autophosphorylates and

dissociates from the receptor complex subsequently interacting with the TNFR-associated factor-6 (TRAF6) eventually leading to nuclear

translocation of the nuclear factor �B (NF-�B). Engagement of the IL-18R complex can also activate STAT3 and the mitogen-activated protein

kinase (MAPK) p38, JNK and ERK. One truncated variant of IL-18Ra (IL-18RaII) lacking the intracellular TIR domain, and one soluble isoform of the

IL-18Rb (sIL-18Rb) were demonstrated in vivo in the mouse brain and in the rat and human brain, respectively. These isoforms originating from

differential splicing are proposed to be decoy receptors and possible negative regulators of IL-18 fuction. IL-1F7 is another proposed regulator of

IL-18 action (see text for details).
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studies, IL-18 protein was demonstrated in the pituitary

gland, ependymal cells, the neurons of the medial habe-

nula (where its synthesis was elevated by stress), in Pur-

kinje cells, and in astrocytes in the cerebellum [53-57].

In addition, it was demonstrated in vitro that microglia

and astrocytes can produce IL-18 [58-61] and its level

can be up-regulated following LPS stimulation [62] or

treatment with INF-g [63].

In the CNS, Northern blot analysis failed to detect

the presence of IL-Ra [64] and IL-Rb [65] soon after

their cloning. The first evidence that IL-18R compo-

nents are expressed in brain tissue was obtained by

Wheeler and colleagues [52] which reported the con-

stitutive expression of IL-18Ra, IL-18Rb in the rat

hypothalamus by RT-PCR. Subsequently, the mRNA

expression of IL-18Ra, IL-18Rb and the soluble form

of the IL-18Rb were detected in the hypothalamus,

hippocampus, striatum and cortex and in cultured

astrocytes, microglia and neurons [28]. More recently

in vivo analysis showed that IL-18Ra mRNA and pro-

tein are constitutively expresseed in neurons through-

out the brain [26,53,60,66]. Similar neuronal

localization and distribution was found for IL-18Rb

(Alboni et al., unpublished data). At the same time it

was demonstrated that the truncated decoy form of

the IL-18Ra was expressed in neuronal cells with a

pattern similar to that of its active counterpart [26].

Overall, IL-18R subunits had broad distribution across

the brain with the highest level in the hypothalamus,

hippocampus and amygdala. Finally, both IL-18 and

IL-18R subunits are inducible and their CNS levels can

be regulated. For instance, in the mouse hippocampus

the levels of IL-18 and IL-18Ra increased after kainic

acid (KA)-induced excitotoxicity, [60] whereas

hypoxic-ischemic brain injury markedly increased IL-

18 expression in mouse microglia [67]. In addition

nerve injury induced IL-18 upregulation in rat spinal

cord microglia possibly via p38 activation [47].

IL-18BP has been investigated and demonstrated in

rodent brains, mixed glia and microglia by only one

group using RT-PCR. Its distribution and action in the

CNS remain to be investigated [52,68].

Information on central IL-1F7 is also limited to one

study that demonstrated its presence in the human

brain [37]. Investigating IL-1F7 in the CNS is also ham-

pered by the fact that a mouse homologue has not been

identified.

Behavior

The similarities between the IL-1 and the IL-18 systems

suggested the possibility that like IL-1b, IL-18 may be

one mediator of the behavior symptoms of sickness.

These include fever, lethargy, hypophagia and cognitive

alterations [69-71].

It was demonstrated that central intracerebroventricular

(i.c.v.) injection of IL-18 in rabbits and rats increased non-

rapid eye movement sleep as well as brain temperature

[72]. The lethargic effects of IL-18 were also observed fol-

lowing intraperitoneal injection of IL-18, whereas, unlike

IL-1b, peripheral administration did not induce fever

[72,73]. Instead, pre-treatment with IL-18 reduced the

pyrogenic effects of IL-1 suggesting the possibility of an

antagonizing effect of these cytokines on fever [73].

Work on IL-18 null, and on IL-18BP overexpressing

mice indicated that IL-18 is anorexigenic and can mod-

ulate feeding, but also energy homeostasis, influencing

obesity and insulin resistance [10,11]. The mechanisms

through which IL-18 exerts these effects are largely

unknown but central action was proposed following the

observation that i.c.v. injections of exogenous IL-18

induces sleep [72] and anorexia [11]. The recent demon-

stration that IL-18 functional and regulatory subunits of

the IL-18R are expressed in several brain regions includ-

ing the hippocampus, the hypothalamus and the cortex

provided a molecular and cellular basis for the central

action of IL-18 in modulating these functions [26].

Evidence for the role of IL-18 as modulator of neuro-

nal functions includes studies on the hippocampal sys-

tem, a structure that plays a major role in memory and

in cognition. For instance, IL-18 reduces long term

potentiation (LTP) in the rat dentate gyrus, possibly

through the involvement of metabotropic glutamate

receptors [48,49,74,75]. In particular, IL-18 had no effect

on baseline synaptic transmission or paired pulse

depression, but significantly depressed the amplitude of

NMDA receptor-mediated field excitatory post synaptic

potentials [75] providing evidence of a direct neuromo-

dulatory role for IL-18 in synaptic plasticity. It is possi-

ble that IL-18 may act directly on the neurons of the

dentate gyrus, moreover, its action may be regulated by

the relative level of IL-18Ra type I and type II, both

highly expressed in these cells [26]. Work on CA1 pyra-

midal neurons of mouse hippocampal slices demon-

strated that IL-18 stimulated synaptically released

glutamate and enhanced postsynaptic AMPA receptor

responses, thereby facilitating basal hippocampal synap-

tic transmission without affecting LTP [76].

Recently an ex vivo study found that LPS-induced IL-

18 elevation in the brain was unable to affect LTP in

the CA1 hippocampal subregion [77]. However, when

comparing wild-type and IL-18 KO mice, the same

study demonstrated that IL-18 regulates fear memory

and spatial learning. In particular, assessment of spatial

learning and memory with the water maze test showed

that compared to wild-type mice IL-18 KO mice exhibit

prolonged acquisition latency and that this phenotype

was rescued by i.c.v. injection of IL-18.
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Stress and the hypothalamic-pituitary-adrenal axis

IL-18 occupies a peculiar role in stress response both

centrally and peripherally. This subject was recently

extensively reviewed and we briefly refer to it here only

for those aspects relevant to understanding of the cen-

tral actions of this cytokine [78].

In response to restraint stress, IL-18 null mice showed

a markedly reduced morphological microglial activation

in the thalamus, hypothalamus, hippocampus, substantia

nigra and central gray area [62]. In addition, IL-18

expression was elevated by restraint stress in the neu-

rons of the medial habenula [56]. Since the habenula is

a potential site for the interaction of neuro-endocrine

and immune functions, the possibility exists that IL-18

might mediate the communication between the CNS

and the periphery. Indeed, there is a general agreement

that IL-18 may regulate hypothalamic-pituitary axis

activity, possibly mediating the stress response of the

adrenal gland [20,78,79]. In this respect, stress has been

shown to induce transient IL-18 mRNA elevation in rat

pituitary cells where increase of the IL-18 mRNA level

was observed also after adrenalectomy [57].

IL-18 is also produced in the neurohypophysis [20] as

well as in the adenohypophysis where in situ hybridiza-

tion combined with immunohistochemistry demon-

strated its expression in corticotrope cells [57]. In

addition, bovine somatotropes have been shown to pro-

duce IL-18 and IL-18Ra was co-localized with IL-18, or

growth hormone, suggesting the possibility that IL-18

acts on somatotropes through the autocrine pathway

[80]. However, IL-18 seems to also act at the hypothala-

mic level. Indeed, the application of IL-18 in rat

hypothalamic explants decreases basal and KCl-stimu-

lated corticotropin-releasing hormones (CRH), as well as

CRH gene expression [81]. In particular, the cytokine

did not modify basal PGE2 production but abolished

production stimulated by IL-1b demonstrating that IL-

18 possesses a profile of in vitro neuroendocrine activ-

ities opposed to, and even antagonizing, those of IL-1b.

Recently, IL-18 was localized in the marginal cell layer

of the bovine and porcine Rathke’s pouch, that is

assumed to embody a stem/progenitor cell compartment

of the postnatal pituitary gland [54,55]. Interestingly, sti-

mulation of a cloned anterior pituitary-derived cell line

(from the bovine anterior pituitary gland) with IL-18

increased expression of mRNAs of a different cytokine

suggesting the possibility that IL-18 may modulate not

only the immuno-endocrine function of the pituitary

cells but also their development [55].

Microglia and neuroinflammation

Functional maturation and activation of IL-18 can occur

in the brain under inflammatory conditions. Indeed, as

extensively reviewed by Felderhoff-Mueser and collea-

gues [82], experimental and clinical studies suggest that

binding of IL-18 occurs in several neuroinflammatory

associated pathological conditions including microbial

infections, focal cerebral ischemia, Wallerian degenera-

tion and hypoxic-ischemic, hyperoxic and traumatic

brain injuries (e.g., stroke). Further evidence comes from

recent papers reporting an activation of IL-18 in the

brain of mice that underwent thromboembolic stroke

[83] or an increase of IL-18 levels after hypoxia-ischemia

in the juvenile hippocampus of mice [84].

During CNS inflammation, the IL-18 system may have

an important role in the activation and response of

microglia and possibly infiltrating cells. As mentioned

above, microglia cells can synthesize and respond to IL-

18 [20,59-61]. IL-18 KO mice had impaired microglia

activation with reduced expression of Ca2+-binding pro-

tein regulating phagocytic functions that resulted in

reduced clearance of neurovirulent influenza A virus

[85]. In the absence of infection IL-18 deficient mice

also showed diminished stress-induced morphological

microglial hypertrophy [62].

Interestingly, IL-1b is upregulated within 4 h of focal

ischemia in rat brain, but IL-18 is upregulated much

later, at time points associated with infiltration of per-

ipheral immune cells, thus suggesting different roles for

these interleukins in the regulation of glial functions

[86]. In this respect, it was shown that mice infected

with Japanese Encephalitis produce IL-18 and IL-1b

from microglia and astroglia [59]. Both interleukins are

capable of inducing pro-inflammatory cytokines and

chemokines from human microglia and astroglia,

although IL-18 seems to be more potent than IL-1b.

In the spinal cord, IL-18 seems to play a role in the

innate inflammatory response. Indeed, moderate cervical

contusive spinal cord injury induced processing of IL-18

in neurons of the rat spinal cord [87]. In addition, nerve

injury induced a striking increase in IL-18 and IL-18R

expression in the dorsal horn, and IL-18 and IL-18R

were upregulated in hyperactive microglia and astro-

cytes, respectively [47,88]. Intrathecal injection of IL-18

induced behavioral, morphological, and biochemical

changes similar to those observed after nerve injury

[47], suggesting that IL-18-mediated microglia/astrocyte

interactions in the spinal cord have a substantial role in

the generation of tactile allodynia.

Autoimmune neurodegenerative disease

A pivotal role for IL-18, in the pathogenesis of autoim-

mune neurodegenerative disease has been proposed.

High levels of IL-18 mRNA were found in the brain and

the spinal cord of rats with experimental autoimmune

encephalomyelitis (EAE), an animal model of multiple

sclerosis (MS) [89,90]. Elevated IL-18 transcript was

found at the onset and throughout the course of the dis-

ease. A different study showed that IL-18 increases

severity of EAE [91]. Moreover, it has been
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demonstrated that anti-IL-18 antibodies or targeted

overexpression of IL-18BP in the CNS had preventive

effects on the induction of EAE[90,92]. These observa-

tions suggested a role for IL-18 in MS, IL-18 KO mice

were susceptible to EAE, whereas IL-18Ra KO mice or

IL-18 KO mice treated with anti-IL-18Ra antibodies

were not [93]. Thus, alternative IL-18Ra ligands with

encephalitogenic properties may exist [93]. In EAE-sus-

ceptible Dark Agouti rats, the basal and post-immuniza-

tion (day 5, 7 and 12) levels of IL-18Ra in lymph node

cells were significantly higher than in the EAE-resistant

Piebald Virol Glaxo rats [94].

In human, serum and cerebrospinal fluid levels of IL-

18 are elevated in patients with MS [95-98] and IL-18

positive cells have been detected in demyelinating brain

lesions from MS patients [99].

The pathological role of IL-18 in EAE is also sup-

ported by the up-regulation of caspase-1 (required to

convert IL-18 precursor protein into its biologically

active mature form) mRNA in the spinal cord of rats

with EAE [89], and decreased disease severity in cas-

pase-1 KO mice [100]. Finally, peripheral blood mono-

nuclear cells from patients with MS have elevated

caspase-1 mRNA levels [95,101].

In addition to a role in MS there is also evidence to

support a function for IL-18 in the onset and progres-

sion of autoimmune CNS disease. For instance, infection

of microglia lines with Theiler’s murine encephalomyeli-

tis virus (which causes the development of a chronic-

progressive autoimmune demyelinating disease) signifi-

cantly upregulates the expression of cytokines involved

in innate immunity, including IL-18 [102].

Neurodegenerative disorders

Alzheimer’s Disease (AD) is the most common type of

human dementia. It is characterized clinically by a gra-

dual but progressive decline in memory and pathologi-

cally by neuritic plaques, neuro-fibrillary tangles, and

the loss of synapses and neurons [103]. Inflammatory

processes were proposed to contribute to neurodegen-

eration in AD and extensive studies indicated that IL-1

is a pivotal cytokine in mediating direct neuronal loss

and sustaining microglia activation leading to further

cellular damage in AD [104]. Microglia-derived inflam-

matory cytokines can initiate nerve cell degeneration

and enhance the plaque production typically found in

AD [105]. Increasing evidence indicates that IL-18 may

have a role in this scenario.

For instance, the levels of IL-18 transcript and pro-

tein were increased in the frontal lobe of AD patients

compared to healthy age-matched controls. In these

brains IL-18 was found in microglia, astrocytes and in

neurons that co-localize with amyloid-b-plaques and

with tau [106], suggesting that amyloid-b may induce

the synthesis of IL-18, and IL-18 kinases involved in

tau phosphorylation as a part of the amyloid-associated

inflammatory reaction. Additionally, IL-18 can enhance

protein levels of Cdk5/p35 and GSK-3b kinases, tau

phosphorylation and cell cycle activators in neuron-

like differentiated human SH-SY5Y neuroblastoma

cells [50]. Thus, on a pathway leading to AD, IL-18

may have an impact on the hyperphosphorylation of

tau but also on cell cycle related mechanisms. In the

plasma, the levels of IL-18 were significantly elevated

in patients with AD, vascular dementia, and mild cog-

nitive impairment compared to the control group

[107,108]. Interestingly, IL-18 levels were higher in

AD-mild patients, were slightly lower in AD-moderate

patients, whereas no significant difference was

observed between AD-severe patients and non-demen-

ted age-matched subjects [109], suggesting a gradual

decline of immune responsiveness in AD. Although

other studies showed no differences in circulating IL-

18 levels measured between AD patients (both mild

cognitive impairment and severe AD patients) and

controls [106,110,111], a significant increased produc-

tion of IL-18 was obtained from stimulated blood

mononuclear cells or macrophages of peripheral blood

of AD patients [111,112]. Furthermore, a significant

correlation between IL-18 peripheral production and

cognitive decline was observed in AD patients. Overall,

these data indicate that IL-18-related inflammatory

pathways, are exacerbated in the peripheral blood of

AD patients, and that this cytokine may indeed partici-

pate in pathogenic processes leading to dementia.

Genetic association studies reported that two func-

tional polymorphisms (137G/C and -607C/A) in IL-18

promoter may increase the risk of developing sporadic

late onset AD in the Han Chinese population [113]. An

association between 137G/C and -607C/A polymorph-

isms and the susceptibility/clinical outcome of AD was

also suggested in an Italian population [114], although

these correlations remain controversial. Indeed, in

another Italian population a lack of association between

IL-18 gene promoter polymorphisms and onset of AD

was reported, indicating that the association of IL-18

promoter polymorphisms with AD is not so strong, AD

being a multifactorial disease [115]. Importantly, IL-18

promoter remains poorly characterized.

Finally, it has been hypothesized that increased pro-

duction of IL-18 in the brain may lead to motor and

cognitive dysfunctions, leading to the development of

HIV-associated dementia. Thus, IL-18 concentrations in

HIV-infected persons are likely to play an important

role in the development and progression of the infection

toward AIDS and associated clinical conditions [116].

In Parkinsonism, there is evidence of chronic inflam-

mation in the substantia nigra and striatum. Activated

microglia, producing proinflammatory cytokines,
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surround the degenerating dopaminergic neurons and

may contribute to dopaminergic neuron loss. In an

experimental model of Parkinson’s disease that utilized

injection of the dopaminergic specific neurotoxin MPTP

the number of activated microglial cells in the substantia

nigra pars compacta of IL-18 KO mice was reduced

compared to wild-type [117], indicating the possibility

that IL-18 may participate in microglial activation and

dopaminergic neurodegeneration.

Neuropsychiatric disorders

Several groups found that depressed and schizophrenic

patients have high circulating levels of pro-inflammatory

cytokines [118-123]. Others reported that psychotic epi-

sodes often occur in conditions characterized by ele-

vated levels of pro-inflammatory cytokines, for instance

during inflammation or in patients suffering from

immune diseases [124-127].

Other studies suggested that the correlation between

inflammatory markers and psychiatric disorders may be

more that merely associative, with inflammation actually

contributing to mental disorders. Improvement in psy-

chiatric symptoms has been recently reported in patients

treated with anti-inflammatory drugs for other indica-

tions [128] and functional allelic variants of genes codi-

fying for pro-inflammatory cytokines were associated

with reduced responsiveness to antidepressant therapy

[129,130]. It was also recently demonstrated that IL-6

plays a pivotal role in the pharmacological ketamine

model of schizophrenia by modulating the NADPH-oxi-

dase increase of superoxide affecting parvalbumin inter-

neurons [131]. An interesting line of research is

exploring the possibility that these actions may be devel-

opmental, with cytokines influencing early-life program-

ming of brain functions [132].

At present evidence linking IL-18 and psychiatric dis-

orders are primarily associative. IL-18 mRNA expression

is elevated in subordinate rat models with depression

with respect to dominant rats [133]. A significant eleva-

tion of circulating plasma levels of IL-18 has been

reported in subjects affected by schizophrenia and were

normalized by pharmacological treatment with risperi-

done, a dopamine antagonist with antipsychotic activity

[134,135]. Normalization was demonstrated also within

6 month of treatment with the antipsychotic clozepine

[134] although the possibility that these effects could be

due to clozepine’s effects on leukocyte numbers cannot

be excluded. The serum levels of IL-18 were also signifi-

cantly higher in moderate-severe depression patients,

further suggesting that the pathophysiology of depres-

sion is associated with an inflammatory response invol-

ving IL-18 [136,137]. Coincidentally, IL-18 is also

elevated after stroke, a condition followed by emotional

disorders [138-140].

The significance of these correlations with respect to

the role of the IL-18 system to neurophsychiatric disease

pathophysiology or manifestation remains to be deter-

mined. Caution should be taken particularly since per-

ipheral IL-18 can be subject to neurogenic stimulation

or stress [20,78,141-143]. It is thus difficult to determine

whether IL-18 elevation contributes to these pathologies

or whether it is a consequence of the disorders. Indeed,

Kokai and colleagues suggest that IL-18 can be consid-

ered a psychologic stress-associated marker since they

demonstrated that exposure to stressful events (i.e.,

panic attack in human, restraint stress in mice), the

most important precipitating factor in depression,

induces a prompt increase in the level of circulating IL-

18 [136].

Regardless, elevated IL-18 levels have the potential to

contribute to several of the symptoms associated with

neuropsychiatric disorders. For instance, like other

pro-inflammatory cytokines, IL-18 may participate in

the control of the activity of the HPA axis reported to

be dysregulated in depression [78,144-146]. IL-18 may

antagonize glucocorticoid signalling via activation of

NF-�B and p38 MAPK possibly disrupting glucocorti-

coid-dependent negative feedback on the HPA axis

[147-149]. Finally, IL-18 can affect other hallmarks of

depression impairing learning and memory by acting

as an attenuator of long-term potentiation, and indu-

cing lethargy and loss of appetite [11,72,74].

Other central actions of IL-18

Three groups investigated the action of IL-18 in

rodents following administration of KA, an agonist of

the kainate receptors inducing seizure, cerebellar ataxia

and exitotoxic mediated neuronal loss [53,60,150]. In

mouse hippocampus KA elevated IL-18 and IL-18R

expression on microglial cells progressively 3 days after

treatment [60]. The authors hypothesized that similar

to what was observed peripherally in studies of the

immune system, IL-18 may contribute to cellular

damage. This hypothesis was partially supported by

another group showing that the KA-induced hippo-

campal neurodegeneration was shown to be more

severe in IL-18 KO mice compared to wild-type litter-

mates [150]. Yet, in recombinant mice with the same

pre-treatment, IL-18 aggravated both the clinical and

pathological signs of neurodegeneration in a dose-

dependent manner.

In the cerebellum, where KA was demonstrate to

induce ataxia partially via elevation of IL-1b, exogen-

ous IL-18 was protective and played a positive role in

the recovery from kainate-induced ataxia [53]. Consis-

tently, IL-18 KO and IL-18Ra KO mice show delay in

recovery from kainate-induced ataxia. The antagoniz-

ing effects of IL-18 and IL-1b also observed in the per-

ipheral effects of IL-1b on fever, [73] are intriguing
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particularly since these cytokines share many similari-

ties including their signalling. Preliminary observations

suggest that these effects may be explained by IL-1b

and IL-18 targeting different cells or activating distinct

signalling [53].

Some groups have investigated the possibility that

IL-18 could be used against glioma, a common and

highly aggressive type of brain tumor with poor long-

term prognosis [151]. In this respect, IL-18 was inves-

tigated alone or in synergism with IL-12 or Fas, for its

ability to induce INFg and NO inducing a cytotoxic

response against glioma cells [152]. Systemic or intra-

cerebral administration of IL-18 inhibited the growth

of inoculated glioma cells and prolonged the survival

of mice with subcutaneous or brain tumors, respec-

tively [153]. Antitumor activity against glioma was also

found in mice treated with IL-18 and IL-12 via Semliki

Forest virus [154,155] or with a combination of IL-18

and Fas [156]. Finally, encouraging data were also

reported by overexpressing IL-18 in mesenchymal cells

of rats [157].

Conclusions

Investigation on the presence of IL-18 in the CNS began

soon after its discovery as a co-stimulator of INF-g pro-

duction in the immune system [1,20,158,159]. Initially

IL-18 was investigated for its similarities with IL-1b as a

possible mediator of sickness behavior and of local

inflammatory reactions associated with neuronal

damage. These actions were both demonstrated and IL-

18 was shown to promote loss of appetite, sleep and

inhibition of LTP, as well as to be produced by and

active in microglial cells, and to possibly contribute to

neurodegenerative diseases.

Yet, two observations suggest that IL-18 has a central

role and function that may be unique and distinct from

those of IL-1b or other cytokines. The first being the

recognition that Il-18 and Il-1b, when their combined

action was tested, may have antagonizing effects such as

those occurring in fever and in kainate-induced cerebel-

lar ataxia. The second was the finding that IL-18R is

constitutively and broadly expressed in neuronal cells

throughout the rodent brain. This finding opened the

possibility of a direct action of IL-18 on neuronal func-

tions particularly in all of the CNS disorders showed to

be correlated to elevated cytokine levels.

Thus, the investigation of the central action of IL-18

may be considered in its infancy and the significance of

the neuronal IL-18R complex and of its isoforms

remains to be determined. Among the intriguing pecu-

liarities of the central role of IL-18 is that despite the

constitutive expression of the receptor, the regulation of

IL-18 action appears to be regulated by the existence of

truncated isoforms and by the fact that under normal

physiological conditions IL-18 is not easily found in the

CNS. Interestingly, the genes encoding for IL-18 and its

receptors are subject to differential promoter usage and

their transcription to differential splicing indicating that

these molecules have the potential of being produced in

a tissue/cell specific way in response to different stimuli

[26,78]. It will be important to determine which physio-

logical or pathological conditions modulate these

molecules.

Also unexplored is the investigation of the possible

role of IL-18 in CNS development suggested by work

on microglial cultures from newborn mice and brain

homogenates where IL-18 was preferentially expressed

during early postnatal stages and subsequently downre-

gulated, being virtually absent in the brains of adult

mice [61]. Additionally, the activated microglia-derived

cytokines, including IL-18, may either inhibit the neu-

ronal differentiation or induce neuronal cell death in

the rat neural progenitor cell culture, which are cells

capable of giving rise to various neuronal and glial cell

populations in the developing and adult CNS [160].

Finally, in adult rodents IL-18 is produced in ependy-

mal cells [56] considered a primary source of neural

stem cells in response to injury [161]. The possible

role of IL-18 in their differentiation has also not been

investigated.

Work on existing IL-18 and IL-18R null mice as well

as the development of new experimental models includ-

ing CNS specific null or overexpressor mice and the

identification of suitable in vitro systems will determine

the specificity of the central effects of IL-18 in health

and disease.
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