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Abstract

Objective—Interleukin-33 (IL-33) is the newest member of the IL-1 cytokine family, a group of

key regulators of inflammation. The purpose of this study was to determine whether IL-33 is

expressed in the human placenta and to investigate its expression in the context of acute and

chronic chorioamnionitis.

Methods—Placental tissues were obtained from five groups of patients: (1) normal pregnancy at

term without labor (n=10); (2) normal pregnancy at term in labor (n=10); (3) preterm labor

without inflammation (n=10); (4) preterm labor with acute chorioamnionitis (n=10); and (5)

preterm labor with chronic chorioamnionitis (n=10). Immunostaining was performed to determine

IL-33 protein expression patterns in the placental disk, chorioamniotic membranes, and umbilical

cord. mRNA expression of IL-33 and its receptor IL1RL1 (ST2) was measured in primary amnion

epithelial and mesenchymal cells (AECs and AMCs, n=4) and human umbilical vein endothelial

cells (HUVECs, n=4) treated with IL-1β (1ng/ml and 10ng/ml) and CXCL10 (0.5ng/ml and 1ng/

ml or 5ng/ml).

Results—1) Nuclear IL-33 expression was found in endothelial and smooth muscle cells in the

placenta, chorioamniotic membranes, and umbilical cord; 2) IL-33 was detected in the nucleus of

CD14+ macrophages in the chorioamniotic membranes, chorionic plate, and umbilical cord, and in

the cytoplasm of myofibroblasts in the Wharton’s jelly; 3) acute (but not chronic)

chorioamnionitis was associated with the presence of IL-33+ macrophages in the chorioamniotic

membranes and umbilical cord; 4) expression of IL-33 or IL1RL1 (ST2) mRNA in AECs was

undetectable; 5) IL-33 mRNA expression increased in AMCs and HUVECs after IL-1β treatment
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but did not change with CXCL10 treatment; and 6) IL1RL1 (ST2) expression decreased in AMCs

and increased in HUVECs after IL-1β but not CXCL10 treatment.

Conclusions—IL-33 is expressed in the nucleus of placental endothelial cells, CD14+

macrophages, and myofibroblasts in the Wharton’s jelly. IL-1β can induce the expression of IL-33

and its receptor. Protein expression of IL-33 is detectable in macrophages of the chorioamniotic

membranes in acute (but not chronic) chorioamnionitis.
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Introduction

Inflammation is a key feature of “the great obstetrical syndromes”, which are associated

with increased maternal and perinatal mortality and morbidity [1,2]. Systemic inflammation

in the mother has been observed in preeclampsia [3,4], preterm labor [5,6], preterm prelabor

rupture of the membranes [7], fetal death [8–10], pyelonephritis [11], and small-for-

gestational-age (SGA) pregnancies [12]. Systemic inflammation and multi-organ

involvement of the fetus have been described in preterm labor with intact membranes,

preterm prelabor rupture of the membranes, and fetal viral infections, and have been termed

as the fetal inflammatory response syndrome (FIRS) [13–16]. Localized inflammation at the

maternal-fetal interface has also been observed in various obstetrical syndromes, including

preeclampsia [17–23], spontaneous preterm birth [5,24–33] and unexplained fetal death

[34].

The most common inflammatory lesion in the placenta in spontaneous preterm birth is acute

chorioamnionitis (ACA), while chronic chorioamnionitis (CCA) is a major placental

inflammatory lesion in cases of late spontaneous preterm birth [5,26,35]. ACA often results

from microbial invasion of the amniotic cavity (MIAC) [27,36–48], and is characterized by

amniotropic infiltration of maternal neutrophils into the chorioamniotic membranes [49,50].

Acute chorioamnionitis and intra-amniotic infection are associated with adverse pregnancy

outcomes, including short-term neonatal complications [28,30,51–63], as well as neurologic

disorders (e.g., cerebral palsy [16,29,64–72]) and chronic lung disease [73–77]). Chronic

chorioamnionitis is defined as amniotropic infiltration of maternal T cells into the

chorioamniotic membranes [24,25]. Chronic chorioamnionitis is associated with preterm

labor and preterm prelabor rupture of membranes, and higher amniotic fluid concentrations

of the chemokine CXCL10, as well as increased mRNA expression of T-cell chemokines

CXCL9, CXCL10, and CXCL11 in the chorioamniotic membranes [26]. CXCL9, CXCL10,

and CXCL11 are functionally involved in allograft rejection [78–81] and exert their effects

by binding to CXCR3, present in T cells and natural killer cells [82,83]. CCA shares a

common pathogenesis with villitis of unknown etiology (VUE). CCA and VUE have been

reported in patients with fetal HLA-specific maternal HLA alloantibodies [32,33].

Therefore, CCA and VUE are considered as maternal anti-fetal rejection involving

chorioamniotic membranes and the villous placenta, respectively [26,32,33,84].

Additionally, systemic T-cell-mediated cytotoxicity has been shown to increase in pregnant

women with CCA as a manifestation of maternal anti-fetal rejection [85].

Cytokines of the interleukin-1 (IL-1) family play important roles in immune regulation and

inflammation for several types of tissues, and have been implicated in several disease states

[86–88]. Members of this family include IL-1α, IL-1β, the natural IL-1 receptor antagonist

(IL-1RA), IL-18, the IL-18 binding protein (IL-18BP), and a newly described molecule,

interleukin-33 (IL-33). IL-1 family members bind to specific IL-1 receptors, including IL-1

receptor types I and II (IL-1RI and IL-1RII) for IL-1, and the IL-18 receptor (IL-18R) for
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IL-18. Additional binding of their respective associated proteins, the IL-1R accessory

protein (IL-1RAcP) and IL-18 receptor accessory protein (IL-18RAcP), regulate cytokine

activity [89–91].

IL-1 was the first cytokine to be implicated in the mechanisms of preterm parturition

associated with infection/acute inflammation and spontaneous parturition at term [92].

Members of the pro-inflammatory cytokine IL-1 family are important mediators in ACA

[28,51,55,56,59,60,62,92,93], as IL-1 expression increases in response to microorganisms

and bacterial products (e.g., endotoxin) [30,54]. IL-1β can induce both prostaglandin

production in the amnion, chorion, and decidual and myometrial cells [58,60,94,95], and in

the onset of labor when administered to pregnant mice. Moreover, amniotic fluid IL-1α and

IL-1β bioactivity [59] and concentrations [55,62] are elevated in women with preterm labor

and MIAC, and IL-1 administration to pregnant animals results in preterm labor [52,61,63].

In addition, the robust up-regulation of amniotic fluid IL-1 is a feature of spontaneous term

parturition [92,96,97]. IL-1-induced preterm delivery is mediated by the IL-1 receptor [98].

The natural IL-1 receptor antagonist, present in fetal, maternal, and amniotic fluid

compartments during pregnancy, has been shown to reduce IL-1β-induced prostaglandin

production in the amnion and chorion [98–100]. Similarly, the natural IL-1 receptor

antagonist has been shown to prevent IL-1-induced preterm delivery in mice [101], but this

was not true of endotoxin-induced preterm labor and delivery in mice [102]. Lastly, IL-18, a

member of the IL-1 cytokine family, is also detectable in fetal, maternal, and amniotic fluid

compartments, increases with MIAC [103], and may play a role in host defense against

infection [103,104].

In 2005, Schmitz et al.[91] identified IL-33 as a new member of the IL-1 family, based upon

its structural similarities to IL-18 and IL-1β. IL-33 has been shown to lead to the production

of pro-inflammatory and TH2-associated cytokines, and to increase serum immunoglobulin

concentrations by signaling through IL-1R family member IL1RL1 (also known as ST2

[91]), which belongs to the Toll-like receptor (TLR)/IL-1R (TIR) superfamily. Moreover,

Carrière et al.[105] showed that IL-33 is a nuclear factor which possesses strong

transcriptional repressor properties. Thus, IL-33, like IL-1α, may function as both a pro-

inflammatory cytokine and a transcription factor [106–108].

Like IL-1β and IL-18, IL-33 was originally thought to be activated by caspase-1

[91,106,107]. It has been suggested that infection may induce caspase-1 production and

activation of the inflammasome, leading to IL-1β processing and secretion, and activation of

the common pathway of parturition [109–111]. However, while caspase-1 cleaves IL-33

from pro-IL-33 in vitro [91], the effect is lost in the absence of all other proteases [112],

suggesting that activation of other proteases by caspase-1 [113] may be responsible for the

previously observed effect. IL-33 is also cleaved by caspase-3 [114,115] and caspase-7

[114], and it is thought that IL-33 cleavage may be mediated by calpain [116].

Pro-IL-33 has a different caspase cleavage site from those described for pro-IL-1β and pro-

IL-18. Protease-induced cleavage of IL-33 results in a molecule that does not have cytokine-

like activity and is not actively secreted. This is a major difference between IL-33 and

IL-1β, and IL-33 and IL-18. Indeed, IL-33 is sequestered in apoptotic cells [112,114,115]

which do not generally induce inflammation; thus, it has been suggested that the inactivation

of IL-33 may be a mechanism to limit the release of bioactive, full-length IL-33 from

apoptotic cells [107].

Similar to full-length pro-IL-1α [117,118], pro-IL-33 is sequestered in the nucleus [105–

108] and passively secreted from necrotic cells, thereby becoming biologically active and

initiating inflammation [105–108,114,115]. High motility group box 1 (HMGB1) is another
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protein with properties similar to IL-33 in that it is also localized in the nucleus [119,120],

released by necrotic cells [121], and inactivated during apoptosis [122]. Both HMGB1 and

IL-1α are classified as “damage associated molecular patterns” (DAMPS), also known as

alarmins, which are endogenous danger signals released by necrotic cells in injured tissues

during trauma or infection and elicit an immune response [123,124]. Thus, given its

similarities to IL-1α and HMGB1, IL-33 has been considered to act as a DAMP/alarmin

[125–127]. Previously, we have shown that HMGB1 released from stressed or injured cells

into amniotic fluid may be responsible, in part, for intra-amniotic inflammation due to non-

microbial insults [128]. Since IL-33 has been implicated in the development of a wide

variety of human inflammatory diseases including allergy, asthma, arthritis, and ulcerative

colitis [106–108], it is possible that IL-33 may also play a role in pathological inflammation

at the maternal-fetal interface. This study was conducted to investigate the expression

patterns of IL-33 in the human placenta and changes associated with acute chorioamnionitis

and chronic chorioamnionitis.

Materials and Methods

Study Design

A cross-sectional study was designed to evaluate IL-33 expression patterns in the human

placenta, chorioamniotic membranes, and umbilical cord of normal and pathologic

pregnancies. Tissue samples were retrieved from the Bank of Biological Materials of the

Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health

and Human Development (NICHD), National Institutes of Health, and the Wayne State

University.

Placenta, chorioamniotic membranes and umbilical cord samples were collected from five

study groups: (1) normal pregnancy at term not in labor (TNL; n=10); (2) normal pregnancy

at term in labor (TIL; n=10); (3) preterm labor without inflammation (PTL; n=10); (4)

preterm labor with acute chorioamnionitis and funisitis (PTL-ACA; n=10); and (5) preterm

labor with chronic chorioamnionitis (PTL-CCA; n=10). Preterm labor was defined as the

presence of regular uterine contractions occurring at a frequency of at least two every 10

minutes associated with cervical changes that led to delivery before 37 weeks of gestation

[129]. Placentas from patients with preterm labor were derived from gestational-age-

matched groups. All patients had singleton gestations with intact membranes at the time of

onset of preterm labor. Patients with medical complications or fetal congenital or

chromosomal abnormalities were excluded. Criteria for the diagnosis of acute

chorioamnionitis, funisitis [130], and chronic chorioamnionitis [26] have been previously

described. All patients provided written informed consent prior to the collection of clinical

data and tissue samples. Collection and utilization of samples for research purposes were

approved by the Institutional Review Boards of the NICHD and Wayne State University.

Immunohistochemistry

Immunohistochemistry (IHC) was performed to determine IL-33 protein expression and

localization of expression in the placenta, chorioamniotic membranes and umbilical cord.

Five-micrometer-thick sections of formalin-fixed, paraffin-embedded tissues were placed on

silanized slides and stained using a Ventana Discovery automatic staining system (Ventana

Medical Systems, Tucson, AZ, USA). Immunostaining was performed using a mouse

monoclonal anti-IL-33 antibody (1:200, Alexis Biochemicals, Lausen, Switzerland) and a

Discovery™ Universal Secondary Antibody (Ventana Medical Systems). The Discovery®

DAB Map™ Kit (Ventana Medical Systems) was used to detect the chromogenic reaction of

horseradish peroxidase (HRP).

Topping et al. Page 4

J Matern Fetal Neonatal Med. Author manuscript; available in PMC 2014 March 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Immunofluorescence staining

Immunofluorescence (IF) staining was conducted on frozen sections of placentas,

chorioamniotic membranes and umbilical cord specimens to identify IL-33-positive cells.

Five-micrometer-thick frozen sections were fixed with 4% (w/v) paraformaldehyde

(Electron Microscopy Sciences, Hatfield, PA, USA) for 30 min at room temperature,

permeabilized with 0.25% Triton X-100 (Promega, Fitchburg, WI, USA) for 5 min at room

temperature, and incubated with 5% (w/v) BSA (Sigma-Aldrich Co. LLC, St. Louis, MO,

USA) in PBS (Invitrogen, Carlsbad, CA, USA) for 30 min at room temperature.

Immunofluorescence staining was performed using a rabbit polyclonal anti-IL-33 antibody

(1:200, Alexis Biochemicals), mouse monoclonal anti-CD31 antibody (1:1000, Dako,

Glostrup, Denmark), mouse monoclonal anti-CD14 antibody (1:1000, Abcam, Cambridge,

MA, USA), mouse monoclonal anti-cytokeratin 7 antibody (1:1000, Dako), and mouse

monoclonal anti-type 1 procollagen antibody (1:50, Developmental Studies Hybridoma

Bank at The University of Iowa, Iowa City, IA, USA). Sections were incubated with

primary antibodies in 1% (w/v) BSA in PBS for 1 h, followed by incubation with Alexa

Fluor 488 goat anti-mouse IgG (Invitrogen) or Alexa Fluor 594 donkey anti-rabbit IgG

(Invitrogen) in 1% (w/v) BSA for 30 min. Sections were mounted in ProLong® Gold

antifade reagent with DAPI (Invitrogen). Stained sections were examined using a Leica TCS

SP5 MP spectral confocal system (Leica Microsystems, Wetzlar, Germany).

Primary amnion epithelial and mesenchymal cell cultures

The method for isolation and primary culture of amnion epithelial cells (AECs) and amnion

mesenchymal cells (AMCs) used in our laboratory has been previously described in detail

[131]. Briefly, reflected amnion (n=4) was separated from the chorion and washed with PBS

(Invitrogen) before and after being cut into 2 cm × 2 cm pieces. These amnion fragments

were transferred into two tubes containing 25 ml of collagenase A (1 mg/ml; Roche, Basel,

Switzerland) and incubated at 37°C with gentle shaking for 3 h. Amnion digests were then

filtered through a 100-micron nylon mesh and centrifuged at 2,500xg for 10 min for the

collection of AMCs. These AMCs were washed and suspended in DMEM (Mediatech,

Herndon, VA, USA), then supplemented with 10% fetal bovine serum (FBS; Invitrogen),

100 UI/ml penicillin and 100 μg/ml streptomycin (Invitrogen) for culture. Remaining

amnion fragments were then placed in 10 ml of 0.05% (w/v) trypsin/EDTA (Invitrogen) and

gently shaken for 30 sec. Fragments were transferred into two new tubes for isolation of

AECs, and 15 ml of trypsin/EDTA were added, followed by incubation at 37°C with gentle

shaking for 10 min. This trypsin digestion supernatant was discarded. Amnion fragments

were transferred into a new tube containing 25 ml of fresh trypsin/EDTA solution and

incubated for an additional 40 min at 37°C. After digestion, the supernatant was mixed with

an equal volume of DMEM and centrifuged for 10 min at 200xg, 4°C. The pellet was

resuspended with 10 ml of DMEM. Remaining amnion trypsin digests were treated again

with 25 ml of trypsin/EDTA at 37°C for 40 min. AECs were collected and pooled with the

previous cell suspension. AECs and AMCs were cultured in DMEM at 37°C in a humidified

incubator containing 5% CO2. All experiments were performed with the cells at passages 2

and 4.

Primary human umbilical vein endothelial cell (HUVEC) culture

Samples of human umbilical cord (n=4) were obtained from patients immediately after

delivery, and umbilical vein endothelial cells were isolated as previously described

[132,133] Briefly, sections of umbilical cord were trimmed at both ends with a scalpel. A

cannula was introduced at one end of the vein, which was then perfused with PBS

(Invitrogen) using a 20 ml syringe to wash the vein of red blood cells. A second cannula

attached to a syringe was introduced at the other end of the vein. Collagenase A (0.2% w/v

in Hanks Balanced Salt Solution, Invitrogen) was then injected into one end of the vein
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using a 30 ml syringe (~10–12ml/cord). Clean aluminum foil was used to maintain syringes

at either end of the cord, which was then placed into a 400 ml beaker containing 200 ml of

PBS with 1x Antibiotic-Antimyotic Buffer (Invitrogen) and pre-incubated in a 37°C water

bath for 10 min. After incubation, the umbilical cord was gently squeezed to facilitate

endothelial cell detachment. Collagenase solution containing endothelial cells was then

flushed from the cord by perfusion with 40 ml of PBS. Effluent was collected in a sterile 50

ml tube containing 10 ml of F-12K culture medium (Invitrogen) supplemented with 20%

FBS (Invitrogen) and 100 UI/ml penicillin and 100 μg/ml streptomycin (Invitrogen). The

cells were centrifuged for 5 min at 1,500xg, after which the medium was discarded and

endothelial cells were resuspended in 5 ml of fresh culture medium. Cells were then

incubated in a T25 cell culture flask (BD Biosciences, Franklin Lakes, NJ, USA) at 37°C in

a humidified atmosphere containing 5% CO2. Culture medium was replaced at 24 h to

remove non-adherent cells, and then every two days until the cells achieved approximately

70% confluence. Cells were then transferred into a T75 flask (BD Biosciences) and grown to

confluence. Experiments were performed with the cells at passages 3 and 4.

Cytokine and chemokine treatment of AECs, AMCs, and HUVECs

Cells were plated in 6-well cell culture plates (BD Biosciences) at a density of 1 × 106 cells

per well. AECs and AMCs were plated in RPMI 1640 media (Invitrogen) supplemented

with 10 % FBS and 100 UI/ml penicillin and 100 μg/ml streptomycin. AECs and AMCs

were treated with recombinant IL-1β (R&D Systems, Minneapolis, MN, USA) at a

concentration of 1 ng/ml or 10 ng/ml for 18 hours. The concentration of recombinant

CXCL10 (R&D Systems) was 0.5 ng/ml or 1 ng/ml. HUVECs were plated in F-12K

(Invitrogen) media supplemented with 20% FBS, 0.1 mg/ml heparin (Sigma), 60 μg/ml

Endothelial Cell Growth Supplement (ECGS, Sigma), and 100 UI/ml penicillin and 100 μg/

ml streptomycin (Invitrogen). HUVECs were treated for 18 hours with IL-1β (R&D

Systems) at 1 ng/ml or 10 ng/ml, or CXCL10 (R&D Systems) at 0.5 ng/ml or 5 ng/ml. All

cells were then collected for isolation of RNA for qRT-PCR.

RNA isolation, cDNA generation and quantitative real-time reverse transcription-
polymerase chain reaction (qRT-PCR)

Total RNAs was isolated from AECs, AMCs, and HUVECs by using the RNeasy Mini Kit

(Qiagen, Valencia, CA, USA). Isolated RNA was reverse transcribed using the ImpromII

Reverse Transcription System (Promega). All qRT-PCR analyses were carried out using

TaqMan assays (Applied Biosystems, Foster City, CA, USA) using 50 ng of cDNA. Human

RPLP0 (large ribosomal protein) Endogenous Control (4326314E, Applied Biosystems) was

used for the normalization of IL-33 mRNA expression (Hs00369211_m1, Applied

Biosystems) and IL1RL1 (ST2) mRNA expression (IL1RL1, Hs00545033_m1, Applied

Biosystems). qRT-PCR reactions were performed using the 7500 Fast Real-Time PCR

System (Applied Biosystems).

Statistical analysis

Clinical and demographic characteristics were compared among the groups using a Kruskal–

Wallis test, followed by the Mann–Whitney U-test for continuous variables, as well as the

chi-square or Fisher’s exact test to compare proportions. The effect of a given treatment (e.g.

IL-1β, CXCL10) on gene expression levels was tested using Linear Mixed-Effects (LME)

models implemented in the R package nlme [134] In these models, the dependent variable

was the gene expression level (−DCt values), and the fixed effects included the differences

between treatment groups (dose 1 vs. control and dose 2 vs. control), while random effects

were assigned to each of the four individuals from which the samples were collected. A p

value of <0.05 was considered statistically significant for all comparisons.
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Results

I. IL-33 protein expression in normal term pregnancies

IL-33 protein was primarily localized in the nuclei of endothelial and smooth muscle cells of

the blood vessels in the chorionic plate, chorionic villi, and basal plate (Fig. 1A and 1B).

Villous and extravillous trophoblasts and Hofbauer cells (placental macrophages) were

negative for IL-33, which was verified by double-staining with IL-33 and cytokeratin or

CD14 (data not shown).

Immunoreactivity for IL-33 was readily detectable in the endothelial cell nuclei of decidual

blood vessels found in the chorioamniotic membranes. AECs, trophoblasts in the chorion

laeve, and decidual cells were negative for IL-33 expression (Fig. 1C and 1D). IL-33 nuclear

immunoreactivity was also detected in the nuclei of chorioamniotic mesenchymal cells in

60% of the placentas from normal pregnant women who delivered at term. To characterize

the IL-33-positive mesenchymal cells, we performed a series of immunofluorescence

stainings using antibodies against IL-33, CD14, or procollagen. IL-33-positive mesenchymal

cells were positive for CD14 (Fig. 1E), but not for procollagen, indicating that these cells

were macrophages and not myofibroblasts.

IL-33 protein expression was localized in the nuclei of endothelial and smooth muscle cells

in the umbilical veins and arteries (Fig. 2A and 2B). The nuclei of stromal cells in the

Wharton’s jelly were positive for IL-33, which was observed in 15% of the umbilical cords

from normal pregnant women who delivered at term (Fig. 2C). Immunofluorescence

staining revealed cytoplasmic IL-33 expression in several myofibroblasts stained with

procollagen (Fig. 2D) and CD14 positive macrophages of the Wharton’s jelly (Fig. 2E).

Nuclei of these cells were not positive for IL-33.

IL-33 immuno-localization in the placenta, chorioamniotic membranes, and umbilical cord

from normal pregnant women who delivered at term did not differ according to the presence

or absence of labor. Placentas and chorioamniotic membranes of patients with preterm labor

without inflammation had a staining pattern for IL-33 similar to that of normal pregnant

women who delivered at term. However, nuclear IL-33 staining of macrophages in the

chorioamniotic membranes and stromal cells of the Wharton’s jelly was not observed in

cases of preterm labor without evidence of inflammation (data not shown).

II. Placental IL-33 expression in acute and chronic inflammation

In cases of preterm labor and acute chorioamnionitis (PTL-ACA), IL-33 expression was

found in the chorioamniotic membranes and umbilical cord, but not in the placental disk.

Forty percent of cases with preterm labor and acute chorioamnionitis showed macrophages

with IL-33-positive nuclei in the chorioamniotic membranes compared to none of the cases

with PTL, indicating that IL-33 expression in macrophages increases with acute

chorioamnionitis (Fig. 3A and 3B). Additionally, IL-33 staining in the stromal cells of the

Wharton’s jelly was apparent in 40% of cases with preterm labor and acute

chorioamnionitis, but this was not observed in any cases with preterm labor without

inflammation. There was no difference in IL-33 expression in the placentas of patients with

preterm labor and acute chorioamnionitis compared to those with preterm labor without

inflammation.

In patients with preterm labor and chronic chorioamnionitis, the placenta, chorioamniotic

membranes, and umbilical cord also showed nuclear expression of IL-33 in vascular

endothelial and smooth muscle cells. However, contrary to what was observed in preterm

labor with acute chorioamnionitis, macrophages and myofibroblasts in these tissues did not

express IL-33 (Fig. 3C).
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III. In vitro models of acute and chronic inflammation

Amnion epithelial and mesenchymal cells (AECs & AMCs)—We used in vitro

models of inflammation to assess the effects of pro-inflammatory cytokines involved in

acute and chronic chorioamnionitis on the mRNA expression of IL-33 and its receptor

IL1RL1 (ST2). To accomplish this assessment, primary AECs and primary AMCs were

treated with IL-1β (1 ng/ml and 10 ng/ml) as a model for acute chorioamnionitis, and with

CXCL10 (0.5 ng/ml and 1 ng/ml) for chronic chorioamnionitis. IL-33 and IL1RL1 (ST2)

mRNA were not detected in AECs after incubation with IL-1β or CXCL10. IL-33 mRNA

was expressed in AMCs, and the level of expression increased after incubation with IL-1β at

both concentrations compared to the no-treatment control (p < 0.001 for both; Fig. 4A).

IL1RL1 (ST2) mRNA expression decreased in AMCs after IL-1β treatment at both

concentrations (1ng/ml and 10 ng/ml; p = 0.007 and p = 0.003, respectively; Fig. 4A),

However, IL-33 and IL1RL1 (ST2) mRNA expression in AMCs did not change with

CXCL10 treatment at either concentration compared with the control ( p > 0.05 for all; Fig.

4B).

Human umbilical vein endothelial cells—As seen in Figure 5, IL-33 mRNA

expression increased after incubation with IL-1β at concentrations of 1 ng/ml and 10 ng/ml,

but only the increase after treatment with 1 ng/ml IL-1β was significant compared to the

control (p = 0.02 for 1 ng/ml and p = 0.11 for 10 ng/ml; Fig. 5A), IL1RL1 (ST2) mRNA

expression also significantly increased in HUVECs treated with both concentrations of

IL-1β (p = 0.001 for 1 ng/ml and p = 0.003 for 10 ng/ml; Fig. 5A). IL-33 and IL1RL1 (ST2)

mRNA expression did not change after incubation with CXCL10 (p > 0.05 for 0.5 ng/ml and

5 ng/ml; Fig. 5B).

Discussion

Principal findings of the study

1) IL-33 is expressed in the nuclei of endothelial and smooth muscle cells of umbilical and

chorionic fetal vessels, endothelial cells of maternal decidual vessels, macrophages in the

chorioamniotic membranes and the umbilical cord, as well as in the cytoplasm of

myofibroblasts in the Wharton’s jelly; 2) IL-33 staining in the nuclei of macrophages of the

chorioamniotic membranes and umbilical cord and cytoplasm of myofibroblasts in the

Wharton’s jelly is increased in these tissues in the presence of acute but not chronic

chorioamnionitis; and 3) IL-33 and its receptor IL1RL1 (ST2) mRNA expression are

differentially regulated by the pro-inflammatory cytokine IL-1β, but not by the chemokine

CXCL10 in a cell-type specific manner.

Localization of IL-33 protein in the placenta in term gestations

Using immunohistochemistry, we determined that IL-33 protein is expressed in the nuclei of

endothelial cells and vascular smooth muscle cells of the placenta, chorioamniotic

membranes and umbilical cord. A recent report described IL-33 protein localization in the

villous syncytiotrophoblast of placentas from normal gestations, as well as from patients

with preeclampsia [135]. In the present study, however, the syncytiotrophoblast was

consistently negative for IL-33 in placentas from normal pregnant women, as well as those

with preterm labor and acute or chronic chorioamnionitis. Only the vascular endothelial and

smooth muscle cells of the chorionic villi, chorionic plate, and basal plate expressed IL-33

protein. We have not studied placentas from patients with preeclampsia for this purpose.

Our findings support those of other investigators who have shown that endothelial cells

constitutively express IL-33 in normal human tissues, including the skin, small intestine,

colon, kidney, lung, stomach, liver, skeletal muscle, prostate, fallopian tubes, umbilical vein,
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mammary gland and placenta [125,135,136]. Smooth muscle cells represent another cell

type expressing IL-33 in the placenta. This is also consistent with previous reports that IL-33

is expressed in human vascular [137], visceral [125] and bronchial [138] smooth muscle

cells. Therefore, expression of IL-33 in smooth muscle cells of chorionic and umbilical

vessels suggests a role for IL-33 in vascular biology during fetal life. It is interesting that

AECs were not positive for IL-33 in this study: this finding contrasted with other reports

indicating that IL-33 is expressed by epithelial cells exposed to the environment, such as

keratinocytes and epithelial cells of the stomach, tonsillar crypts and salivary glands [125]. It

is possible that amnion cells do not express IL-33 under physiologic conditions or those

associated with preterm labor (with acute or chronic chorioamnionitis).

Additionally, we found nuclear IL-33 expression in a few macrophages within the

chorioamniotic membranes and umbilical cord tissues in normal pregnancies, as well as in

placentas of patients with acute chorioamnionitis and preterm labor. Of interest, we did not

detect IL-33 in placental villous macrophages (Hofbauer cells). Macrophages are an

important cell population at the feto-maternal interface.[139–144] Activated macrophages

have been shown to express low quantities of IL-33 mRNA [91], and apoptotic monocytes

sequester IL-33 in the nuclei after LPS stimulation [145]. However, IL-33 expression in

non-activated macrophages has not been reported. Altogether, these findings suggest that

IL-33-positive macrophages in the chorioamniotic membranes and umbilical cord at term

are activated and/or apoptotic, which may explain why we observed IL-33-positive

macrophages in cases of preterm labor and acute chorioamnionitis, but not in those with

preterm labor in the absence of inflammation.

IL-33 expression in macrophages in acute chorioamnionitis, but not in chronic
chorioamnionitis

IL-33 is expressed in macrophages in the chorioamniotic membranes and umbilical cord of

cases with preterm labor and acute chorioamnionitis, but not in cases without inflammation.

In contrast, macrophages in the chorioamniotic membranes and umbilical cord in cases with

preterm labor with chronic chorioamnionitis did not have detectable expression of IL-33.

The results of in vitro experiments reported herein are consistent with the

immunohistological findings in that AMCs and HUVECs treated with pro-inflammatory

cytokine IL-1β as a model for acute inflammation revealed increased IL-33 mRNA

expression compared to no-treatment controls. Notably, IL1RL1 (ST2) mRNA expression

decreased in AMCs treated with IL-1β, but increased in HUVECs with IL-1β treatment.

This suggests different roles for IL-33 signaling dependent on the cell type and location.

When treated with CXCL10 as a model for chronic inflammation, both IL-33 and IL1RL1

(ST2) mRNA expression in AMCs and HUVECs remained unchanged.

Functional properties of IL-33

IL-33 is a dual-function protein initially described as a nuclear factor (NF-HEV, nuclear

factor from high endothelial venules) that may act as a transcriptional repressor

[106,107,146]. Later, a computational approach searching for protein ligands of the IL1RL1

(ST2) receptor identified this protein as a new member of the IL-1 family, which mediates

its biological effects via the ST2 receptor [91,106,107]. Although the exact nuclear functions

of IL-33 have not yet been elucidated, many of its extracellular functions have been

uncovered [106,107]. Through ST2, IL-33 can drive the production of Th2-associated

cytokines from in vitro polarized Th2 cells [106,107]. IL-33 also has prominent pro-

inflammatory effects, primarily on mast cells, basophils, eosinophils, monocytes,

macrophages, NK cells and activated neutrophils, by inducing the activation of NFkB and

MAP kinases, and the production of various cytokines and chemokines [106,107]. The

increased production of IL-33 has been shown in several human inflammatory diseases, and
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IL-33 has been implicated in the development of both Th1- and Th2-mediated diseases,

including allergic rhinitis, atopic dermatitis, anaphylaxis, asthma, ulcerative colitis and

rheumatoid arthritis [106–108,138,147–150].

Our findings on the nuclear localization of IL-33 in endothelial and smooth muscle cells, as

well as macrophages are consistent with previous reports on the nuclear localization and

function of this protein [106,107,146]. Additionally, our findings on the increased

expression of IL-33 in macrophages in acute chorioamnionitis and its increased expression

in AMCs and HUVECs after IL-1β treatment are in accord with previous observations

showing that IL-33 expression is induced in resident and infiltrating inflammatory cells of

inflamed tissues [106]. Our observations showing no change of IL-33 expression in chronic

chorioamnionitis in the placenta and no increase of IL-33 expression in AMCs and HUVECs

after CXCL10 treatment support our previous findings on the fundamental differences

between the pathophysiological processes between acute and chronic chorioamnionitis

[26,32,33,150].

IL-33 as an “alarmin”

It has been shown that IL-33 is constitutively expressed by cells of tissues exposed to the

environment, and is released upon cell injury, suggesting that IL-33 acts as an “alarmin”

[106–108,125–127]. The term “alarmin” was suggested by Oppenheim and Yang [123] to

describe a group of multifunctional molecules that are early endogenous danger signals.

Alarmins are rapidly released following a pathogen challenge and/or tissue injury, and signal

a warning to the immune system, recruiting and activating immune cells, eliciting effector

immune responses and contributing to the resolution of immune responses [123,124,151–

153]. The group of alarmins include structurally heterogeneous molecules that can be

released by unconventional pathways from the cell, including heat-shock proteins, defensins,

S100 proteins, galectins and HMGB1 [129,151–157].

We have recently shown that intra-amniotic infection/inflammation is associated with

elevated amniotic fluid HMGB1 concentrations, independent of membrane status [128]

Preterm prelabor rupture of membranes was also associated with increased HMGB1 in the

amniotic fluid, and immunoreactive HMGB1 was localized to the nuclei and cytoplasm of

AECs, myofibroblasts, and infiltrating macrophages of chorioamniotic membranes, as well

as stromal cells in the Wharton’s jelly. Given the similarities between the HMGB1 and

IL-33 [120,125] (such as their nuclear expression profiles and secretion by necrotic cells), it

is possible that IL-33 also plays a DAMP/alarmin-like role in the induction of inflammation

[125–127]. In support of this suggestion, alarmins are recognized by trophoblasts through

TLR-4 at the feto-maternal interface [17], and both TLR-2 and TLR-4 have been implicated

in acute chorioamnionitis [158,159].

Strengths and limitations of this study

A major strength of this study is that we have compared in vivo and in vitro findings in

terms of IL-33 regulation by pro-inflammatory signals. The analysis also focused on specific

cell types of the placenta using double immunofluorescence staining. A limitation of this

study is that changes in IL-33 in the related biological compartments (such as amniotic fluid

and maternal/fetal plasma) were not performed. Further studies using immunoassays will be

necessary to document both local and systemic changes in IL-33 concentrations during

normal pregnancy and pregnancy with complications.

Conclusions

In this study, we show novel aspects of IL-33 expression in the normal placenta,

chorioamniotic membranes and umbilical cord. The findings suggest a role for IL-33 in
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acute inflammation of the human placenta. Further studies are required to investigate the

functional role of IL-33 in normal pregnancy, “the great obstetrical syndromes” and the

placenta.
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Figure 1. IL-33 protein expression in the placenta and chorioamniotic membranes of normal
term pregnancies
(A) IL-33 is expressed in the nuclei of endothelial (arrowhead) and smooth muscle cells

(arrow) of blood vessels in the chorionic plate and chorionic villi. CP = chorionic plate; CV

= chorionic villi. x200 magnification. (B) Immunofluorescence staining of CD31 (red),

IL-33 (green) and DAPI (blue) shows nuclear IL-33 staining of vascular endothelial cells in

chorionic villi. x900 magnification. (C) IL-33 is expressed in the nuclei of decidual

endothelial cells (arrowhead) in blood vessels in chorioamniotic membranes. AE = amnion

epithelium; AM = amnion mesoderm; CM = chorionic mesoderm; CT = chorionic

trophoblast layer; DP = decidua parietalis. x200 magnification. (D) Immunofluorescence

staining of CD31 (red), IL-33 (green) and DAPI (blue) show nuclear IL-33 staining in

endothelial cells of decidual blood vessels. x400 magnification. (E) Immunofluorescence

staining of CD14 (red), IL-33 (green) and DAPI (blue) shows nuclear IL-33 staining in

macrophages in the mesodermal layer. x1500 magnification.
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Figure 2. IL-33 protein expression in the umbilical cord of normal term pregnancies
(A) IL-33 is expressed in the umbilical artery (B) and Wharton’s jelly (C). x100

magnification. (B) IL-33 is expressed in the nuclei of endothelial (arrowhead) and smooth

muscle cells (arrow) in the umbilical vessels. x200 magnification. (C) IL-33 is expressed in

the nuclei of stromal cells in the Wharton’s jelly (inset). x100 magnification. (D)

Immunofluorescence staining of procollagen (red), IL-33 (green) and DAPI (blue) shows

cytoplasmic IL-33 staining in myofibroblasts in the Wharton’s jelly. x630 magnification. (E)

Immunofluorescence staining of CD14 (red), IL-33 (green) and DAPI (blue) shows

cytoplasmic IL-33 staining in macrophages in the Wharton’s jelly. x630 magnification. UA

= umbilical artery; WJ = Wharton’s jelly.
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Figure 3. IL-33 expression in pathologic pregnancies
(A) IL-33 is expressed in the nuclei of endothelial cells of decidual blood vessels in patients

with preterm labor. IL-33 is not expressed in the mesodermal layer of the amnion. x200

magnification. (B) IL-33 is expressed in the nuclei of macrophages in the chorioamniotic

membranes of patients with preterm labor and acute chorioamnionitis. x200 magnification.

(C) IL-33 is not expressed in macrophages in the chorioamnionic membranes of patients

with preterm labor and chronic chorioamnionitis. x200 magnification. Arrowheads are

endothelial cells and thick arrows are macrophages for all. AE = amnion epithelium; AM =

amnion mesoderm; CM = chorionic mesoderm; CT = chorionic trophoblast layer; DP =

decidua parietalis.
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Figure 4. IL-33 and IL1RL1 (ST2) mRNA expression in amnion mesenchymal cells
(A) Amnion mesenchymal cells (AMCs) treated with IL-1β expressed significantly

increased IL-33 mRNA (p<0.001 for both 1 ng/ml and 10 ng/ml) and significantly decreased

IL1RL1 (ST2) mRNA (p=0.007 for 1 ng/ml and p=0.003 for 10 ng/ml). (B) IL-33 and

IL1RL1 (ST2) mRNA expression did not change in AMCs treated with CXCL10 (p>0.05

for both concentrations).
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Figure 5. IL-33 and IL1RL1 (ST2) mRNA expression in HUVECs
(A) HUVECs treated with IL-1β expressed significantly increased IL-33 mRNA at a

concentration of 1 ng/ml (p=0.02) and a slight increase at 10 ng/ml although this difference

was not significant (p=0.11). IL1RL1 (ST2) mRNA expression significantly increased with

IL-1β treatment (p=0.001 for 1 ng/ml and p=0.003 for 10 ng/ml. (B) IL-33 and IL1RL1

(ST2) mRNA expression did not change in HUVECs treated with CXCL10.
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