
Int. J. Biol. Sci. 2012, 8 

 

 
http://www.biolsci.org 

1254 

IInntteerrnnaattiioonnaall  JJoouurrnnaall  ooff  BBiioollooggiiccaall  SScciieenncceess  
2012; 8(9):1254-1266. doi: 10.7150/ijbs.4679 

Review 

Interleukin-6, a Major Cytokine in the Central Nervous System  

María Erta1, Albert Quintana2, and Juan Hidalgo1 

1. Instituto de Neurociencias y Departamento de Biología Celular, Fisiología e Inmunología, Facultad de Biociencias, Uni-
versitat Autònoma de Barcelona, Barcelona, Spain. 

2. Howard Hughes Medical Institute and Department of Biochemistry, University of Washington, WA, USA.  

 Corresponding author: Dr. Juan Hidalgo, Departamento de Biología Celular, Fisiología e Inmunología, Unidad de Fisiología 
Animal, Facultad de Biociencias, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain 08193. Tel. 34 93 581 20 37; fax: 34 
93 581 23 90; email: Juan.Hidalgo@uab.es. 

© Ivyspring International Publisher. This is an open-access article distributed under the terms of the Creative Commons License (http://creativecommons.org/ 
licenses/by-nc-nd/3.0/). Reproduction is permitted for personal, noncommercial use, provided that the article is in whole, unmodified, and properly cited. 

Received: 2012.06.01; Accepted: 2012.07.19; Published: 2012.10.25 

Abstract 

Interleukin-6 (IL-6) is a cytokine originally identified almost 30 years ago as a B-cell differen-
tiation factor, capable of inducing the maturation of B cells into antibody-producing cells. As 
with many other cytokines, it was soon realized that IL-6 was not a factor only involved in the 
immune response, but with many critical roles in major physiological systems including the 
nervous system. IL-6 is now known to participate in neurogenesis (influencing both neurons 
and glial cells), and in the response of mature neurons and glial cells in normal conditions and 
following a wide arrange of injury models. In many respects, IL-6 behaves in a neurotro-
phin-like fashion, and seemingly makes understandable why the cytokine family that it belongs 
to is known as neuropoietins. Its expression is affected in several of the main brain diseases, 
and animal models strongly suggest that IL-6 could have a role in the observed neuropathology 
and that therefore it is a clear target of strategic therapies. 

Key words: Neuropoietin, Neuroinflammation, Neurogenesis, Gliogenesis, Alzheimer’s disease, 
Multiple Sclerosis, Stroke, Trauma. 

Interleukin-6, the founding member of the 
neuropoietins 

Cytokines are small proteins initially thought to 
be components of the immune system, but have since 
been found to play a much broader role in physiology. 
Interleukin-6 (IL-6) is a cytokine originally identified 
as a B-cell differentiation factor (BSF-2) in 1985 [1], as 
a factor that induced the maturation of B cells into 
antibody-producing cells. Human IL-6 [2] and IL-6 
receptor [3] were cloned soon thereafter. As with 
many other cytokines, it was soon realized that IL-6 
was not a factor only involved in the immune re-
sponse. In early 1990s it was clear that besides con-
trolling other immune cells such as T cells, IL-6 was 
also important in the regulation of hepatocytes, hem-
atopoietic progenitor cells, the skeleton, the cardio-

vascular system, the placenta and the nervous and 
endocrine systems [4].  

The number of cytokines known nowadays is 
enormous. Structural analysis has allowed the 
grouping of these proteins into different structural 
classes such as the helical cytokines, the trimeric tu-
mor necrosis factor (TNF) family, the cysteine knot 
growth factors and the β-trefoil growth factors [5]. 
Cytokines can also be grouped according to the type 
of receptor they bind, which comprise six major fami-
lies: class I cytokine receptors (the largest family), 
class II cytokine receptors, TNF receptors, tyrosine 
kinase receptors, and chemokine receptors [5]. Cyto-
kine families may be named differently according to 
other aspects such as the sharing of a receptor subunit 
(i.e. the gp130 family) or its physiological roles (i.e. 
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neuropoietic family, for its effects on hematopoietic 
and nervous system). 

IL-6 is a prototypical four-helix bundle cytokine 
that is the founder member of the neuropoietins, a 
group of cytokines structurally related, that include 
IL-6, IL-11, IL-27, IL-31, leukemia inhibitory factor, 
oncostatin M, cardiotrophin-1, neuropoietin and cy-
tokine cardiotrophin-like (also known as new neuro-
trophin 1 and B cell stimulatory factor-3), and two 
viral analogs of IL-6 [5-10]. These cytokines bind to 
class I cytokine receptors, membrane proteins with a 
characteristic modular architecture that do not have 
intrinsic enzymatic activity, and that for signaling 
often need to recruit additional receptor proteins 
shared by different cytokines: gp130, βc or γc. The 
IL-6 family of cytokines recruits gp130 for signaling 
(Figure 1). Thus, the family is also known as the gp130 
family of cytokines. This protein has also a modular 
architecture, part of which has features typical of the 
cytokine receptors (two fibronectin type III modules 
containing conserved cysteine residues and a WSXWS 
motif) [4]. For IL-6 specifically, a hexamer forms (two 
IL-6, two IL-6R and two gp130) that can activate in-
tracellular tyrosin-kinases such as Janus kinase (JAK) 
and, to a lesser extent, TYK, which, in turn, activate a 
number of proteins including the STAT (signal 
transducer and activator of transcription) family of 
transcription factors, or the RAS-RAF-MAPK path-
way, PI3 (phosphatidyl inositol-3) kinase, or IRS (in-
sulin receptor substrate) [11]. The sharing of gp130 
explains at least in part the redundancy of the actions 
of these cytokines.  

It was soon established that the expression of 
IL-6R is restricted to some tissues, while that of gp130 
is ubiquitous, and that IL-6 may upregulate gp130 
expression [12]. The same study already provided 
evidence that extracellular, soluble IL-6R (sIL-6R) in 
the presence of IL-6 could activate cells expressing 
gp130, and stated that naturally occurring sIL-6R 
could be found in the murine serum. It is now widely 
accepted that sIL-6R is formed physiologically, either 
by limited proteolysis of the extracellular domain of 
membrane IL-6R (mIL-6R) by metalloproteases such 
as ADAM10 and ADAM17, or by alternative splicing 
of IL-6R mRNA, and that sIL-6R can bind both IL-6 
and gp130 and signal in cells with or without endog-
enous IL-6R expression, a mechanism known as 
trans-signaling [13]. To complicate things further, it is 
also known that a soluble form of gp130 (sgp130) is 
also formed [14], in this case only by alternative 
splicing of gp130 mRNA; sgp130 can inhibit 
trans-signaling but does not affect normal signaling 
by mIL-6R (Figure 1).  

 

 

Figure 1. IL-6 is produced by different brain cells and may signal 
in a complex manner. Neurons, astrocytes, microglia and endothelial 
cells the essential sources of IL-6 in the CNS. All of them may produce 
some amounts of IL-6, but upon proper stimuli such as injury copious 
amounts of IL-6 will be secreted. IL-6 can bind to the membrane-bound 
IL-6 receptor (mIL-6R, expressed in limited cells) or to the soluble form of 
the receptor (sIL-6R), which is known as trans-signaling; both of them can 
properly signal upon interaction with the sgp130 protein (expressed 
ubiquitously). A releasable form of gp130 can also be found in biological 
fluids, which will exert inhibitory actions on trans-signaling. 

Interleukin-6 expression in the central 
nervous system 

Soon after its discovery, it was demonstrated 
that some astrocytoma and glioma lines expressed 
IL-6 when stimulated with IL-1β, which prompted 
speculation that IL-6 could have a role in the CNS [2]. 
The same group demonstrated that IL-6 indeed was 
capable of inducing the neuronal differentiation of the 
rat pheochromocytoma PC12 cell line, to some extent 
similarly to the prototypical neurotrophin NGF [15, 
16]. It was therefore not surprising the finding that 
both glial and neuronal cells expressed IL-6 and IL-6R 
to various degrees throughout the brain [17-24]. In 
vitro, microglia, astrocytes and the neuronal line N18, 
but not oligodendrocytes, expressed IL-6R [25]; in 
vivo, nevertheless, oligodendrocytes may express IL-6 
and IL-6R [26]. Also, IL-6 and IL-6R were expressed in 
sympathetic and sensory ganglia, predominantly in 
neurons [27], as well as in adrenal chromaffin cells 
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[28], of adult rats. In line with these results, in vitro 
studies demonstrated that dissociated sympathetic 
neurons and PC12 cells expressed IL-6 and the two 
receptors, IL-6R and gp130 [29, 30]. Besides neurons 
and glial cells, endothelial cells produce copious 
amounts of IL-6, which can act on surrounding cells 
but also in an autocrine manner regulating a number 
of adhesion proteins but also IL-6 synthesis, particu-
larly in the presence of sIL-6R [31-33]. Thus, both the 
central and the peripheral nervous system appear to 
express IL-6 and the corresponding receptors (Figure 
1). 

Many cytokines and inflammatory factors as 
well as neurotranmitters and neuropeptides have 
been shown to affect IL-6 regulation in brain cells; we 
will comment here some of them studied in in vitro 
assays. Both virus-infected microglial cells and astro-
cytes secreted IL-6 [34, 35]. IL-1β and TNFα induced 
IL-6 in cultured cortical neurons [36] and astrocytes 
[37, 38], in the latter involving NFκB [39] and the PKC 
pathway [40]. The AMPc-PKA pathway may also in-
duce astrocytic IL-6 [40-42]. It is likely that membrane 
depolarization is one of the main mechanisms for 
neuronal upregulation of IL-6, where Ca2+ currents 
(such as those elicited by the glutamate agonist 
NMDA) and Ca2+/calmodulin-dependent kinases are 
critical factors [43, 44]. The major bacterial pathogen, 
LPS, normally induces IL-6 in both astrocytes and 
microglia [45-47], but TNF-α induces IL-6 in astro-
cytes but not microglia [45]. There may be spe-
cies-specific effects since in human cells in vitro LPS 
mostly affect microglia rather than astrocytes (ob-
tained from brains at second trimester of gestation) 
regarding TNFα, IL-1β and IL-6 production, although 
IL-1β is a potent stimulator of IL-6 production in as-
trocytes (in microglia the 3 cytokines are upregulated) 
[46, 48]. GM-CSF stimulates microglial IL-6 but not 
that of astrocyte [49], whereas IFN-γ induces IL-6 (and 
NO) in the murine microglial cell line 6-3 [50]; this 
cytokine does not induce IL-6 in astrocytes unless it is 
coincubated with IL-1β [37]. Interestingly, adult hu-
man astrocyte cultures subjected to mechanical injury 
upregulated IL-6 [51]. IL-6 production by astrocytes is 
subjected to autocrine regulation by IL-6, and the ad-
dition of sIL-6R synergizes dramatically with IL-1β 
and TNFα to induce IL-6 [52]. Oncostatin M (OSM) 
induced IL-6 alone and synergized with TNFα to in-
duce IL-6 [52]. IL-17 functioned in a synergistic man-
ner with IL-6 (+ sIL-6R) to induce IL-6 expression in 
astrocytes [53]. 

Norepinephrine, vasoactive intestinal peptide 
(VIP) and pituitary adenylate cyclase activating pol-
ypeptide (PACAP38) stimulate IL-6 in astrocytes, and 
may synergize with IL-1β and TNFα [54-56]; in con-

trast any of these factors have a major effect in micro-
glia [54]. VIP may induce IL-6 through the PKA 
pathway and independently of prostaglandins [57, 
58]. Prostaglandin E1 (PGE1) and PGE2, but not PGD2 
and PGF2 alphaE2, induce IL-6 in human astrocytoma 
cells; PGE2 potentiates IL-1β induction of IL-6 [59, 60]. 
The synthetic ceramides C2- and C6-ceramide as well 
as the enzyme sphingomyelinase were able to induce 
IL-6 in astrocytes [61]. IL-1β, substance P and hista-
mine induced IL-6 expression in human astrocytoma 
cells [41, 62], through NF-κB for IL-1β and through 
NF-IL-6 for SP and histamine [63]. Bradykinin stimu-
lates IL-6 expression through activation of NF-κB in 
murine astrocytes [64]. Serotonin and adenosine ago-
nists were also effective inducers in human astrocy-
toma cells [65] [66]; in mouse astrocytes, adenosine 
induces IL-6 through activation of PKA and NF-IL-6 
[67]. TGF-β inhibits microglia proliferation and acti-
vation, including IL-6 production [68]; in contrast, it 
stimulates IL-6 production in astrocytes [69]. 

Role of interleukin-6 in development and 
normal physiology 

IL-6 may affect neuronal functionality, for in-
stance it induces the cholinergic phenotype of sym-
pathetic neurons [30, 70, 71]. Sensory neurons are 
particularly affected by IL-6 deficiency, since in nor-
mal conditions IL-6 KO mice show a 60% reduction of 
the compound action potential of the sensory branch 
of the sciatic nerve and a dramatic decrease of tem-
perature sensitivity in the frontpaw withdrawal time 
in the hot-plate assay [72]; these neurons are also 
highly dependent on IL-6 for functional recovery fol-
lowing injury [72, 73]. Results with IL-6 KO mice im-
ply a role for IL-6 on sympathetic sprouting induced 
by nerve injury [74, 75]. It also promotes sprouting 
and functional recovery of organotypical cultures of 
hippocampus [76], and causes a dose-dependent de-
crease of post-tetanic potentiation (PTP) and 
long-term potentiation (LTP) in the CA1 region of rat 
hippocampus [77]. 

IL-6 also has a notorious role in adult neurogen-
esis [10, 78], the process of creating new neurons and 
glial cells from neural stem cells (NSCs) discovered 
almost 50 years ago [79], which is now known to be 
dramatically affected by a myriad of factors such as 
exercise, environmental enrichment, stress, or aging. 
Not surprisingly, neurogenesis is also altered in many 
neuropathological situations like stroke, status epi-
lepticus, mechanical damage, and Alzheimer, Par-
kinson and Huntington diseases; in all these cases a 
detrimental role of inflammation has usually been 
suggested [80, 81], and, as stated above, IL-6 will be 
upregulated and could have a role on neurogenesis. 
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GFAP-IL6 mice, indeed, show a diminished hippo-
campal neurogenesis [82], and moreover, in vitro IL-6 
clearly decreases the differentiation of neural 
stem/progenitor cells into neurons [83, 84]. In con-
trast, IL-6 is involved in oligodendrogliogenesis [85, 
86] and astrogliogenesis [84]. Yet, other studies 
claimed that IL-6 promotes both gliogenesis (through 
the STAT-3 pathway) and neurogenesis 
(MAPK/CREB pathway) [87, 88].  

Besides effects on neurons, IL-6 also displays a 
number of effects in glial and endothelial cells. Early 
in vitro assays showed that both virus-infected mi-
croglia and astrocytes secreted IL6, and that IL-6 in-
duced the secretion of the major neurotrophin NGF 
by the latter [34]. In vitro there is some conflicting 
results whether or not IL-6 does have proliferative 
effects on astrocytes [89, 90], probably it does but 
synergizing with other factors [91]. Microglia in cul-
ture consistently proliferate when stimulated with 
IL-6 [92]IL-6-IL-6/sIL-6R may alter the factors pro-
duced by astrocytes: for instance it induces specific 
patterns of neurotrophins [93], inhibits TNFα [94], 
and together with sIL-6R and IL-17, it may shift 
chemokine production to that favoring T cell recruit-
ment to the CNS [95]. Differences in the pattern of 
cytokines secreted by astrocytes of IL-6 KO mice are 
readily noticeable in vitro [96]. In vivo experiments 
demonstrate that IL-6 exerts profound effects on their 
differentiation, which is dependent on the brain area 
from which they are isolated [93]. Transgenic mice 
overexpressing IL-6 show prominent astrogliosis and 
microgliosis [97-100], whereas the opposite is usually 
observed in IL-6 KO mice in different models of injury 
[101-105]. IL-6 alone does not affect intercellular ad-
hesion molecule-1 (ICAM-1) gene expression, but 
dramatically inhibits the activating effect of IFN-γ, 
IL-1β and TNFα in rat astrocytes, and that of IFN-γ in 
microglia, very much alike IL-10 [106]. In human as-
trocytes, IL-6, sIL-6R or both do not affect VCAM-1 or 
ICAM-1, but IL-6/sIL-6R complex (and H-IL-6) in-
hibits TNF-α-induced VCAM-1 gene expression; 
sIL-6R upregulates endogenous IL-6 production [107]. 
This inhibitory effect of IL-6 in astrocytes is in sharp 
contrast with the stimulatory effect it has on endothe-
lial cells, where again sIL-6R greatly affects the acti-
vation of endothelial cells, not only upregulating the 
adhesion proteins E-selectin, ICAM-1 and VCAM-1 
but also IL-6, IL-8 and monocyte chemotactic protein 1 
(MCP-1); this constitutes a model where neutrophils 
may retrogradely signal inflammation to endothelial 
cells by shedding sIL-6R, which can then recruit leu-
kocytes and contribute to their extravasation [32, 108]. 
Regarding oligodendrocytes, in addition to promot-
ing oligondendrogenesis IL-6 promotes survival and 

myelin production of oligodendrocytes [85, 86, 109, 
110]. 

Although IL-6 is often related to inflammatory 
and pathological situations, it is a factor that contrib-
utes decisively in the normal function of the brain. 
Thus, IL-6 is involved in the control of body weight, 
food intake and energy expenditure [111-115], stimu-
lates the pituitary-adrenal axis [116] [117], induces 
fever [111, 118, 119] and is for instance very important 
in the control of body temperature following recovery 
from stroke [120]. Results with IL-6 KO mice imply a 
facilitatory role for IL-6 in pain [74, 75], effects on 
sleep-wake beavior [121], emotional reactivity [122, 
123], sickness behaviour [124] and learning and 
memory [125-127]. 

Dual role of interleukin-6 in injury/disease 

As stated above, soon after its discovery IL-6 was 
shown to induce the neuronal differentiation of PC12 
cells [15, 16]. After these initial studies, a flurry of 
papers demonstrated that IL-6 affected in many dif-
ferent ways neurons and glial cells. Thus, it was 
shown to promote the survival of cultured basal 
forebrain and septal cholinergic neurons and mesen-
cephalic catecholaminergic neurons [128, 129], retinal 
ganglion cells [130], sympathetic neurons and dorsal 
root ganglia (DRG), particularly if sIL-6R was added 
to the culture [30, 131]. It has been suggested that a 
survival mechanism could be the inhibition of neu-
ronal activity and release of glutamate [132].  

In vivo, the role of IL-6 on survival depends on 
the type of neuron. IL-6 increases with development 
in DRG, but levels are low in adults; however, fol-
lowing sciatic nerve transection its expression in-
creases dramatically, not only in the DRG but also in 
many neurons in the corresponding motor nucleus or 
sympathetic ganglion [133]. Studies in a drop weight 
model of cortex lesion (closed skull) also indicate that 
IL-6 expression increases following axonal damage, 
mainly in neurons [134], thus probably neuronal in-
duction of IL-6 in response to injury is a general re-
sponse. In the sciatic model, IL-6 expression increases 
potently within large and medium-sized axotomized 
neurons [133], whose survival is decreased by 50% in 
IL-6 KO mice [135]. IL-6 probably promotes survival 
through inducing BDNF, and indeed in vivo IL-6 KO 
mice do not upregulate this neurotrophin in DRG 
following nerve injury [136]. Experiments after injury 
of the hypoglossal nerve in mice also demonstrated a 
nerve regenerating role of IL-6 [137]. In contrast, in the 
facial nerve axotomy model no difference in neuronal 
survival was observed [104], whereas IL-6 was shown 
to be detrimental in a model of optic nerve injury 
[138].  
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CNS IL-6 is upregulated whenever neuroin-
flammation is expected, such as following CNS infec-
tion or injury or in a number of CNS diseases (Figures 
2 and 3). Early studies demonstrated that IL-6 was 
expressed and produced in CNS during viral menin-
gitis, in encephalitis mouse models, and in CSF of 
patients with acute viral infections [139]. IL-6 was also 
found to be upregulated in mouse experimental cere-
bral malaria (ECM) [140]. Moreover, IL-6 was highly 
found in CSF of patients with systemic lupus erithe-
matosus (SLE) with CNS involvement [141] or in 
those in advanced stages of patients with human 
immunodeficiency virus [142] infections [143]. IL-6 
levels in CSF were also significantly higher than 
plasma levels in patients who had suffered traumatic 
brain injury [144], and recently an IL-6 polymorphism 
(-174C/G) has been associated with fatal outcome in 
patients with severe traumatic brain injury [145]. As 
expected, IL-6 is upregulated in several animal mod-
els of brain injury and shows a myriad of actions as 

suggested by studies in IL-6 KO mice which show a 
compromised inflammatory response, increased oxi-
dative stress, impaired neuroglial activation, de-
creased lymphocyte recruitment and a slower rate of 
recovery and healing [47, 101, 102, 104, 134, 146-148]. 
Of note, IL-6 is a critical cytokine controlling the tran-
sition from innate to acquired immunity, which is 
imperative for dealing properly with injured (and 
infected) CNS tissue, and where IL-6 trans-signalling 
is dramatically important [149]. In line with the results 
with IL-6 KO mice, GFAP-IL-6 mice (which overex-
press IL-6 in the CNS) showed more rapid healing 
and recovery after traumatic brain injury because of 
extensive revascularization [148, 150]. The tran-
scriptomic analysis of IL-6KO mice versus WT mice 
[151] and that of GFAP-IL-6 mice [152] in a model of 
brain cortex cryoinjury revealed that IL-6 modulates 
the expression of many genes involved in inflamma-
tion, apoptosis and oxidative stress among others.  

 

 

Figure 2. IL-6 has a major role in the response of the brain to injury. To some extent the response of the brain to trauma and stroke is similar. 
Stroke may be caused by an embolus/thrombus occlusion, an hemorrhage or a vasospasm, resulting in ischemia. Hypoxia initiates a biochemical cascade 
leading towards cell death, involving excitotoxicity, oxidative stress and apoptosis in which IL-6 has a protective effect. In the early response, neutrophils 
extravasate to nervous parenchyma involving a process of rolling, activation and transmigration due to an upregulation of P and E-selectin, followed then by 
an upregulation of ICAM and VCAM. Neutrophils are a rich source of sIL-6R, and damaged resident cells produce IL-6, TNF-α, IL-1β and chemokines, 
enhancing leukocyte migration toward parenchyma. TNF-α and IL-1β lead to neutrophil degranulation and tissue destruction by means of metallopro-
teinase (MMP) and TGF-β, while IL-6 inhibits TNF-α and neutrophils’ diapedesis. Moreover, it induces apoptosis in neutrophils in a negative feedback loop. 
In the late phase of this response, IL-6 orchestrates the transition between innate and adaptive immune response, not only inhibiting neutrophils but 
recruiting monocytes and T-cells for a late inflammatory response. Besides, it induces astrogliosis and angiogenesis needed for the tissue remodelation and 
recovering. On the other hand, IL-6 exhibits a detrimental effect for instance in relation with body temperature increase, critical in the patient outcome. If 
deregulated, chronic IL-6 may cause significant brain damage. 
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Figure 3. Role of IL-6 in CNS diseases. IL-6 has been related to many brain diseases. In Multiple Sclerosis (MS) IL-6 influences T-cell function inducing 
its proliferation and infiltration into CNS by upregulation of VCAM-1 on the vascular endothelial cells. In the presence of TGF-β, it also induces T-cells 
differentiation into Th17 cells, which secrete IL-17 that stimulates IL-6 production in astrocytes in a positive feedback loop. Besides, T-cell direct contact 
induces production of IL-6, reactive oxygen species (ROS) and nitric oxide (NO) in astrocytes, which contribute to damaging myelin sheath and neurons 
that will led to ascending paralysis and, as long as IL-23 is present, the fully development of MS. In Alzheimer’s disease, Amyloid-β peptide (Aβ) produced 
by cleavage of amyloid precursor protein (APP), induces microgliosis, astrogliosis and triggers IL-6 production in both types of cells which upregulates APP 
and hyperphosphorylates tau in neurons. Aβ is accumulated in the extracellular space forming senile plaques and inducing neuronal death. However, IL-6 
can play a protective role differentiating microglia into phagocytic macrophages capable of degrading Aβ. Mutant Huntingtin (mHtt), associated with 
Huntington’s disease [208], is a CAG expansion translated into intracellular polyglutamine inclusions which are toxic for the cell due to different pathways: 
increase in intracellular Ca2+ due to NMDA receptor binding, increase mitochondrial dysfunction with ROS production, and axonal transport disruption 
due to mHtt/HAP1 complexes. Elevated intracellular Ca2+ activates caspases and calpains, which cleave mHtt into toxic N-terminal fragments triggering 
apoptosis in a positive feed-back loop. Furthermore, calpain causes autophagy inhibition resulting in high levels of mHtt in another positive feed-back loop. 
Moreover, microglia cells expressing mHtt also contribute to neuronal cells degeneration. Parkinson’s disease (PD) is considered a synucleinopathy due to 
an abnormal intracellular accumulation of insoluble alpha-synuclein aggregations (aα-syn) in the form of Lewy bodies in dopaminergic (DA) neurons due to 
a mutation, a toxic or an idiopathic form. Its etiopathogenesis remains unclear but, like HD, neuronal death is thought to be as a result of mitochondrial 
dysfunction with ROS production, an intracellular increase of Ca2+, oxidative stress and alterations in the ubiquitinproteasomal system (UPS) that become 
incapable to degrade aα-syn, which triggers microglia to produce ROS. All together produce neurodegeneration and PD symptomatology. MPTP is me-
tabolized into MPP+ by glial cells and primarily kills DA neurons, by interfering with mitochondrial metabolism, producing PD symptoms and being able to 
model a toxic PD in animals. In both diseases, IL-6 protects against Ca2+ and ROS excitotoxicity decreasing neuronal death. 

 
Stroke patients also show significant elevations 

of CSF and serum IL-6 shortly after the ischemic event 
that correlate with brain infarct volume, and IL-6 
haplotype affects both infarct size and IL-6 levels 
[153-157]. Ischemic brain injury involves inflamma-
tion, excitotoxicity, oxidative damage and apoptosis, 
and thus to some extent it is a similar scenario as that 
following traumatic brain injury. It is therefore not 
surprising that IL-6 may be an important factor or-
chestrating the responses elicited by stroke. In animal 
models of cerebral ischemia it has been a consistent 

finding an upregulation of IL-6, mostly in neurons but 
also in glial cells and vascular endothelium [158-161]. 
In line with the in vitro studies detailed above, neu-
ronal IL-6 upregulation following cerebral ischemia is 
likely mediated by glutamate-induced neuronal de-
polarization [44, 162, 163]. Several of these studies 
clearly demonstrated a neuroprotective role of exog-
enously administered IL-6, as did experiments inject-
ing anti-mouse IL-6 receptor monoclonal antibody 
[164] and with IL-6 KO mice provided body temper-
ature is controlled [120, 165]. Controlling oxidative 



Int. J. Biol. Sci. 2012, 8 

 
http://www.biolsci.org 

1260 

stress [166] and angiogenesis [165] are among the at-
tributed functions of IL-6 during stroke. Epileptic 
seizures often involve excitotoxicity, and thus it was 
expected to find that patients suffering of epilepsy 
show increased CSF levels of IL-6 after seizures [167], 
and that well-known animal models of epilepsy such 
as the glutamate analog kainic acid (KA) upregulate 
CNS IL-6 [162]. IL-6 KO mice are more susceptible to 
various convulsant stimuli including several gluta-
mate analogs and show clear signs of increased hip-
pocampal damage [168-170]. Yet, this is a complex 
system, since intranasal administration of IL-6 to rats 
[171] and transgenic IL-6 expression in the brain [172] 
are proconvulsive. Also, some authors also claim a 
damaging role of IL-6 on neuron development in 
culture and on the response to NMDA [173] [174]. The 
reasons for such dual effects of IL-6 remain uncertain, 
but probably reflect that the context has a dramatic 
effect as often is the case with growth factors.  

 As a prototypical cytokine with roles in the 
control of inflammation, IL-6 is altered in CNS dis-
eases where neuroinflammation may have a role. It is 
therefore not surprising that IL-6 expression is altered 
in the brains of Alzheimer’s disease (AD) patients, 
being increased around amyloid plaques and in cere-
brospinal fluid [175-179]. IL-6 stimulated the synthe-
sis of the AD beta-amyloid precursor protein [180, 
181], and, conversely, IL-6 is upregulated in cultured 
glial cells upon stimulation with the carboxy-terminal 
105 amino acids of APP [182]. Moreover, IL-6 also 
enhances neuronal damage induced by beta-amyloid 
peptide in cultured rat cortical neurons [174]. Despite 
this detrimental role of IL-6 seen in vitro, in vivo 
studies with AD transgenic mouse models rather 
show a beneficial role of IL-6, in principle due to a 
massive gliosis which attenuated beta-amyloid pep-
tide deposition and enhanced plaque clearance [183]. 
This is not unexpected as activated microglia can effi-
ciently phagocytize beta-amyloid peptide and delay 
pathology course in transgenic models [184-186]. As-
trocytes also may be involved in the clearance of be-
ta-amyloid peptide [187], also by regulating microgli-
al phagocytosis [188]. In humans, attempts to find 
important interactions between polymorphisms in 
specific alleles, such as the IL-6-174 G/C promoter 
allele, and genotype frequencies, are not conclusive 
[189-191]. The -572C/G polymorphism of IL-6 gene 
promoter region is another polymorphism that might 
be associated with AD [192]. 

Multiple sclerosis (MS) is an inflammatory de-
myelinating autoimmune disease of CNS mediated by 
CD4+T cells and soluble inflammatory mediators, in 
which IL-6 has an important role. While there is sig-
nificant controversy on whether or not MS is corre-

lated with either plasma or CSF IL-6, sIL6R and 
sgp130 levels [193-196], it has been demonstrated the 
presence of IL-6 in acute and chronic active plaques of 
MS patients, mainly associated with astrocytes rather 
than macrophages or mononuclear infiltrating cells 
[197]. Yet, the association of MS with IL-6 polymor-
phisms is again not conclusive [198, 199]. One of the 
most common animal model of MS is Experimental 
Autoimmune Encephalomyelitis (EAE) [200]. IL-6 is 
upregulated in CNS during EAE [201], and different 
approaches have demonstrated a major role of this 
cytokine. Thus, it was soon established that neutrali-
zation of IL-6 with antibodies led to a reduced disease 
[202], which later on was seen to be due to the sup-
pression of the MOG-induced differentiation of naive 
T cells into Th17 and Th1 cells [203]. A seminal series 
of early studies demonstrated that IL-6 deficient mice 
were resistant to EAE [204-207], highlighting the es-
sential role of this cytokine. Absence of infiltrating 
cells in the CNS, reduction of lymphocyte prolifera-
tion, change of the cytokine profile and failure to 
stimulate endothelial VCAM-1 were some of the rea-
sons suggested to be responsible for resistance to EAE 
at the time. Trans-signaling is also crucial for EAE 
induction as its blockade with gp130-Fc fusion protein 
delayed the onset of adoptively transferred EAE 
compared to controls due to a reduction in VCAM-1 
expression on spinal cord microvessels [208]. Since the 
discovery of two novel subsets of T helper cells, 
named Treg and Th17 cells, and its importance in MS, 
it has been shown that IL-6 has a major role in Th17 
cell differentiation from naive CD4+ T cells, particu-
larly in the EAE model [203, 209, 210]. Th17 cells 
produce IL-17 (among other cytokines) which en-
hances IL-6 production by astrocytes, which in turn 
induces differentiation of Th17 cells in a positive 
feedback loop between IL-17 and IL-6 [53, 211]. Alt-
hough EAE is considered a disease mostly induced 
peripherally, the fact is that the CNS local milieu may 
have dramatic effects. Thus, the GFAP-IL6 mouse 
model of chronic transgenic IL-6 expression [97] pre-
sents an atypical EAE due to a retargeting of the im-
mune attack, with no signs of spinal cord damage 
while showing a prominent cerebellar damage [212]. 
The mechanisms responsible for these responses to 
IL-6 in the cerebellum are complex and likely to in-
clude an increased vascular activation, loss of integ-
rity of the BBB and the induction of specific cytokines 
and chemokines. 

Parkinson’s disease (PD) is a degenerative dis-
order of the CNS with severe motor impairment, like 
shaking or rigidity among many others, due to the 
death of dopaminergic neurons in the substantia 
nigra. IL-6 is upregulated in PD [213, 214], and IL-6 
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levels in the CSF of PD patients are elevated [215], 
although an inverse correlation between severity of 
PD and IL-6 levels is observed [216]. IL-6 KO mice 
show increased vulnerability to the MPTP, a molecule 
that is metabolized into the complex I inhibitor MPP+ 
by astrocytes and is a selective dopaminergic toxin 
[217], whereas IL-6 is capable of protecting rat dopa-
minergic neurons from the neurotoxicity of MPP+ 
[218]. Altogether, the results with these animal mod-
els of PD suggest that IL-6 could be exerting a neuro-
protective role during PD.  

Huntington’s disease [208] is an inherited neu-
rodegenerative disorder with both neurological and 
systemic abnormalities, characterized by abnormali-
ties in the huntingtin gene. IL-6 expression is dramat-
ically elevated in the striatum of HD patients, and in 
general these patients show clear signs of abnormal 
immune activation, IL-6 being one of the cytokines 
affected and monocytes, macrophages and microglia 
(from both HD and mouse HD models) being overac-
tive upon stimulation [219]. IL-6 is suggested to be 
neuroprotective as concluded from results with the 
quinolonic acid rat model of HD [220].  

IL-6 has also been related to some psychiatric 
disorders. IL-6 is significantly elevated and highly 
correlated with major depression [221, 222]. Some 
studies have pointed out that IL-6 levels in CSF but 
not in plasma were increased in combat veterans with 
posttraumatic stress disorder (PTSD) in comparison 
with those of controls [223], and that IL-6 and/or 
sIL-6R levels in plasma but not sgp130 were signifi-
cantly higher in PTSD patients respect to controls, and 
higher in PTSD patients with concurrent major de-
pression than in PTSD patients or controls [224]. IL-6 
has also been related with schizophrenia (SZ), a com-
plex neurological disorder characterized by a break-
down of thought processes and by poor emotional 
responsiveness, commonly manifested with halluci-
nations, delusions, paranoid and mental deterioration 
[225, 226]. Thus, a single maternal injection of IL-6 
during pregnancy causes schizophrenia-like behav-
ioral abnormalities in WT mice but not in IL-6 KO 
mice [227]. Finally, IL-6 has been found to be in-
creased in the cerebellum of autistic brain [228] and 
has been suggested to mediate autism-like behaviors 
[229].  

Perspectives 

IL-6 is a major cytokine in the central nervous 
system. Many of its effects are caused by 
trans-signaling, while others are mediated by the 
membrane receptor; both can be essentially consid-
ered an integrated, unique system. The relevance of 
trans-signaling in vivo in a number of peripheral and 

CNS diseases is widely recognized [111, 149, 230-234], 
and not surprisingly therapeutic approaches aiming 
to counteract IL-6 effects not only focus in IL-6 mem-
brane receptor [235-238] but also in IL-6/sIL-6R com-
plex [13, 239-241]. Likewise, sgp130 is also of an in-
valuable utility to specifically block diseases states in 
which trans-signaling responses exist [232, 234, 241], 
to the extent that the molecule has recently been 
structurally-optimized to better antagonize 
trans-signaling pathologic effects [242]. Still, we must 
keep in mind that IL-6 has a role in the normal brain, 
and interfering with them may be a significant source 
of concern. Finally, we need to understand in vivo 
what the role(s) of IL-6 are to be due to specific cellu-
lar production of and response to IL-6; hopefully the 
production of floxed mice for IL-6 will help to answer 
these questions. 
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