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ABSTRACT
Interleukin-6 (IL-6), a cytokine produced by bone cells, is known to

influence bone resorption by stimulating the development of oste-
oclasts from precursor cells and to have mitogenic actions on osteo-
blastic cells. Insulin-like growth factors (IGFs) are important local
regulators of bone formation, and IGF binding protein (IGFBP)-5
stimulates bone cell growth and enhances the effects of IGF-I. We
tested the effects of IL-6 in the presence and absence of its soluble
receptor (sIL-6R) on IGFBP-5 expression in cultures of osteoblast-
enriched cells from 22-day-old fetal rat calvariae (Ob cells). When
tested individually, IL-6 and sIL-6R had a modest stimulatory effect
on IGFBP-5 messenger RNA (mRNA) levels. In contrast, when IL-6
and sIL-6R were tested in combination, they caused a considerable
increase in IGFBP-5 mRNA levels, and IL-6 at 100 ng/ml and sIL-6R
at 125 ng/ml increased IGFBP-5 transcripts by 5- to 7-fold after 24 h.

The effect of IL-6 and sIL-6R on IGFBP-5 transcripts was not blocked
by indomethacin, but cycloheximide markedly inhibited IGFBP-5
mRNA levels in control and treated cultures. IL-6 and sIL-6R did not
modify the decay of IGFBP-5 mRNA in transcriptionally arrested Ob
cells, and stimulated the rate of IGFBP-5 transcription as demon-
strated by a nuclear run-on assay. IL-6 and sIL-6R did not increase
intact IGFBP-5 levels in the extracellular matrix and increased IG-
FBP-5 fragments in the culture medium. Conditioned medium from
Ob cells induced the proteolytic fragmentation of an IGFBP-5 stan-
dard, an effect that was accelerated and enhanced by conditioned
medium from IL-6/sIL-6R-treated cultures and prevented by metal-
loprotease inhibitors. In conclusion, IL-6, in the presence of sIL-6R,
stimulates IGFBP-5 mRNA expression in Ob cells by transcriptional
mechanisms, and accelerates the fragmentation of the protein. (En-
docrinology 138: 3380–3386, 1997)

INTERLEUKIN (IL)-6 is a pleiotropic cytokine produced by
a wide variety of cells, including cells of the osteoblast

and osteoclast lineages (1, 2). IL-6 exerts well-established
effects on bone resorption. IL-6 stimulates the recruitment of
osteoclasts from precursor cells, and mediates the effects of
PTH, 1,25 dihydroxyvitamin D3, and IL-1 on bone resorption
(3–7). In contrast, the effects of IL-6 on bone formation remain
controversial. IL-6 stimulates DNA synthesis and inhibits
protein synthesis in UMR-106–01 rat osteosarcoma cells, and
inhibits the differentiation of cells of the osteoblast lineage
from rat calvariae (8, 9). In contrast, IL-6 in the presence of
its soluble receptor (sIL-6R), induces the differentiation of
uncommitted embryonic fibroblasts toward cells of the os-
teoblastic lineage (10).

Bone remodeling is affected by hormones and local growth
factors. Insulin-like growth factors (IGFs) are autocrine fac-
tors that enhance the differentiated function of the osteoblast
and have modest mitogenic activity for cells of the osteo-
blastic lineage (11). Recently, we found that IL-6, in the pres-
ence of sIL-6R, stimulates IGF I expression in cultures of
osteoblast-enriched cells from fetal rat parietal bone (Ob
cells), suggesting that IL-6 could influence bone cell function

through the IGF axis (12). Osteoblasts not only express the
two IGF genes, but also express six IGF binding proteins
(IGFBPs), which can modify the half-life and activity of IGF-I
and IGF-II (13–17). Some IGFBPs have specific functions, and
IGFBP-5 is unique because it induces cell growth and en-
hances the actions of IGF I in bone cell cultures (18). There-
fore, changes in IGFBP-5 synthesis could be responsible for
changes in bone formation.

The synthesis of IGFBP-5 in osteoblasts is induced by
prostaglandin E2 (PGE2), retinoic acid, and IGF-I, and is
inhibited by transforming growth factor-b-1, platelet-de-
rived growth factor-BB, fibroblast growth factor-2, and cor-
tisol (17, 19–21). Agents that modify IGFBP-5 synthesis tend
to have a similar effect on IGF-I expression, so that in os-
teoblasts the synthesis of IGF-I and IGFBP-5 is to an extent
coordinated (13, 22). Although there is information about the
regulation of IGF-I, IGF-II, and IGFBP-5 by the more classic
growth factors and by other agents that modify bone for-
mation, less is known about their regulation by bone resorb-
ing cytokines of the interleukin family, such as IL-6. Both IL-6
and IGFBP-5 have mitogenic properties for cells of the os-
teoblastic lineage. Furthermore, IL-6 modifies the differen-
tiation of these cells, and the expression of IGFBP-5 depends
on the stage of osteoblastic cell differentiation (23). Conse-
quently, we postulated that IL-6 might regulate IGFBP-5
expression in osteoblast cultures.

In the present study, we examined the effects of IL-6 on
IGFBP-5 expression in Ob cells, and determined possible
mechanisms involved in this regulation. Because sIL-6R is
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known to enhance the actions of IL-6 in skeletal and non-
skeletal cells, we also tested the effects of IL-6 in the presence
of its soluble receptor (24, 25).

Materials and Methods

Cell culture

The culture method used was described in detail previously (26).
Parietal bones were obtained from 22-day-old fetal rats immediately
after the mothers were killed by blunt trauma to the nuchal area. This
project was approved by the Institutional Animal Care and Use Com-
mittee of Saint Francis Hospital and Medical Center. Cells were obtained
by five sequential digestions of the parietal bone, using bacterial colla-
genase (CLS II, Worthington Biochemical Corp., Freehold, NJ). Cell
populations harvested from the third to the fifth digestion were cultured
as a pool. Ob cells were plated at a density of 8,000–12,000 cells/cm2 and
cultured in a humidified 5% CO2 incubator at 37 C, maintaining a pH
of 7.5. Cells were cultured in DMEM supplemented with nonessential
amino acids and 10% FBS (both from Summit Biotechnology, Fort Col-
lins, CO). For RNA and protein analysis, cells were grown to confluence
(;50,000 cells/cm2) and transferred to serum-free medium for 20–24 h,
and then exposed to test agents for 2–24 h as indicated in the text and
figure legends.

For the nuclear run-on experiment, subconfluent cultures of Ob cells
were trypsinized, subcultured at a 1:10 dilution, and grown to conflu-
ence in DMEM supplemented with 10% FBS. Cells were serum-deprived
for 24 h, and treated for 2–24 h in serum-free DMEM. Recombinant
human IL-6 and sIL-6R (R&D Systems, Minneapolis, MN) were dis-
solved in PBS containing 0.1% BSA. Cycloheximide (Sigma Chemical
Co., St. Louis, MO) was added directly to the culture medium, and
5,6-dichlorobenzimidazole riboside (DRB) and indomethacin (both from
Sigma) were dissolved in absolute ethanol and diluted 1:200 and 1:1000,
respectively, in DMEM. Control and treated cultures contained equal
amounts of vehicle. At the completion of the treatment period, the cell
layer was extracted with guanidine thiocyanate for RNA analysis or
nuclei were isolated by Dounce homogenization for the nuclear run-on
assay.

For protein analysis of IGFBP-5, culture medium was collected in the
presence of 0.2% polyoxyethylene sorbitan monolaurate (Pierce, Rock-
ford, IL), and the extracellular matrix was extracted as described (27, 28).
Both were stored at 270 C. To assay for IGFBP-5 proteolytic activity, the
culture medium was collected and tested at the completion of the cell
culture period.

Northern blot analysis

Total cellular RNA was isolated with guanidine thiocyanate, at acid
pH, followed by a phenol-chloroform (Sigma) extraction or by RNeasy
kit in accordance with manufacturer’s instructions (Qiagen, Chatsworth,
CA) (29). The RNA recovered was quantitated by spectrometry, and
equal amounts of RNA from control or test samples were loaded on a
formaldehyde agarose gel following denaturation. The gel was stained
with ethidium bromide to visualize ribosomal RNA (rRNA), document-
ing equal RNA loading of the various experimental samples. RNA was
then blotted onto Gene Screen Plus charged nylon (DuPont, Wilmington,
DE), and the uniformity of transfer documented by revisualization of
rRNA. A 300 bp HindIII restriction fragment of a rat IGFBP-5 comple-
mentary DNA (cDNA) (kindly provided by Dr. S. Shimasaki, La Jolla,
CA) and a 700-bp BamHI-SphI fragment of a mouse 18S rRNA cDNA
clone (ATCC, Rockville, MD) were purified by agarose gel electrophore-
sis (30). IGFBP-5 and 18S rRNA cDNAs were labeled with [a-32P] de-
oxyadenosine triphosphate (dATP) and [a-32P] deoxycytosine triphos-
phate (dCTP) (50 mCi each at a specific activity of 3,000 Ci/mmol;
DuPont) using the random hexanucleotide primed second strand syn-
thesis method (31).

Hybridizations were carried out at 42 C for 16–48 h, and posthy-
bridization washes were performed at 65 C in 13 SSC for IGFBP-5 and
0.13 SSC for 18S. The bound radioactive material was visualized by
autoradiography on DuPont Reflection Film (DuPont), employing
Cronex Lightning Plus intensifying screens (DuPont) (32). Relative hy-
bridization levels were determined by densitometry. Northern analyses
are representative of three or more cultures.

Nuclear run-on assay

To examine changes in the rate of transcription, nuclei were isolated
by Dounce homogenization in a Tris buffer, pH 7.4, containing 0.5%
Nonidet P-40 (32). Nascent transcripts were labeled by incubation of
nuclei in a reaction buffer containing 500 mm each adenosine, cytidine,
and guanosine triphosphates, 150 U RNasin (Promega, Madison, WI)
and 250 mCi [a-32P]uridine triphosphate (UTP) (3000 Ci/mmol, DuPont)
(33). RNA was isolated by treatment with DNase I and proteinase K,
followed by phenol-chloroform extraction and ethanol precipitation.
Linearized plasmid DNA containing approximately 1 mg cDNA was
immobilized onto GeneScreen Plus by slot blotting according to man-
ufacturer’s directions (DuPont). The plasmid vector pGL2-Basic (Pro-
mega) was used as a control for nonspecific hybridization, and a mouse
18S rRNA cDNA clone was used to estimate uniformity of the loading.
Equal cpm of [32P]RNA from each sample were hybridized to cDNAs
at 42 C for 72 h and washed in 13 SSC at 65 C for 20 min. Hybridized
cDNAs were visualized by autoradiography, and IGFBP-5 hybridization
levels were determined by densitometry. Nuclear run-on assay was
performed in two separate experiments.

Western immunoblot analysis

Extracellular matrix was prepared as described (27, 28). Briefly, Ob
cells were rinsed in PBS, and cell membranes were removed with 0.5%
Triton X-100 (Sigma), pH 7.4, and nuclei and cytoskeleton were removed
by incubation with 2 mm ammonium acetate, pH 9.0. The extracellular
matrix was rinsed with PBS and scraped from the culture plates. Con-
ditioned medium was concentrated approximately three times by speed
vac centrifugation. Aliquots of extracellular matrix extracts or condi-
tioned medium were mixed with Laemmli sample buffer to give a final
concentration of 2% SDS. Samples were fractionated by electrophoresis
on a 12% polyacrylamide gel (34). Proteins were transferred to Immo-
bilon P membranes (Millipore, Bedford, MA), blocked with 2% BSA, and
exposed to a 1:500 dilution of rabbit antiserum raised against native
human IGFBP-5 (UBI, Lake Placid, NY) in 1% BSA overnight. Blots were
exposed to goat antirabbit IgG antiserum conjugated to horseradish
peroxidase, washed, and developed with a horseradish peroxidase
chemiluminescence detection reagent (DuPont). IGFBP-5 was identified
by comigration with purified human IGFBP-5 (kindly provided by Dr.
D. Clemmons, Chapel Hill, NC). Western blot analyses of the condi-
tioned medium and extracellular matrix are representative of two and
eight different cultures, respectively.

To detect IGFBP-5 proteolytic activity in the culture medium of Ob
cells, 100 ng of a purified human IGFBP-5 standard were incubated with
100 ml conditioned medium from control or treated cultures in the
presence and absence of 1 mm 1,10-phenanthrolene, 10 mm EDTA, or 10
mm phenylmethylsulfonyl fluoride (PMSF). Samples were incubated at
37 C for 0–16 h in a shaking water bath, and proteolytic degradation was
terminated by adding 23 Laemmli sample buffer and heating at 100 C
for 3 min. Samples were fractionated by electrophoresis and processed
for Western immunoblot analysis. Western blot analysis to detect IG-
FBP-5 proteolytic activity was performed three times in the absence and
twice in the presence of protease inhibitors.

Statistical methods

Data are expressed as means 6 sem. Slopes of messenger RNA
(mRNA) decay were examined by linear regression, and differences in
decay were determined by the method of Sokal and Rolf (35).

Results

Confirming previous observations, Northern blot analysis
of Ob cell extracts revealed a predominant IGFBP-5 tran-
script of 6.0 kilobases (kb) (19, 21). Continuous treatment
with IL-6 at 100 ng/ml for 2–6 h did not cause a consistent
increase in IGFBP-5 mRNA levels in Ob cells, whereas treat-
ment for 24 h increased IGFBP-5 transcripts by 1.5- to 2-fold
(Fig. 1). This effect was magnified when Ob cells were treated
with IL-6 in the presence of sIL-6R. IL-6 at 100 ng/ml in the
presence of sIL-6R at 125 ng/ml induced a 2- to 3-fold in-
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crease in IGFBP-5 mRNA levels after 6 h and a 5- to 7-fold
increase after 24 h, as determined by densitometry (Fig. 1).
IL-6, when tested by itself, was effective at doses of 100 and
300 ng/ml, which increased IGFBP-5 mRNA levels by 1.5- to
2-fold after 24 h (Fig. 2). When tested in the presence of sIL-6R
at 125 ng/ml, IL-6 was modestly active at a dose of 1 ng/ml,
and the effect was maximal at 10–300 ng/ml; at these doses
IL-6 increased IGFBP-5 transcripts by 6- to 8-fold after 24 h
(Fig. 2). In the absence of IL-6, sIL-6R caused a small increase
in IGFBP-5 mRNA levels, and at 125–250 ng/ml it increased
IGFBP-5 transcripts by approximately 1.5-fold (Fig. 3). In the
same experiment, when sIL-6R was tested in the presence of

IL-6 at 100 ng/ml, it was effective at 31–250 ng/ml, increas-
ing IGFBP-5 by 3.5- to 4.5-fold after 24 h. In other experi-
ments, sIL-6R at 125 ng/ml with IL-6 at 100 ng/ml for 24 h
increased IGFBP-5 mRNA by 5- to 7-fold (Figs. 1 and 2).

IL-6 stimulates the synthesis of PGE2 in osteoblastic cells
and PGE2 induces IGFBP-5 transcripts in Ob cells (8, 17).
Therefore, we considered that the stimulation of IGFBP-5
mRNA levels by IL-6 could be mediated through prosta-
glandin synthesis. To test this possibility, we examined the
effects of IL-6 at 100 ng/ml and sIL-6R at 50 ng/ml in the
presence of the prostaglandin synthesis inhibitor, indometh-
acin, at 10 mm. Indomethacin did not inhibit IGFBP-5 tran-
scripts in control or treated cultures, and IL-6 and sIL-6R
increased IGFBP-5 mRNA levels by 4.5- 6 0.2-fold in the
absence and by 4.1- 6 0.2-fold (both n 5 3) in the presence
of indomethacin (Fig. 4). To determine whether the effect of
IL-6 and sIL-6R was protein synthesis dependent, Ob cells
were treated with IL-6 at 100 ng/ml and sIL-6R at 50 ng/ml
in the presence or absence of cycloheximide at 3.6 mm. Doses
of cycloheximide of 2 mm and higher were shown previously
to inhibit protein synthesis in Ob cell cultures by 80–85%
(36). Cycloheximide caused a marked decrease in IGFBP-5
mRNA levels, and the effects of IL-6 and sIL-6R on IGFBP-5
transcripts were virtually undetectable in its presence
(Fig. 5).

To study the actions of IL-6 and sIL-6R on IGFBP-5 mRNA
stability, Ob cells were exposed to DMEM or IL-6 and sIL-6R
for 6 h, and then treated with the RNA polymerase II inhib-
itor DRB at 75 mm in the absence or presence of IL-6 at 100
ng/ml and sIL-6R at 50 ng/ml for 6, 18, or 24 h (37). The

FIG. 2. Effect of IL-6 at 0.1–300 ng/ml in presence or absence of
sIL-6R at 125 ng/ml on IGFBP-5 mRNA levels in cultures of Ob cells
treated for 24 h. Total RNA from control or IL-6- and sIL-6R-treated
cultures was subjected to Northern blot analysis and hybridized with
a 32P-labeled rat IGFBP-5 cDNA. IGFBP-5 mRNA was visualized by
autoradiography and effect of IL-6 with (f) or without sIL-6R (F)
relative to untreated controls was quantitated by densitometry. Sym-
bols represent means 6 SEM for three cultures. Inset, Representative
Northern blot.

FIG. 1. Effect of IL-6 at 100 ng/ml in presence or absence of sIL-6R
at 125 ng/ml on IGFBP-5 mRNA levels in cultures of Ob cells treated
for 2, 6, or 24 h. Total RNA from control or IL-6- and sIL-6R-treated
cultures was subjected to Northern blot analysis and hybridized with
a 32P-labeled rat IGFBP-5 cDNA. Blot was stripped and rehybridized
with a 32P-labeled 18S rRNA cDNA. IGFBP-5 mRNA was visualized
by autoradiography (top); 18S rRNA (bottom).

FIG. 3. Effect of sIL-6R at 31–250 ng/ml in presence or absence of IL-6
at 100 ng/ml on IGFBP-5 mRNA levels in cultures of Ob cells treated
for 24 h. Total RNA from control or IL-6- and sIL-6R-treated cultures
was subjected to Northern blot analysis and hybridized with a 32P-
labeled rat IGFBP-5 cDNA. IGFBP-5 mRNA was visualized by au-
toradiography and effect of sIL-6R with (f) or without IL-6 (F) rel-
ative to untreated controls was quantitated by densitometry. Symbols
represent means 6 SEM for three cultures. Inset, Representative
Northern blot.
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half-life of IGFBP-5 mRNA in transcriptionally arrested Ob
cells was estimated at approximately 13 h, and it was not
modified by treatment with IL-6 and sIL-6R (Fig. 6). To test
whether IL-6 and sIL-6R modified the rate of transcription of
the IGFBP-5 gene, nuclear run-on assays were performed on
nuclei from Ob cells exposed to control medium or to IL-6 at
100 ng/ml and sIL-6R at 50 ng/ml for 2 and 6 h (Fig. 7, Exp
A) or 24 h (Fig. 7, Exp B). After 2–24 h, IL-6 in the presence
of sIL-6R increased IGFBP-5 transcription rates by 2.5- to
3-fold, demonstrating a transcriptional effect.

Western immunoblots confirmed the presence of a major
form of immunoreactive IGFBP-5 in the extracellular matrix
of control cultures migrating with a molecular mass of 31 kDa
(Fig. 8, left). Immunoreactive bands of 45–50 kDa were also
observed, but these are not detected by Western ligand blot
analysis using 125I-IGF-II as a probe indicating that they are
not IGFBPs (20). IL-6 at 100 ng/ml in the presence of sIL-6R
at 50–125 ng/ml did not change the levels of the 31-kDa form
of IGFBP-5 after 24 or 48 h in the extracellular matrix (Fig. 8,
left) (n 5 8). The 31-kDa form of IGFBP-5, as well as an

immunoreactive protein migrating with a molecular mass of
approximately 24 kDa, which is the known molecular mass
of one of the IGFBP-5 proteolytic fragments, were detected
in the culture medium (Fig. 8, right) (38, 39). IL-6 in the
presence of its soluble receptor decreased the 31-kDa form of
IGFBP-5 in the medium and increased the 24-kDa fragment
after 24 and 48 h (n 5 2). To test for the presence of IGFBP-5
proteolytic activity, purified human IGFBP-5 was incubated
with conditioned medium from control and IL-6/sIL-6R-
treated cultures for 0–16 h. There was a decrease in the
31-kDa form of IGFBP-5 and the generation of immunore-
active proteins of approximately 17, 20, and 24 kDa (Figs. 9
and 10) (n 5 3). The appearance of the proteolytic fragments
and the decay of the IGFBP-5 standard were accelerated and
enhanced when recombinant IGFBP-5 was incubated in the
presence of conditioned medium from IL-6/sIL-6R-treated
cultures (Figs. 9 and 10). The generation of proteolytic frag-

FIG. 4. Effect of IL-6 at 100 ng/ml and sIL-6R at 50 ng/ml in presence
or absence of indomethacin at 10 mM on IGFBP-5 mRNA levels in
cultures of Ob cells treated for 24 h. Total RNA from control, indo-
methacin, or IL-6- and sIL-6R-treated cultures was subjected to
Northern blot analysis and hybridized with a 32P-labeled rat IGFBP-5
cDNA. Blot was stripped and rehybridized with a 32P-labeled 18S
rRNA cDNA. IGFBP-5 mRNA was visualized by autoradiography
(top); 18S rRNA (bottom).

FIG. 5. Effect of IL-6 at 100 ng/ml and sIL-6R at 50 ng/ml in presence
or absence of cycloheximide at 3.6 mM on IGFBP-5 mRNA levels in
cultures of Ob cells treated for 24 h. Total RNA from control, cyclo-
heximide, or IL-6- and sIL-6R-treated cultures was subjected to
Northern blot analysis and hybridized with a 32P-labeled rat IGFBP-5
cDNA. Blot was stripped and rehybridized with a 32P-labeled 18S
rRNA cDNA. IGFBP-5 mRNA was visualized by autoradiography
(top); 18S rRNA (bottom).

FIG. 6. Effect of IL-6 at 100 ng/ml in presence of sIL-6R at 50 ng/ml
on IGFBP-5 mRNA decay in transcriptionally blocked Ob cells. Cul-
tures were exposed to DMEM or treated with IL-6 and sIL-6R 6 h
before and 6, 18, and 24 h after addition of DRB. Total RNA from
control (F) or IL-6- and sIL-6R-treated cells (E) was subjected to
Northern blot analysis and hybridized with a 32P-labeled rat IGFBP-5
cDNA. IGFBP-5 mRNA was visualized by autoradiography, and
changes in mRNA levels quantitated by densitometry. Values are
means 6 SEM for four to six cultures obtained from two experiments.
Slopes from control and experimental cultures were not different.

FIG. 7. Effect of IL-6 at 100 ng/ml in presence of sIL-6R at 50 ng/ml
on IGFBP-5 transcription rates in cultures of Ob cells treated in Exp
A (left) for 2 and 6 h and in Exp B (right) for 24 h. Nascent transcripts
from control (C) or IL-6- and sIL-6R-treated cultures were labeled in
vitro with [a-32P]UTP, and labeled RNA was hybridized to immobi-
lized cDNA for IGFBP-5. 18S rRNA cDNA was used to demonstrate
loading, and pGL2-Basic vector DNA was used as a control for non-
specific hybridization.
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ments was virtually prevented by the metalloprotease in-
hibitors 1,10 phenanthrolene and EDTA, and only partially
prevented by the serine protease inhibitor PMSF (Fig. 10)
(40).

Discussion

IL-6 is considered to be an important mediator of bone
resorption and stimulates osteoclastogenesis in physiologi-
cal conditions and in conditions of increased bone resorption,
such as estrogen deficiency and multiple myeloma (41–43).
Because IL-6 also has mitogenic properties for osteoblastic
cells, it may act in the coupling of bone resorption and bone
formation. Bone remodeling is modified by local growth
factors, which exert their actions by influencing the devel-
opment, proliferation, and differentiated function of cells of
the osteoblast or osteoclast lineage (44). IGFs are among the

most abundant factors present in bone, and their effects are
critical to the formation of new bone and to the maintenance
of a normal bone matrix (13). Because the activity of IGFs is
regulated by the production and availability of IGFBPs, we
examined the effects of IL-6 in the presence or absence of
sIL-6R on the synthesis of IGFBP-5 in Ob cells.

In the present study, we demonstrated that IL-6 alone
caused a modest increase in IGFBP-5 mRNA levels in Ob
cells, but when tested in the presence of its soluble receptor,
the effect was amplified and observed at lower doses of IL-6.
This is not surprising because sIL-6R binds IL-6 with similar
affinity as the membrane bound receptor, and the sIL-6R/
IL-6 complex mediates IL-6 signaling by binding and acti-
vating the signal transducing gp 130 (24). By these mecha-
nisms, IL-6R may confer IL-6 responsiveness to cells
expressing low levels of IL-6 transmembrane receptor (24).
Furthermore, the effect of IL-6 on osteoclast formation also
is observed in the presence of its soluble receptor (25). The
effect of IL-6 and sIL-6R on IGFBP-5 mRNA was observed at
concentrations detected in mouse and human serum, sug-
gesting that it is physiologically relevant (45, 46). sIL-6R
alone had a small effect, and its activity is probably due to
the presence of significant levels of IL-6 in the bone cell
microenvironment (47). Although IL-6 stimulates PGE2 syn-
thesis in osteoblastic cells, and PGE2 stimulates the tran-
scription of IGFBP-5 in osteoblasts, the stimulatory effect of
IL-6 and sIL-6R on IGFBP-5 is not prostaglandin synthesis
dependent, suggesting that IL-6 influences bone cell growth
through various mechanisms (8, 48). IL-6 and its soluble
receptor also increase IGF-I transcripts and polypeptide lev-
els, and IGF-I increases IGFBP-5 transcription (12, 19). How-
ever, IGF-I probably does not mediate the acute effects ob-
served with IL-6 and its soluble receptor on IGFBP-5
synthesis. This is because the effect on IGFBP-5 transcription
was detected after 2 h, whereas 24 h of exposure to IL-6 and
sIL-6R are needed to detect a stimulation of IGF-I mRNA in
Ob cells (N. Franchimont and E. Canalis, unpublished ob-
servations). Furthermore, indomethacin decreases the effect
of IL-6 and sIL-6R on IGF-I expression without modifying the
expression of IGFBP-5. Nevertheless, the increase in IGF-I

FIG. 8. Effect of IL-6 at 100 ng/ml in presence of sIL-6R at 125 ng/ml
on IGFBP-5 polypeptide levels in cultures of Ob cells treated for 24
or 48 h. Extracellular matrix (ECM) or conditioned medium (CM) from
control (C) or treated cultures were subjected to Western immunoblot
analysis. IGFBP-5 was detected using an anti-IGFBP-5 antibody and
identified by comparison with a human IGFBP-5 standard (St), using
a chemiluminescence detection system. Molecular mass markers in
kDa are indicated on left.

FIG. 9. Effect of IL-6 at 100 ng/ml in presence of sIL-6R at 125 ng/ml
on IGFBP-5 proteolytic activity in cultures of Ob cells treated for 24 h.
A purified human IGFBP-5 standard (Std) was incubated with con-
ditioned medium (CM) from control (upper) or IL-6/sIL-6R-treated
(lower) Ob cell cultures at 37 C for 0, 1, 2, 4, or 16 h and subjected to
Western immunoblot analysis. Intact IGFBP-5 and generated frag-
ments were detected using an anti-IGFBP-5 antibody using a chemi-
luminescence detection system and are indicated by arrows on right.
Molecular mass markers in kDa are indicated in left margin.

FIG. 10. Effect of IL-6 at 100 ng/ml in presence of sIL-6R at 125 ng/ml
on IGFBP-5 proteolytic activity in cultures of Ob cells treated for 24 h.
A purified human IGFBP-5 standard (Std) was incubated with con-
ditioned medium (CM) from control (C) or IL-6/sIL-6R-treated Ob cell
cultures at 37 C for 4 h in presence and absence of 1,10 phenanth-
rolene (PNT) at 1 mM, PMSF at 10 mM, or EDTA at 10 mM and
subjected to Western immunoblot analysis. Intact IGFBP-5 and gen-
erated fragments were detected using an anti IGFBP-5 antibody and
a chemiluminescence detection system. Molecular mass markers in
kDa are indicated on left.
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synthesis by IL-6 and sIL-6R may have an important sec-
ondary delayed effect not only on the stimulation of IGFBP-5
transcription in osteoblasts, but also on the stabilization of
the protein (19, 49).

IL-6 induces the transcription of the IGFBP-5 gene in
osteoblasts, and does not stabilize IGFBP-5 mRNA in tran-
scriptionally arrested Ob cells. The gene sequences re-
sponsible for the effect have not been determined. In other
cells, IL-6 activates the synthesis of the activating protein-1
family of transcription factors, induces nuclear factor-IL-6,
a member of the CCAAT enhancer binding protein family,
acute-phase response factor, and the octamer binding pro-
teins (50 –53). Examination of the IGFBP-5 promoter region
reveals potential binding sites for nuclear factor-IL-6 and
activating protein-1 in the bp 22700 to 11 region of the
gene (54). It is possible that IL-6 acts by inducing or ac-
tivating transcription factors that bind to one or more of
these sequences.

Whereas most of the IGFBPs appear to have inhibitory
activities on bone formation, IGFBP-5 has been shown to
increase bone cell growth and enhance the actions of IGF-I
on this process (14, 18, 55, 56). Although IL-6 and sIL-6R
increased IGFBP-5 mRNA, they did not cause a detectable
increase in polypeptide levels, suggesting additional effects
at the translational or posttranslational level. Our studies
demonstrate that IL-6 and sIL-6R enhance the production of
IGFBP-5 fragments due to increased proteolytic activity, and
this is probably the cause for the lack of a substantial accu-
mulation of intact IGFBP-5 in Ob cells. The osteoblastic
MC3T3 cells and fibroblasts secrete serine proteases and
matrix metalloproteinases that degrade IGFBP-5 (38, 39, 57,
58). Ob cells seem to secrete similar proteases, because the
IGFBP-5 proteolytic activity was inhibited both by the serine
protease inhibitor PMSF, and by the metalloproteinase in-
hibitors EDTA and 1,10 phenanthrolene. Recent studies from
our laboratory demonstrated that IL-6 and sIL-6R have stim-
ulatory activity on the synthesis of collagenase 3 or matrix
metalloproteinases-13 and of the 72-kDa gelatinase in Ob cell
cultures (59), but it is not known whether or not IL-6 also
induces serine proteases in these cells. Therefore, the induc-
tion of collagenase or other proteases may be responsible for
the proteolysis of IGFBP-5 by IL-6 and sIL-6R in Ob cells. It
is not clear why IL-6 and sIL-6R induce IGFBP-5 synthesis as
well as proteolytic activity for this binding protein. This may
be a local mechanism to prevent excessive accumulation of
intact IGFBP-5 and binding of IGF-I. The function of the
IGFBP-5 fragments is not well established, and it is not
known whether they have effects distinct from those of the
intact protein. The significance of IGFBP-5 fragmentation is
not clear, but it is possible that the fragments have specific
actions on bone cell function.

In conclusion, IL-6 in the presence of sIL-6R enhances
IGFBP-5 mRNA expression by transcriptional mechanisms
in osteoblast cultures, and stimulates the production of
IGFBP-5 proteolytic activity and the formation of IGFBP-5
fragments. The effects of IL-6 and sIL-6R on the IGF-IGFBP
axis could constitute a pathway for IL-6 effects on bone
formation.
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