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Progression of breast cancer involves cross-talk be-
tween epithelial and stromal cells. This cross-talk is
mediated by growth factors and cytokines secreted by
both cancer and stromal cells. We previously reported
expression of interleukin (IL)-1� in a subset of breast
cancers and demonstrated that IL-1� is an autocrine
and paracrine inducer of prometastatic genes in in

vitro systems. To understand the role of IL-1� in
breast cancer progression in vivo , we studied the
growth of MCF-7 breast cancer cells overexpressing a
secreted form of IL-1� (MCF-7IL-1�) in nude mice.
MCF-7IL-1� cells formed rapidly growing estrogen-
dependent tumors compared to parental cells. Inter-
estingly, IL-1� expression alone was not sufficient for
metastasis in vivo although in vitro studies showed
induction of several prometastatic genes and matrix
metalloproteinase activity in response to cross-talk
between IL-1�-expressing cancer cells and fibro-
blasts. Animals implanted with MCF-7IL-1� cells were
cachetic, which correlated with increased leptin se-
rum levels but not other known cachexia-inducing
cytokines such as IL-6, tumor necrosis factor, or in-
terferon gamma. Serum triglycerides, but not blood
glucose were lower in animals with MCF-7IL-1� cell-
derived tumors compared to animals with control
cell-derived tumors. Cachexia was associated with at-
rophy of epidermal and adnexal structures of skin; a
similar phenotype is reported in triglyceride-defi-
cient mice and in ob/ob mice injected with leptin.
Mouse leptin-specific transcripts could be detected
only in MCF-7IL-1� cell-derived tumors, which sug-
gests that IL-1� increases leptin expression in stromal
cells recruited into the tumor microenvironment. De-
spite increased serum leptin levels, animals with
MCF-7IL-1� cell-derived tumors were not anorexic
suggesting only peripheral action of tumor-derived
leptin, which principally targets lipid metabolism.

Taken together, these results suggest that cancer cell-

derived cytokines, such as IL-1� , induce cachexia by

affecting leptin-dependent metabolic pathways.

(Am J Pathol 2003, 163:2531–2541)

Progression of breast cancer from a benign to a malig-

nant stage is accompanied by overexpression of several

growth factors, cytokines, and chemokines by cancer

cells.1–4 These growth factor/cytokine expression pat-

terns can predict clinical outcome because they can

influence disease progression by enhancing metastasis

or inducing cachexia without any distant metastasis. In

fact, 30% of cancer mortality is because of cachexia

rather than tumor burden or metastasis.5

The major circulating cytokines implicated in breast

cancer progression include tumor necrosis factor

(TNF)-�, interleukin (IL)-6, and IL-8.4,6 In various experi-

mental models, all three of these cytokines can promote

cancer progression by enhancing both metastasis and

cachexia.7–9 Others and we reported the expression of

IL-1� in primary breast cancer and breast cancer cell

lines with highly metastatic phenotype.10,11 Invasive

breast cancers and ductal carcinoma in situ express

higher levels of IL-1� compared to benign tumors.11 In

breast cancer cell lines, increased IL-1� expression cor-

related with constitutive DNA binding of extracellular sig-

nal-activated transcription factor nuclear factor (NF)-�B,

and expression of prometastatic (IL-6 and IL-8) and anti-

apoptotic genes (TRAF-1 and cIAP-2).10,12,13 Further-

more, IL-1� from breast cancer cells induced NF-�B in

stromal cells, which was accompanied by increased ex-

pression of urokinase plasminogen activator (uPA), IL-6,

and IL-8 in stromal fibroblasts.10,14 Results of these in

vitro studies suggest that IL-1� is involved in invasion and

metastatic growth of breast cancer.

IL-1� is usually expressed as a preprotein, which is

secreted only after cleavage by the calpain family of
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proteases.15 Calpains cleave pre-IL-1� and release the

N-terminal propiece-IL-1� and the C-terminal secreted

IL-1�.16 Unlike IL-1�, which is biologically active only as

a secreted mature molecule, membrane-associated IL-

1�, propiece-IL-1�, and mature secreted IL-1� show dis-

tinct biological activities.15 The propiece-IL-1� has trans-

forming activity whereas secreted IL-1� has paracrine

and autocrine activities similar to IL-1�.15,17 Membrane-

associated IL-1� potentiates anti-tumor immunity.18

Transformed but not normal epithelial cells secrete IL-1�,

possibly because of overexpression of calpain family

proteases by cancer cells.15,19 Because IL-1� is overex-

pressed in a variety of cancers including breast, squa-

mous cell carcinoma, and melanoma,11,20,21 we initiated

this study to specifically address the role of secreted

IL-1� in breast cancer progression. The aims of this study

were to investigate the effects of a cancer cell-derived

secreted form of IL-1� on general metabolic status and to

test whether IL-1� expression alone is sufficient to con-

vert MCF-7 breast cancer cells from nonmetastatic to

metastatic phenotype. MCF-7 cells do not express IL-1�

and form estrogen-dependent, nonmetastatic tumors in

nude mice.10,22 We show that IL-1� expression alone is

not sufficient to induce metastasis of these cells despite

increasing prometastatic gene expression in stromal

cells in in vitro studies. However, IL-1� alone was able to

induce profound cachexia. Cachexia was accompanied

with atrophy of epidermal and adnexal structures of skin.

Interestingly, cachexia in animals with IL-1�-overex-

pressing cell-derived tumors correlated with elevated se-

rum leptin and reduced triglyceride levels but not with

any other known cachexia-inducing cytokines.

Materials and Methods

Breast Cancer Cell Lines and Generation of

Breast Cancer Cells Overexpressing IL-1�

MCF-7 and human lung fibroblasts (HLF-1) were pur-

chased from American Type Culture Collection, Rock-

ville, MD, and maintained in minimal essential medium

plus 10% fetal calf serum and antibiotics. To generate

MCF-7 cells overexpressing the human mature secreted

form of IL-1�, we amplified sequences corresponding to

amino acids 122 to 271 of full-length IL-1�23 by polymer-

ase chain reaction (PCR) and cloned it into BamHI-XbaI

sites of the pcDNA3 or the modified pCMV4 vector

(pCMV4 vector has an alfalfa mosaic virus translation

enhancer, which increases translation efficiency). MCF-7

cells were transfected with these vectors and grown in

the presence of G418 (600 �g/ml) to select transfected

cells. G418-resistant colonies were isolated and grown

individually.

Implantation of Cells into Mammary Fat Pads of

Nude Mice, Tumor, and Animal Weight

Measurements

All animal studies were performed with the approval from

Institutional Animal Care and Use Committee and as per

the National Institutes of Health guidelines. MCF-7 breast

cancer cells with or without HLF-1 were injected into the

mammary fat pads of 6- to 8-week-old nu/nu mice (Harlan

Sprague Dawley, Indianapolis, IN) as described previ-

ously.24 Eight to ten animals per group were used in

every experiment described in the text and experiments

were repeated three times. Estrogen pellets (17� estra-

diol, 0.72 mg/pellet, 60 day release; Innovative Research

of America, Sarasota, FL) were implanted a day before

tumor cell injection. Tumor growth was measured once a

week using a caliper (in mm) and tumor weight (mg) was

calculated using the formula tumor weight (mg) � (a2
�

b)/2 where a is the width in mm and b is the length in

mm.25,26 Actual tumor weight was also measured at the

time of sacrifice to further confirm the results obtained

with the above formula. Animal weight was measured

once weekly and final body weight was calculated after

subtracting tumor weight.

Measurement of Blood Glucose, Serum

Cytokines, Triglycerides, Leptin, and Calcium

Blood glucose was measured using the Accu-Check ad-

vantage blood glucose monitor (Roche, Indianapolis, IN).

Serum was collected at the time of sacrifice. Serum cy-

tokines were measured using LINCOplex multiplex immu-

noassay system (Linco Research, Inc., Missouri, MO).

This assay system is highly sensitive and measures cy-

tokines as low as 3.2 pg/ml of serum (www.lincoresearch.

com). Leptin was also measured similarly. Serum calcium

was measured as described previously.27 IL-1� was

measured using an enzyme-linked immunosorbent assay

from R&D Systems as per the manufacturer’s recommen-

dation (R&D Systems, Minneapolis, MN). For enzyme-

linked immunosorbent assay, 1 � 106 cells were plated

for 2 days in 60-mm plates. After washing in PBS, cells

were incubated with 5 ml of serum-free media for 24

hours and media was analyzed for IL-1�. The sensitivity

of the assay was 3.9 pg/ml.

Electrophoretic Mobility Shift Assays, Western

Blotting, Northern Blotting, and Gelatin

Zymography

Electrophoretic mobility shift assay with whole cell ex-

tracts was performed as described previously.28 For

Western blotting, finely minced thigh muscle was resus-

pended in radioimmunoassay buffer (RIPA, 50 mmol/L

Tris, pH 7.5, 0.25% sodium deoxycholate, 1% Nonidet

P-40, 150 mmol/L NaCl, 1 mmol/L ethylenediaminetet-

raacetic acid, 100 �mol/L sodium orthovanadate, 1

mmol/L sodium fluoride, 1 mmol/L �-glycerophosphate,

0.5 mmol/L phenylmethyl sulfonyl fluoride, 2 �g/ml apro-

tinin, leupeptin, and pepstatin) and homogenized. Solu-

ble protein was used for Western blotting as described

previously.29 Northern blotting for IL-8 expression was

performed as described previously.28 For gelatin zymog-

raphy, conditioned media (CM) from 1 � 105 cells plated

overnight were used. For co-culturing, an equal number
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of cancer cells and HLF-1 were used. Zymography was

performed as described previously.30

Measurement of Proteasomal Activity

Thigh muscle collected at the time of sacrifice was ho-

mogenized in buffer Y (50 mmol/L Tris, pH 7.4, 250

mmol/L NaCl, 1% Triton X-100, 0.1% sodium dodecyl

sulfate, and 1 mmol/L ethylenediaminetetraacetic acid)31

and 20S proteasome activity was measured using an

assay kit from Chemicon International (Temecula, CA).

Analysis of Micrometastasis by PCR of

Lung DNA

Lung DNA was isolated and subjected to PCR analysis as

described by Endo and colleagues.32 One �g of DNA

was subjected to 24 cycles of PCR using primers

5�AGAGCCATCTATTGCTTACA3� and 5�TATGACATGA-

ACTTAACCAT3�. PCR products were identified by South-

ern blotting using the internal primer 5�ACACAACTGT-

GTTCACTAGC3� as a probe.

Analysis of Tumors for the Expression of Leptin

and Lipid-Mobilizing Factor (LMF)

RNA from flash-frozen tumors was isolated by RNAzol

(Tel-Test Inc., Friendswood, TX). Five �g of RNA was

reverse-transcribed using random primers and reverse

transcription (RT)-PCR kit (Stratagene, La Jolla, CA). Re-

verse-transcribed RNA (1/25 volume) was subjected to

PCR using specific primers. Primers used for amplifica-

tion of leptin were 5�GGAGACCCCTGTGTCGGTTC3� and

5�TCCAGGCTCTCTGGCTTCTG3�; the internal primer used

was 5�GATGACACCAAAACCCTCATC3�. The primers

used for LMF were 5�CTGTCCTGCTGTCTCTGCTG3� and

5�TGGGCTGAGACTTCCTGTCT3�; the internal primer used

was 5�CTCCACTGGGCTGTCCAAGC3�. GAPDH primers

that can amplify both human and mouse GAPDH were

5�GAGGACCAGGTTGTCTCC3� and 5�CCTTGGAGGCC-

ATGTAGG3�. Southern blotting was performed as de-

scribed previously.10

Quantitative Measurements and Statistical

Analysis

Expression levels of MyoD and ubiquitinated proteins

were quantitated by densitometric scanning of Western

blots. Data were analyzed with GD-STAT or Graphpad

softwares. Analysis of variance was used to determine P

values between mean measurements. A P value of �0.05

was deemed significant. Error bars on all graphs repre-

sent standard errors between measurements.

Results

Generation and Analysis of MCF-7 Breast

Cancer Cells Overexpressing IL-1�

To study the effect of the secreted form of IL-1� on

growth of breast cancer cells in nude mice, we generated

a mammalian expression vector that codes for only the

mature secreted form (amino acids 122 to 271) of human

IL-1� (pcDNA3-IL-1�).23 The expression of the secreted

form of IL-1� in MCF-7 cell colonies obtained after trans-

fection with either expression vector alone (pcDNA3-1, 2,

and 3) or IL-1� expression vector (MCF-7IL-1�-4, 5, and

6) was measured by enzyme-linked immunosorbent as-

say. No measurable IL-1� could be detected in the CM of

pcDNA3 clones. In contrast, IL-1�5 and IL-1�6 CM con-

tained 100 and 24 pg/ml of IL-1�, respectively. We also

measured NF-�B DNA-binding activity in these cells be-

cause IL-1� expression should lead to autocrine activa-

tion of NF-�B.33 Indeed, active NF-�B protein levels, as

measured by DNA-binding activity, were elevated in

MCF-7IL-1� cells compared to pcDNA3 cells (Figure 1A).

NF-�B activation in cancer cells correlated with in-

creased expression of proinvasive and prometastatic

genes IL-8 (data not shown) and CXCR4.34 However,

MCF-7IL-1� cells failed to express the NF-�B regulated

prometastatic gene uPA, which could be because of

methylation of the uPA promoter in these cells.35

To further confirm that the secreted form of IL-1� is

biologically active, we treated HLF-1 with CM from

pcDNA3 or MCF-7IL-1� cells. CM from MCF-7IL-1� but

not pcDNA3 cells induced NF-�B in HLF-1 (Figure 1B).

The NF-�B:DNA complex obtained with HLF-1 cell ex-

tracts was a heterodimer of p65:p50 subunits of NF-�B as

determined by antibody supershift assay (data not

shown). Induction of NF-�B in HLF-1 by CM of MCF-

7IL-1� cells correlated with increased expression of the

NF-�B responsive gene IL-8 (Figure 1C).

To determine the influence of IL-1� on growth of MCF-7

cells in nude mice, we implanted pcDNA3-1, IL-1�5, and

IL-1�6 cells (5 � 106) into mammary fat pads with or

without estrogen pellets. Tumors were obtained only in

animals with estrogen pellet implants, which were in gen-

eral larger in animals implanted with MCF-7IL-1� cells.

Because tumor intake was not uniform, we isolated tu-

mors from animals and grew them in culture in the pres-

ence of G418. All animal experiments described below

were performed with cells that have been passed through

nude mice once. This approach has been used by a

number of investigators to improve tumor intake in xeno-

graft models.3,36,37

Properties of Tumor-Derived pcDNA3 and IL-1�

Cells

We first determined IL-1� expression in CM of tumor-

derived cell lines (named Td-pcDNA3 and Td-IL-1�) by

enzyme-linked immunosorbent assay. IL-1� levels in CM

of Td-pcDNA3-1, Td-IL-1�1, Td-IL-1�2, and Td-IL-1�3

were 0, 218 � 4, 293 � 15, and 288 � 4 pg/ml, respec-
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tively. Reasons for the marked increase in IL-1� expres-

sion in tumor-derived IL-1� clones compared to the orig-

inal IL-1� clones in culture are not known. Although

parental IL-1�-overexpressing cells were of clonal origin,

some cells may have lost IL-1� expression during pro-

longed culture because of lack of selection pressure. In

contrast, clonal selection of high IL-1�-expressing cells in

animals may have contributed to elevated IL-1� expres-

sion in Td-IL-1� cells.

To determine the autocrine activity of IL-1�, we mea-

sured NF-�B DNA-binding activity in tumor-derived cell

lines and found that only Td-IL-1� cells contained con-

stitutive NF-�B DNA-binding activity (Figure 2A, lanes 1

to 4). Furthermore, CM from only Td-IL-1� cells induced

NF-�B DNA-binding activity in HLF-1 (Figure 2A, lanes 5

to 9). Neutralizing antibody against IL-1� but not leuke-

mia inhibitory factor blocked Td-IL-1�1 cell CM-mediated

NF-�B activation in HLF-1 (Figure 2B). Induction of NF-�B

by CM in HLF-1 correlated with increased expression of

IL-6, IL-8, and uPA in these cells (data not shown).

Td-pcDNA3-1 and Td-IL-1�3 cells (5 � 106) were im-

planted into the mammary fat pads with or without estro-

gen pellets. No tumors were obtained with either cell type

in the absence of estrogen. Thus, IL-1� cannot confer

hormone-independent growth properties to MCF-7 cells.

Figure 1. Generation of IL-1�-overexpressing MCF-7 cells. A: NF-�B DNA-
binding activity in MCF-7 cells transfected with pcDNA3 or IL-1� expression
vector. Individual G418-resistant colonies were examined for NF-�B DNA-
binding activity by electrophoretic mobility shift assay. DNA binding of the
general transcription factor SP-1 is also shown. B: Induction of NF-�B in
HLF-1 by the CM from pcDNA3 and IL-1�-overexpressing clones. HLF-1 cells
were incubated with CM from indicated cell lines for 1 hour. NF-�B and SP-1
DNA-binding activities were measured as described above. CM from �90%
confluent cells was collected after overnight incubation in serum-free media.
C: Induction of IL-8 in HLF-1 cells by CM from various cell types. HLF-1 was
incubated with CM for 4 hours and IL-8 expression was measured by North-
ern blotting of total RNA.

Figure 2. Properties of tumor-derived pcDNA3- and IL-1�-overexpressing
clones. A: NF-�B DNA-binding activity in pcDNA3- and IL-1�-overexpressing
cells isolated from tumors and grown in culture (lanes 1 to 4). CM from the
same cells was tested for their ability to induce NF-�B in HLF-1 cells (lanes
5 to 9). NF-�B DNA binding was measured as in Figure 1A. B: Neutralizing
antibody against IL-1� blocks NF-�B activation by Td-IL-1�1 CM. CM was
treated with the indicated neutralizing antibodies (3 �g/ml) for 1 hour at
room temperature. Cells were treated with CM for 1 hour.

2534 Kumar et al
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Similarly, MCF-7 cells grown in the presence of exoge-

nous IL-1� failed to become hormone-independent (data

not shown). Both Td-pcDNA3-1 and Td-IL-1�3 cells

formed tumors in all animals with estrogen pellet im-

plants. After 7 weeks of implantation, tumor weight for the

Td-IL-1�3 and Td-pcDNA3-1 groups was 2042 � 383 mg

and 1044 � 297 mg, respectively. Thus, it seems that

IL-1� enhances the rate of tumor growth. Enhanced

growth of Td-IL-1�3-derived tumors is less likely because

of the increased sensitivity of these cells to estrogen, at

least at the genomic level because estrogen receptor

activity was similar in both Td-pcDNA3-1 and Td-IL-1�3

cells in in vitro assays (data not shown). Although Td-IL-

1�3-derived tumors grew faster, hematoxylin and eosin

(H&E) staining of lungs collected at the time of sacrifice

did not reveal any metastasis. Also, a similar level of

micrometastasis to lungs, as determined by PCR analysis

of lung DNA for the presence of human �-globin se-

quences,32 was observed with both groups (data not

shown). Lack of metastasis of Td-IL-1�3-derived tumor is

not because of silencing of the transfected IL-1� gene in

the tumor because the serum of animals with Td-IL-1�3-

derived tumors but not Td-pcDNA3-1-derived tumors had

measurable IL-1� (15 to 69 pg/ml). Despite the lack of

metastasis, weight loss was observed in animals with

Td-IL-�3-derived tumors (19.3 � 1.1 g) compared to

animals with Td-pcDNA3-1-derived tumors (22.3 �

0.9 g). Note that animals in both groups were of similar

weight at the time of tumor cell implantation.

The Effect of Fibroblasts on Growth of Td-IL-

1�3 and Td-pcDNA3-1 Cells in Nude Mice

The failure of Td-IL-1�3-derived tumors to metastasize

could be because of the inability of these tumors cells to

recruit stromal cells, which provide matrix metalloprotein-

ases (MMPs) required for invasion and metastasis.38 To

test this possibility, we first determined MMP activity in

CM of parental pcDNA3 and IL-1� clones, Td-pcDNA3-1

and Td-IL-1� clones, and all cell types co-cultured with

HLF-1 using gelatin zymography.30 CM of pcDNA3,

HLF-1, or IL-1� clones showed very little MMP activity

(Figure 3A, lanes 1 to 8). MMP activity was modestly

higher in the CM of Td-pcDNA3-1 and HLF-1 co-culture

compared to pcDNA3 and HLF-1 co-culture (Figure 3A,

compare lanes 9 and 12). This increase in MMP activity in

CM of Td-pcDNA3-1 is independent of IL-1� because no

measurable IL-1� could be detected in CM of both

pcDNA3 and Td-pcDNA3-1 clones. CM of Td-IL-1� cells

co-cultured with HLF-1 displayed very strong MMP activ-

ity (Figure 3A, lanes 9 to 15). Based on the molecular

weight, it appears that secreted MMPs correspond to

MMP-9 and MMP-2, which are secreted by mammary

epithelial cells.39 Neutralizing antibody against IL-1� re-

duced MMP activity suggesting that IL-1� is required for

MMP activity (data not shown). At present it is not clear

whether MMPs are produced by Td-IL-1� cells or HLF-1

cells. However, a similar study published recently indi-

cates that fibroblasts but not MCF-7 cells produce

MMP-2 and MMP-9 under co-culture conditions.40 Co-

culturing is required for MMP production as incubating

HLF-1 cells with CM of Td-IL-1� cells or vice versa did not

result in significant increase in MMP activity (data not

shown). No uPA activity was detected under any culture

conditions when zymography was performed using hu-

man plasminogen as a substrate (data not shown).

We implanted both Td-pcDNA3-1 and Td-IL-1�3 cells

with or without HLF-1 cells because there was specific

increase in MMP activity in co-cultured cells. Unlike in

experiments described above, the number of tumor cells

was reduced to 2 � 106 per animals with or without 2 �

105 HLF-1. Tumors derived from Td-IL-1�3 cells with or

without HLF-1 grew much faster than Td-pcDNA3-1 cells

and HLF-1 did not significantly alter the growth rate.

Therefore, Figure 3B shows combined tumor growth rate

of three independent experiments with or without HLF-1

(n � �30). With lower numbers of implanted cells com-

pared to the previous experiment, differences in growth

rates between Td-pcDNA3-1 and Td-IL-1�3-derived tu-

mors are more apparent. The failure of HLF-1 to provide

additional growth advantage to Td-IL-1�3 cells in vivo

could be because of IL-1�-dependent recruitment and/or

growth of mouse-derived stromal cells. Growth-stimulat-

ing ability of IL-1� was manifested within the tumor mi-

croenvironment but not in vitro because pcDNA3, IL-1�,

Td-pcDNA3, and Td-IL-1� clones grew at a similar rate in

Figure 3. MMP activation and growth of Td-pcDNA3-1 and Td-IL-1�3 cells in
the presence of HLF-1 cells. A: Gelatin zymography using CM from either
cancer cells alone (lanes 1 to 7), HLF-1 (lane 8), or cancer cells in combi-
nation with HLF-1 cells. B: Rate of tumor growth. Cancer cells (2 � 106) with
or without HLF-1 cells (2 � 105) were injected into the mammary pads of
nude mice with estrogen pellet implants. Tumor growth was measured once
a week. C: Analysis of lung DNA for metastasis of cancer cells. DNA from
lungs was isolated and subjected to PCR with human �-globin-specific
primers. As a control, PCR was also performed with primers that amplify
mouse requiem genomic DNA.77 Southern blotting using an internal primer
identified PCR products.
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culture (data not shown). H&E staining of tumors revealed

extensive central necrosis in Td-IL-1�3 cell-derived tu-

mors (data not shown). Despite enhanced growth of Td-

IL-1�3 cell-derived tumors, H&E staining of lungs did not

reveal metastasis of either cell type. Furthermore, PCR

analysis of lung DNA for human �-globin gene revealed

similar levels of micrometastasis of Td-IL-1�3 and Td-

pcDNA3-1 tumor cells (Figure 3C). Thus, IL-1� expres-

sion alone is not sufficient to promote metastasis of

MCF-7 cells in an in vivo setting. However, we cannot rule

out IL-1�-dependent metastasis of other breast cancer

cell types.

IL-1� Expression Leads to Severe Cachexia

Mice with Td-IL-1�3-derived tumors showed lordokypo-

sis (hunchback spine), which is an early aging-associ-

ated phenotype in mice.41 A significant progressive

weight loss was observed in animals injected with Td-IL-

1�3 cells compared to animals injected with Td-

pcDNA3-1 cells (P � 0.0003) (Figure 4A). Animals in all

three groups (nontumor and Td-pcDNA3-1- and Td-IL-

1�3-derived tumor containing group) grew for first 3

weeks after implantation. Although the weight of animals

remained steady during rest of the study in nontumor and

Td-pcDNA3-1 implanted animals, Td-IL-1�-implanted an-

imals displayed progressive loss of weight. Thus, loss of

body weight is an active cachetic process but not simply

because of IL-1�-induced arrest of growth. Note that all

animals were of the same age group and weight at the

time of tumor cell implantation. We performed H&E stain-

ing of dorsal skin to further analyze cachexia. Skin of

Td-IL-1� tumor-bearing mice showed diffused atrophy of

both epidermis and adnexal structures (hair follicle buds

and sweat glands) compared to animals with Td-pcDNA3

tumor-bearing animals (Figure 4B). Similar skin abnor-

malities have been observed in ob/ob mice injected with

leptin and in mice lacking acyl coA:diacylglycerol acyl-

transferase, which is essential for triglyceride synthe-

sis.42 Skin abnormalities are frequently observed during

premature aging and cachexia.41 Skin abnormalities de-

tected with Td-IL-1� tumor-bearing mice closely resem-

bled the prematurely aged skin of mice overexpressing

dominantly acting p53 but not that of mice with defects in

DNA repair.41,43

Animals with Td-IL-1�3-Derived Tumors

Contain Elevated Serum Leptin

To investigate whether IL-1�-induced cachexia corre-

lates with any changes in metabolic pathways, we mea-

sured glucose, triglycerides, calcium, and leptin levels in

blood/serum. Blood glucose was measured twice (after 6

weeks of implantation and at the time of sacrifice)

whereas calcium, triglycerides and leptin were measured

once at the time of sacrifice. There was no significant

difference in blood glucose between Td-IL-1�3 and Td-

pcDNA3-1 groups (Table 1). In contrast, the Td-IL-1�3

group showed lower levels of triglycerides compared to

the Td-pcDNA3-1 group. The differences were highly

significant (P � 0.0007). Altered triglyceride levels have

been reported in cachexia patients.44,45 Higher levels of

serum calcium were detected in the Td-IL-1�3 group

compared to animals in the Td-pcDNA3-1 group (Table

1). Most importantly, leptin levels were higher in serum of

animals in the Td-IL-1�3 group compared to animals in

the Td-pcDNA3-1 group (Table 1). Higher leptin levels

have been detected in serum of breast cancer patients

and in breast cancer specimens and elevated leptin lev-

els correlated with cachexia parameters.46,47

Leptin has been shown to control food intake by acting

through the central nervous system.48 It is possible that

cachexia in Td-IL-1� tumor-bearing animals is an indirect

consequence of leptin-mediated decrease in food intake.

To test this possibility, we measured food intake twice

weekly between weeks 4 and 7 after implantation. To our

surprise, food consumption was modestly higher in Td-

IL-1�3 group compared to Td-pcDNA3-1 group (Table

1). Therefore, loss of body weight in Td-IL-1�3 tumor-

bearing animals is not because of anorexia.

Tumors from the Td-IL-1�3 Group Contain

Higher Levels of Leptin but Not LMF Transcripts

Leptin is generally secreted by adipocytes. However,

examination of the skin (Figure 4B) or abdomen did not

reveal any increase in adipocytes in animals with Td-IL-

1�3 compared to animals with Td-pcDNA3-1-derived tu-

mors. Therefore, the tumor itself is the likely source of

leptin. To test this possibility, we performed RT-PCR anal-

ysis of RNA from tumor tissue for human and mouse

leptin. PCR-amplified products were not detected with

primers that specifically amplify human leptin. In contrast,

mouse leptin transcripts could be detected in RNA from

Td-IL-1�3 groups but not Td-pcDNA3-1 groups (Figure

4C). Similar results were obtained when PCR was per-

formed with a different set of primers (data not shown).

H&E staining of tumor samples failed to detect any adi-

pocytes in tumors of both Td-IL-1�3 or Td-pcDNA3-1

groups (data not shown). These results suggest that

IL-1� produced by tumor cells recruits nonadipocyte

cells that can produce leptin.

Previous studies have shown that altered lipid metab-

olism in cancer patients is mediated by LMF.49 LMF,

Figure 4. The effect of IL-1� expression in cancer cells on body weight and mouse leptin transcripts. A: Weight of animals implanted with Td-pcDNA3-1 (square)
or Td-IL-1�3 (triangle) (n � �30). Weight of animals without any tumor is also shown (circle). P � �0.0001 nontumor versus Td-IL-1�3; P � 0.0003
Td-pcDNA3-1 versus Td-IL-1�3; P � 0.0839 nontumor versus Td-pcDNA3-1. B: Skin phenotype of Td-pcDNA3 and Td-IL-1� tumor-bearing animals. Cross sections
of dorsal skin show atrophy in Td-IL-1� tumor-bearing animals compared to Td-pcDNA3 tumor-bearing animals. SM, skeletal muscle; HF, hair follicle; SG
sebaceous glands; ED, epidermis. C: Human LMF and mouse leptin-specific transcript levels in tumor samples. Total RNA from tumors was subjected to RT-PCR
(35 cycles) using primers that specifically amplify mouse leptin RNA. Primers corresponding to human LMF were used to amplify LMF (35 cycles). Quality of RNA
as well as cDNA synthesis was verified by PCR amplification of the housekeeping gene GAPDH (18 cycles). Southern blotting of PCR products with an internal
primer as a probe and autoradiography identified PCR products. Because of limited amplification, PCR products were not visible by ethidium bromide staining.
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which is identical to Zn-�2-glycoprotein, is expressed in

breast cancer cells.50 To determine whether IL-1� di-

rectly modulates LMF expression, we measured human

LMF expression by RT-PCR. LMF does not appear to be

the direct target of IL-1� (Figure 4C). In fact, LMF tran-

scripts appear to be higher in the Td-pcDNA3-1 group

compared to the Td-IL-1�3 group.

Loss of Body Weight in Animals with Td-IL-1�3-

Derived Tumors Is Not Associated with

Increased Levels of Other Known Inducers of

Cachexia

NF-�B has been proposed to promote cachexia by down-

regulating MyoD mRNA.51 Because IL-1� can potentially

reduce MyoD through activation of NF-�B, we measured

the level of MyoD proteins in muscle by Western blotting

(Figure 5A). Densitometric scanning analysis showed

that MyoD protein levels tended to be lower in muscles of

animals with Td-IL-1�3-derived tumors compared to Td-

pcDNA3-1-derived tumors (P � 0.0542). Recent reports

indicate that ubiquitination of proteins in muscle is in-

creased during cachexia, particularly when cachexia is

mediated by proteolysis-inducing factor (PIF).52,53 How-

ever, the level of ubiquitinated proteins was similar in

both Td-IL-1�3 and Td-pcDNA3-1 groups (Figure 5A).

Also, the muscle from both groups lacked myostatin/

GDF8, which has recently been proposed to be a major

cachexia-inducing protein expressed in muscle (data not

shown).54 We measured 20S proteasome activity in the

muscle of Td-pcDNA3-1 and Td-IL-1�3 tumor-bearing

animals to further clarify the role of PIF in cachexia.

Proteasomal activity was similar in both groups, which

rules out the involvement of PIF in IL-1�-induced ca-

chexia (Table 1).

Several cytokines including TNF-� and IL-6 induce

cachexia and both TNF-� and IL-6 can be induced by

IL-1� through activation of NF-�B.55,56 To test whether

any of these circulating cytokines are elevated in animals

with Td-IL-1�3-derived tumors compared to animals with

Td-pcDNA3-1-derived tumors, serum was subjected to

LINCOplex cytokine multiplex immunoassay. The assay

simultaneously measures the level of IL-1�, IL-2, IL-4,

IL-5, IL-6, IL-10, IL-12, interferon (IFN)-�, GM-CSF, and

TNF-� with a sensitivity of 3.2 pg/ml of serum. Only those

cytokines that are present in most of the animals are

shown in Figure 5B. There were no significant differences

in any of the cytokines tested although the IL-6 level

appears to be slightly elevated in the Td-IL-1�3 group.

Note that the difference in IL-6 is statistically significant if

one animal in the Td-pcDNA3-1 group, which showed

unusually high level of IL-6, is excluded from the calcu-

lation. Taken together, it appears that IL-1�-induced

weight loss is less likely because of up-regulation of

TNF-� and IL-6 by IL-1�.

Table 1. Blood Glucose, Triglycerides, Serum Calcium, Leptin Level, Food Intake, and 20S Proteasome Activity

Td-IL-1� group Td-pcDNA3 group p Values

Blood glucose (mg/dl) 75.4 � 4.4 78.63 � 4.3 0.6233
Triglycerides (mg/dl) 55.5 � 5.3 85.9 � 5.2 0.0006
Serum calcium (mg/dl) 10.4 � 1.5 9.2 � 1.4 0.0423
Leptin (ng/ml) 1.95 � 0.18 1.03 � 0.32 0.0133
20S Proteasome activity 19.5 � 0.8 23.1 � 1.2 0.0512
Food intake (g/mouse/day) 6.3 � 0.3 4.7 � 0.3 0.0032

Blood glucose was measured twice during the course of the experiment and average with standard error from both experiments is presented.
Triglycerides, calcium, and leptin were measured in serum collected at the time of sacrifice. Proteasome activity is expressed as arbitrary units.

Figure 5. The effect of IL-1� expression in cancer cells on muscle protein
status and serum cytokine profile. A: Differences in the level of MyoD,
ubiquitinated protein, and �-tubulin in leg muscle. Muscle extracts were
prepared using RIPA buffer and 50 �g of protein was subjected to Western
blotting with indicated antibodies. B: Profile of various cytokines in serum of
animals implanted with different cell types.
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Discussion

IL-1s are present in abundance in the tumor microenvi-

ronment and are believed to play a role in growth, inva-

siveness, and anti-tumor immunity.57 Anti-tumor activity

of IL-1� has been demonstrated for lymphoid tumors and

fibrosarcoma using an animal model.18,58 Membrane-

associated form of IL-1� but not the secreted form is

believed to initiate anti-tumor immunity.18 Because IL-1�

is overexpressed in ductal carcinoma in situ and in inva-

sive but not in benign mammary tumors, it is likely that

breast cancer cells have somehow overcome the anti-

tumor activity of IL-1�, as with many cancers.11,59 Fur-

thermore, IL-1� expression is observed mostly in estro-

gen receptor �-negative breast cancer, which are usually

more invasive and metastatic and is associated with poor

prognosis.60 It is suggested that IL-1� is important in

regulating protumorigenic activities within the tumor mi-

croenvironment.60 To understand the effect of IL-1� over-

expression on cancer progression in vivo, we used the

nude mice model. Despite limitations of this model, we

observed two major effects of IL-1�, one on the growth of

tumor and the other on the metabolic status. When this

manuscript was under revision, Voronov and col-

leagues61 reported a similar finding using IL-1� knockout

animals. IL-1� is required for tumor invasiveness and

angiogenesis. Growth stimulation by IL-1� appears to

depend on tumor cell-stromal cell interaction because

parental and IL-1�-overexpressing cells grew at a similar

rate in vitro (data not shown). The growth-promoting fac-

tors induced as a consequence of tumor cell-stromal cell

interaction remain to be identified. One possible candi-

date is leptin, whose expression is increased in animals

with IL-1�-producing tumors. Leptin has been shown to

increase the proliferation of MCF-7 cells in vitro.62 Leptin

also increases endothelial cell proliferation, which can

lead to increased angiogenesis and tumor cell prolifera-

tion.48,63

A major observation of our study is cachexia in animals

injected with IL-1�-overexpressing cancer cells. Ca-

chexia was accompanied with changes in the skin archi-

tecture, which resembled that of premature aging. Ca-

chexia is generally a consequence of loss of lipids,

enhanced proteolysis or both, although lipid depletion

occurs out of proportion to the protein loss.64,65 IL-6, IL-8,

TNF-�, IFN-�, leukemia inhibitory factor, myostatin/GDF8,

PIF, LMF, and toxohormone are some of the factors in-

volved in cachexia.54,55,66,67 IFN-� in combination with

TNF-� has been shown to induce cachexia through NF-

�B-dependent destabilization of MyoD mRNA in mus-

cle.51 We were unable to measure all of these factors in

serum because of limited sample availability or lack of

commercially available antibodies. However, among the

factors measured, we did not see any significant differ-

ences between Td-IL-1�3 and Td-pcDNA3-1 groups.

Moreover, differences in MyoD were marginal with no

difference in ubiquitinated proteins and proteasome ac-

tivity in muscle between groups, which rules out the

involvement of IFN-�, TNF-�, and PIF in cachexia in our

model.53,68

Cachexia in the Td-IL-1�3 group correlated with ele-

vated leptin level. Elevated leptin is observed in breast

cancer patients with cachexia and increased leptin-like

signaling by cytokines is the hallmark of cachexia.46,69

Similarly, elevated leptin is linked to cachexia in patients

with chronic heart failure.70 Leptin is secreted mainly by

adipocytes. However leptin expression in nonadipocytes,

including breast cancer cell lines, has been observed

and its expression is IL-1�-inducible.47,71–73 Histological

analysis of tumors did not indicate any effect of IL-1� on

adipocyte content in the tumor (data not shown). RT-PCR

analysis of tumor RNA with human leptin-specific primers

failed to detect human leptin (data not shown). In con-

trast, mouse-specific leptin transcripts could be de-

tected in total RNA of tumors derived from Td-IL-1�3

cells (Figure 4). Thus, IL-1� increases leptin expres-

sion in mouse-derived stromal cells or in infiltrating

immune cells. Interestingly, Td-IL-1�3 tumor-bearing

animals were not anorexic despite elevated leptin lev-

els. Thus, cachexia is not a consequence of reduced

food intake, which is consistent with some of the clin-

ical observations.65 It is recognized recently that leptin

acts both at the central nervous system and at the

peripheral level.48 While action at the central nervous

system controls food intake, action at the periphery

controls insulin action, glucose transport, lipogenesis,

and lipid partitioning. For example, leptin directly inhibits

de novo synthesis of fatty acids and increases the release

and oxidation of fatty acids in adipocytes.48,74 Moreover,

leptin reduces incorporation of oleate into triglycerides,48

which can explain for reduced triglycerides and body

weight in Td-IL-1�3 tumor-bearing animals. It is interest-

ing that LIF, which induces cachexia by mobilizing lipids,

causes a modest decrease in triglyceride levels in leptin-

sensitive wild-type mice but not in leptin-deficient ob/ob

mice.49 Based on the recent realization that leptin biology

is much more complex than originally envisioned,48 we

propose that leptin is a central player in cachexia involv-

ing impaired lipid metabolism. At present, we cannot

conclude that leptin alone is responsible for enhanced

tumor growth and cachexia in mice implanted with Td-IL-

1�3 cells. Additional studies with neutralizing antibodies

against leptin are essential, which we believe is beyond

the scope of this investigation. This study at least pro-

vides a basis for future investigation in this direction.

One of the surprising observations is the failure of

IL-1�-overexpressing tumor cells to metastasize, al-

though in vitro studies supported such a possibility. Fail-

ure of IL-1� to initiate metastasis could be because of

expression of a dominant metastasis suppressor gene in

MCF-7 cells or alternatively, genes that initiate metastasis

are not expressed in these cells or are not induced by

IL-1�. In this regard, it was shown recently that loss of

metastasis suppressor gene expression is essential for

metastatic progression of prostate cancer.75 Also, it was

reported that the promoter of uPA is methylated in MCF-7

cells, thus making it inaccessible to IL-1�-induced NF-

�B.35 uPA is one of the major proteases involved in

initiation of metastasis.76 It will be interesting to determine

whether enforced expression of uPA in Td-IL-1�3 cells

can initiate metastasis in vivo.
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