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IL-6 was originally characterized as a B-cell differentiation factor1. 
Since then, research has recast IL-6 as a pleiotropic cytokine with 
roles in the acute-phase response, hematopoiesis, maintenance of 

bone and skeletal muscle mass, central nervous system activity and 
metabolism. Correspondingly, multiple cell types, including leuko-
cytes, adipocytes and myocytes, are known to secrete IL-6 where it 
can act in an autocrine, paracrine or endocrine manner2–4. IL-6 is 
present in diverse taxa5, but between species the protein is highly 
variable, with the human amino acid sequence being only 41% 
homologous to the murine version6.

Molecularly, IL-6 uses three pathways to signal intracellu-
larly (Fig. 1). Classical signalling depends on IL-6 binding to 
membrane-bound IL-6 receptors (IL-6R) and subsequent activa-
tion of transmembrane protein gp130. As IL-6R is expressed only 
on select cell types, such as hepatocytes, various leukocyte sub-
sets, adipocytes and myocytes7–9, this signalling method is limited. 
Trans-signalling relies on soluble IL-6 receptors (sIL-6R) that are 
either generated by cleavage of IL-6R by metalloproteases, such as 
ADAM-10 and ADAM-17 (ref. 10), or through alternative splic-
ing of IL-6R messenger RNA (mRNA)11. Once bound to IL-6, the 
resulting sIL-6R–IL-6 complex interacts with widely expressed 
gp130 to circumvent the tissue constraints of classical signalling. 
A variety of soluble gp130 receptors then modulate the degree of 
trans-signalling by inhibiting the sIL-6R–IL-6 complex to vary-
ing degrees12. Recently, a third signalling pathway, cluster signal-
ling, was discovered that also circumvents the tissue constraints of 
classical signalling. In this pathway, transmitting cells present an 
IL-6R–IL-6 complex to receiving cells, which induces gp130 recep-
tor activation on the receiving cell13. Regardless of how the signal-
ling complex is established, gp130 dimerization can activate several 
intracellular cascades, including phosphatidylinositol 3-kinase 
(PI3K), AMP-activated protein kinase (AMPK) and Janus kinase 
(JAK)–STAT (primarily STAT3) pathways10,14.

Basal elevation of IL-6 has long been correlated with disease 
severity in several diseases, such as rheumatoid arthritis (RA), 
Crohn’s disease and atherosclerosis15. In the case of RA, IL-6 is 
causal to disease pathogenesis, and tocilizumab, a monoclonal anti-
body against IL-6R, is used to treat people with the disease16. These 
findings led to IL-6 initially being categorized as a proinflammatory  

cytokine. Now, however, there is a growing consensus that IL-6 
also has regenerative and anti-inflammatory functions, especially 
when secreted by skeletal muscle during physical activity (PA)17. 
IL-6’s effects on metabolism are similarly varied. Elevated plasma 
IL-6 levels increase the likelihood of developing type 2 diabetes18 
and can cause insulin resistance in several tissues in cell models and 
rodent experiments19,20. Despite these effects, IL-6 also promotes 
anti-diabetogenic processes, such as enhancing muscular glucose 
uptake21, stimulating pancreatic insulin secretion22 and promoting 
lipolysis and fat oxidation23. Moreover, IL-6 inhibits appetite24 and 
delays gastric emptying, which reduces postprandial glycaemia25. 
Aside from metabolism, IL-6 regulates manifold processes, includ-
ing skeletal muscle hypertrophy26 and bone remodelling27. These 
and other functions (summarized in Table 1) raise the question 
of why this one cytokine regulates so many different cell types in 
diverse and sometimes discrepant ways.

While hundreds of studies have elucidated how IL-6 functions 
in a wide range of contexts, here we integrate metabolic, immu-
nological and physiological data with an evolutionary perspective 
to attempt to explain why this molecule has such disparate and 
seemingly contradictory functions. We propose that IL-6 evolved 
to modulate energy allocation in response to metabolic stress in 
a range of tissues, thus accounting for its diverse effects in mul-
tiple contexts. To explore this evolutionary hypothesis, we review 
how principles of life-history theory suggest a model of IL-6 as a 
short-term energy allocator. Next, we apply our model to IL-6 secre-
tion by skeletal muscle during PA, hereafter referred to as myokine 
IL-6. We then extend our model to physical inactivity and other 
physiological processes involving IL-6.

Long-term versus short-term energy allocation
All organisms have finite energy reserves to spend on growth, 
somatic maintenance, storage, physical activity and reproduction. 
According to life-history theory, natural selection favours mecha-
nisms that allocate energy towards these functions differentially 
across the life cycle to maximize reproductive success28. As a result, 
organisms ultimately benefit from investing as much energy as pos-
sible towards reproduction. Weeks or months of positive energy 
balance signal that it is favourable to invest energy in a potential 
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pregnancy and subsequent lactation on top of baseline maintenance 
and activity costs. Numerous studies of gonadal steroid hormones, 
proxies of long-term energy allocation to reproduction, support 
the hypothesis that energy allocation to reproduction is sensitive to 
energy availability in humans and is delayed or reduced by weight 
loss or high levels of PA29,30. However, in the short-term—some-
times at a moment’s notice—organisms need to sense energetic 
stress caused by PA or an immune response and divert energy rap-
idly in order to survive.

Although the tradeoffs and molecular mediators of long-term 
energy allocation are well known, the molecules that regulate 
short-term energy allocation and tradeoffs that it entails are com-
paratively understudied. Because the timescales are so rapid, on the 
scale of minutes to days, we predict that short-term energy allocators 
share a few defining characteristics. One, they have short half-lives 
to limit the duration of energy allocation away from reproduction. 
Two, they rely on liberating stored energy and temporarily suppress-
ing dispensable functions like digestion to meet the acute energetic 
demand. The most well known of these allocators are hormones and 
catecholamines such as cortisol and epinephrine that are secreted 
in response to short-term energetic stressors like prolonged PA or 
immune activation. Here, we propose adding IL-6 to that list.

short-term energy allocation by IL-6
Previous attempts to explain the confusingly pleiotropic functions 
of IL-6 have largely depended on mechanistic explanations. Due to 
the observation that enzymatic cleavage of IL-6R, the primary form 
of sIL-6R generation, is upregulated in activated and apoptosing 

neutrophils as well as in the presence of CRP31,32, it has been sug-
gested that the dichotomy between trans- and classical signalling 
can partly explain the diverse context-dependent effects of IL-6, 
especially with respect to its pro-/anti-inflammatory dichotomy10. 
Still, the differences between trans- and classical signalling explain 
only how IL-6 can have context-dependent effects and not why a 
cytokine has many functions beyond the immune system.

We propose that the explanation lies in IL-6’s ability to coordinate 
short-term energy allocation, especially during sustained, strenuous 
endurance PA. IL-6 is a good candidate for a short-term energy allo-
cator for several reasons. Like other short-term energy allocators, 
IL-6 has a relatively short half-life of ~60 minutes during recombi-
nant infusion in rodents33. Intriguingly, the half-life in humans may 
be context dependent; it is longer for IL-6 produced by sepsis or 
surgical recovery (100 minutes–15.5 hours)34,35 and shorter for myo-
kine IL-6 (5 minutes)36. Myokine IL-6 also fulfills three main roles 
that are characteristic of a short-term energy allocator. First, myo-
kine IL-6 production during PA is dependent on metabolic stress 
within the muscle37. Second, myokine IL-6 mobilizes stored somatic 
energy from adipose and skeletal muscle, primarily by promoting 
lipolysis23. Lastly, myokine IL-6 promotes differential uptake of lib-
erated somatic energy in myocytes by increasing muscular insulin 
sensitivity38 and transiently downregulating inflammation (Fig. 2).

IL-6 is a signal of energetic stress
We have previously proposed that myokine IL-6 acts as an energy 
sensor for muscle37. Early work showed that myokine IL-6 is 
secreted directly from myocytes and is highly sensitive to PA stimu-
lus—increasing up to 100-fold from baseline levels of <5 pg/mL17. 
In addition, unlike leukocyte-derived IL-6, transcription and sub-
sequent secretion of myokine IL-6 occur in the absence of TNF-α 
and IL-1β secretion39 (Fig. 3). During a sustained bout of moderate 
to vigorous PA, plasma IL-6 levels increase exponentially and reach 
their peak immediately after PA cessation40. The magnitude of the 
increase depends strongly on PA duration, intensity and the muscle 
mass engaged in PA17, factors that also regulate the degree of energy 
expenditure. After PA, increased hepatic clearance41 plus a cessa-
tion of myokine secretion cause plasma IL-6 levels to decline back 
to baseline in a matter of hours. Aside from myokine IL-6 kinetics 
during PA, the molecular regulation of secretion provides evidence 
that myokine IL-6 is an energy sensor.

IL-6 production during PA is primarily controlled at the level 
of transcription. Various stress-related molecular mechanisms are 
thought to control IL-6 mRNA transcription during exercise, but we 
will highlight only a few here. Ca2+ signalling appears to play a large 
role in contraction-induced IL-6 mRNA transcription. Repeated 
membrane depolarizations increase intracellular and nuclear Ca2+ 
through activation of the PI3K cascade42. Ultimately, increased Ca2+ 
signalling drives IL-6 transcription by activating transcription fac-
tors including activator protein 1 (AP-1)42. Membrane depolariza-
tion can also increase phosphorylation on c-Jun N-terminal kinase 
(JNK), which also activates AP-1 (ref. 43). However, if exercise con-
tinues, IL-6 production relies on signals of energetic stress, such as 
muscle glycogen depletion44, lactic-acid accumulation45 and redox 
signalling46. In one study, participants who pre-emptively depleted 
muscle glycogen in one leg before a two-legged extensor exercise 
exhibited greater IL-6 mRNA transcription and myokine IL-6 
release in the glycogen-depleted leg44. The mechanisms underly-
ing this effect remain inconclusive but may involve loss of glycogen 
inhibition on AMPK signalling47,48 or nuclear phosphorylation of 
p38 MAPK at low glycogen levels49.

Experimentally manipulating energy flow towards a muscle  
during PA can also impact myokine IL-6 release. Increasing the 
energetic deficit by blocking lipolysis increases myokine IL-6 (ref. 50)  
while reducing the energetic deficit through continuous carbohy-
drate supplementation attenuates secretion51. Furthermore, when 
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Fig. 1 | The three signalling pathways of IL-6. Classical signalling relies 
on the interaction of the membrane-bound IL-6 receptor (IL-6R) and 
circulating IL-6. The resulting complex then associates with ubiquitously 
expressed gp130 to produce an intracellular signal through Janus kinases 
(JAK). IL-6R expression is restricted to a few cell types, including 
myocytes, hepatocytes and adipocytes, thus limiting the effects of 
classical signalling. Trans-signalling occurs when IL-6R is converted to a 
soluble receptor (sIL-6R) which can bind circulating IL-6. The resulting 
sIL-6R–IL-6 complex then associates with gp130 to signal intracellularly. 
Therefore, trans-signalling is much more widespread and can occur in 
any cell type that expresses gp130, such as endothelial cells, osteoclasts, 
myocytes or hepatocytes. Because sIL-6R production is associated with 
enzymatic cleavage or alternative splicing that occurs in activated innate 
immune cells, trans-signalling is commonly thought to potentiate the 
proinflammatory effects of IL-6. A further layer of regulation is conferred by 
soluble versions of gp130 (not pictured) that block the sIL-6R–IL-6 complex 
from signalling intracellularly. The last mode of IL-6 signalling is cluster 
signalling. Cluster signalling occurs through presentation of the IL-6–IL-6R 
complex from a transmitting cell (for example, dendritic cell) to a receiving 
cell that expresses gp130 (for example, T cell). This signalling modality is 
primarily used for signalling between immune cells.
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the muscle becomes more energetically efficient during training, 
myokine IL-6 release is sharply reduced. In one study, the IL-6 
response to PA after a 10-week training regime was not significantly 
different than the pre-training exercise stimulus despite a 44% 
increase in absolute workload52. Altogether, it is clear that myokine 
IL-6 secretion during PA is tied to intramuscular energy demands.

IL-6 mobilizes stored somatic energy
Once released, myokine IL-6 fulfills the second characteristic of 
a short-term energy allocator by liberating energy from somatic 
stores to meet muscular energetic demands. The most prominent 
such mechanism is lipolysis. Infusions of IL-6 in resting individu-
als at doses (>100 pg/mL) similar to those measured in sustained 
aerobic exercise (~80 pg/mL53,54) increase lipolysis in both adipose 

and muscle tissue23,55,56. To study the effects of myokine IL-6 on 
energy liberation in exercising humans, researchers often use tocili-
zumab to inhibit IL-6 signalling. A recent study using this approach 
showed that tocilizumab administration during a 90-minute bout 
of exercise reduced fatty acid mobilization in both men who are 
lean and who present with obesity57. In addition, a small long-term 
human study that gave participants (n = 13) tocilizumab during a 
12-week bicycle training intervention demonstrated that IL-6 inhi-
bition prevented visceral fat loss observed in the placebo exercising 
group (n = 14) and resulted in visceral fat gain comparable to that in 
non-exercising control participants56.

Beyond liberating energy from fat, myokine IL-6 may also 
increase glucose supply in the bloodstream to fuel sustained PA. 
The most compelling evidence for this effect comes from a study 
that manipulated IL-6 levels during low- and high-intensity PA. 
Study participants cycled for 2 hours on 3 separate occasions at high 
intensity (70% maximal oxygen consumption (VO2 max)), at low 
intensity (40% VO2 max) and at low intensity with exogenous IL-6 
infusion to mimic the systemic IL-6 level during high-intensity PA. 
During the condition with IL-6 infusion, rates of glucose appear-
ance and glucose disposal both increased58, suggesting that IL-6 
contributes to gluconeogenesis as well as glucose disposal during 
exercise, a likely adaptation to enhance energy allocation towards 
muscle during intense PA.

In addition to the aforementioned direct pathways, myokine  
IL-6 liberates energy indirectly through the actions of other  
hormones. Several older studies found that acute injections of  
high doses of recombinant IL-6 (ranging from 594 to 3,500 pg/
mL) in resting individuals indirectly increased blood glucose  
levels by inducing transient secretion of glucagon59,60. However, 
more recent studies with lower doses (from 42 to 220 pg/mL)  
found no effect of recombinant IL-6 infusion on blood glucose 
appearance despite increasing glucagon levels55,61. In addition, 
receptors for IL-6 are expressed in both the adrenal and pituitary 
glands62, indicating that myokine IL-6 may orchestrate the pro-
duction of several influential metabolic hormones, especially 
cortisol. Studies show that IL-6 infusions in resting individuals at 
physiological concentrations promote cortisol secretion61. Thus, 
it is possible that myokine IL-6 contributes to the cortisol release 
commonly observed during PA. Lastly, it is important to note that 
adipocyte-derived IL-6 appears to support lipolysis as well, espe-
cially after physical activity (Box 1).

IL-6 shunts energy towards exercising muscle
The final step in myokine-IL-6-directed short-term energy alloca-
tion is the augmentation of energy uptake in skeletal muscle cells 
and the suppression of energy uptake by other tissues. To explore 
this role of myokine IL-6, we first evaluate its effect on energy 
uptake by muscle before turning to its inhibitory effects on other 
organ systems.

During and after PA, muscular glucose uptake and insulin sen-
sitivity are enhanced to meet the energetic demands of muscle 
contraction and muscle recovery63 and evidence from humans 
and rodents suggests that myokine IL-6 contributes to heightened 
insulin sensitivity after PA. Global IL-6 knockout (IL-6KO) mice 
have acute impairments in muscle glucose uptake after exercise and 
fail to show improvements in diet-induced insulin resistance after 
an exercise training regime64. In humans with obesity and type 2 
diabetes, myokine IL-6 has been shown to enhance glucagon-like 
peptide 1 secretion from pancreatic alpha cells22,65, potentially con-
tributing to the hyperinsulinemia observed in healthy controls after 
intense PA66. However, the duration of IL-6 signalling influences 
whether IL-6 has beneficial or detrimental effects. A meta-analysis 
of 10 studies found that chronically high levels of IL-6 were asso-
ciated with the development of type 2 diabetes18. Murine and 
cell-based studies have found that IL-6 signalling for more than 

Table 1 | Multifunctionality of IL-6

Metabolic Functions

Promote catabolism Promote anabolism

Induces lipolysis and free fatty acid 
release from adipocytes and skeletal 
muscle23,55,56

Increases insulin secretion/
upregulates GLP-1 production22,24,65

Chronic administration contributes 
to insulin resistance in liver, adipose 
and muscle19,20,120

Acute administration increases 
insulin sensitivity in muscle67,121

Induces cortisol secretion61,122,123 Increases GH hormone secretion 
from the pituitary124

Increases blood glucose during 
exercise58

May increase fatty acid uptake in 
skeletal muscle 64,69

Immune functions

Proinflammatory Anti-inflammatory

Enhances B-cell differentiation and 
antibody production1

Regulates neutrophil trafficking at 
infection site by downregulating 
chemokine production and 
increasing apoptosis125

Biases T-cell differentiation towards 
TH2 and TH17 while inhibiting TH1 and 
Treg formation87,126–128

Inhibits proinflammatory 
cytokines (TNF-α and IL-1β) and 
increases anti-inflammatory 
cytokines production (IL-10 and 
IL-1RA)80,81,122

Regulates acute-phase protein 
production (C-reactive protein, 
serum amyloid a, fibrinogen) and 
body temperature elevation129,130

Sensitizes macrophages to M2 
polarization and enhances M2 
phenotype131

Increases haematopoietic stem cell 
and myeloid cell production in bone 
marrow132,133

Regulates tissue repair and 
regeneration in the intestinal 
epithelium and liver134,135

Acts as a chemotactic agent for 
monocytes, macrophages and 
T cells84,136

Musculoskeletal Functions

Catabolic Anabolic

Mediates muscle protein breakdown 
when chronically elevated91,137

Skeletal muscle hypertrophy via 
satellite cell proliferation and 
differentiation74

Induces osteoclastic differentiation 
and is associated with bone loss from 
estrogen withdrawal124

Induces early osteoblastic 
differentiation and may engender 
bone formation138

Select effects of IL-6 on various organ systems throughout the body. IL-6 exhibits a variety of 
contradictory metabolic, immune and musculoskeletal functions that largely differ depending on 
how long IL-6 levels are elevated. With the exception of the immunological effects, the effects 
described are largely confined to IL-6 administration in healthy humans and animals.
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24 hours induces insulin resistance in adipose and hepatic tissue19,20. 
Conversely, other experiments show that doses of IL-6 similar in 
magnitude to those measured during PA promote muscular glucose 
uptake through insulin receptor substrate 1 or AMP-activated pro-
tein kinase (AMPK) activation21,67,68.

AMPK activation is crucial for another mechanism of 
IL-6-mediated glucose uptake: GLUT4 translocation to the sar-
colemma. In vitro, IL-6 stimulates GLUT4 translocation in a 
dose-dependent manner through activation of AMP-activated 
protein kinase (AMPK)67. However, in rodents, myokine IL-6 
appears to have negligible effects on contraction-mediated 
insulin-independent GLUT4 translocation as GLUT4 levels are 
similar between IL-6KO and wild-type animals immediately after 
PA69. Despite this, exercised mice injected with IL-6 neutralizing 
antibody display impaired GLUT4 expression and glucose uptake 
24 hours after activity38. This impairment suggests that myokine 
IL-6 is particularly important for muscle recovery by regulating 
muscular glucose uptake after activity.

Lipids are another important energy source during PA, and 
although most lipid transport is conventionally assumed to occur by 
diffusion, fatty acid uptake can be acutely regulated by the relative 
expression of fatty acid transporters70. As was the case with glucose 
transporters, IL-6 may mediate some of the increases in fatty acid 
transporter expression and translocation seen during PA71. Studies 
have found that fatty acid transporter expression is impaired after 
PA in muscle-specific (IL-6MKO) and IL-6KO mice, reducing fatty 
acid transport into the muscle64,69. Additionally, myokine IL-6 may 
limit fatty acid uptake by adipocytes if it acts similarly to recom-
binant IL-6, which downregulates lipoprotein lipase in mouse adi-
pocytes72. These results raise the possibility that myokine IL-6 may 
upregulate muscle energy uptake not only through glucose uptake 
but also through fatty acid absorption.

One way to test whether myokine IL-6 allocates energy towards 
the muscle is to investigate its effects on PA performance and recov-
ery. If myokine IL-6 increases energy uptake through the muscle, 
any disruption should reduce performance and impair muscle 
recovery and adaptation. In IL-6MKO and IL-6KO mice, these defi-
cits in performance are readily observable. Despite similar maximal 
exercise intensity and daily overall activity levels between control 
and IL-6KO strains73, knockout mice fatigue faster when running at 
a submaximal intensity until exhaustion64,69.

Few studies have examined how myokine IL-6 deficiency 
impacts muscular recovery and adaptation to repeated exercise 
bouts, but there are clues that the downstream effects of myokine 
IL-6 are as important after PA as they are during PA. The first 
major benefit of myokine IL-6 is the transient anti-inflammatory 
environment induced after PA39. In addition, IL-6 directly regulates 
muscle hypertrophy74, possibly through the induction of IL-10 and 
enhanced polarization of M2 macrophages75. In fact, genetic poly-
morphisms in the promoter region of the IL6 gene that increase IL-6 
levels have been linked to increased fat-free mass in men76. Lastly, 
IL-6–STAT3 signalling may contribute to some muscular adapta-
tions that occur after training, such as the induction of mitochon-
drial biogenesis and increased mitochondrial activity77 driven by 
PGC-1α (ref. 78). Intriguingly, this effect appears to be restricted to 
specific muscle tissues79.

In addition to regulating energy uptake and possible repair 
within the muscle, IL-6 has inhibitory effects on the immune system, 
which allows the muscle to use more of the liberated somatic energy 
during and after PA. In particular, myokine IL-6 inhibits mono-
cyte production of TNF-α (ref. 80) and possibly IL-1β (ref. 81) while 
inducing the expression of major anti-inflammatory cytokines54, 
namely interleukin 10 (IL-10), interleukin 1 receptor antagonist 
(IL-1ra) and soluble TNF receptor. IL-10 is especially important 
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Fig. 2 | Myokine IL-6 as a short-term energy allocator during physical activity. a, Energy sensing. Physiological components of prolonged muscle activity, 
such as lactic-acid buildup and reactive oxygen species (ROS) production along with muscle glycogen depletion, signal that intramuscular energy stores 
are depleted and precipitate myokine secretion of IL-6. b, Energy liberation. When myokine IL-6 is released into circulation, it liberates somatic energy for 
the contracting muscle by upregulating lipolysis and gluconeogenesis throughout the body. In addition, myokine IL-6 acts indirectly to increase catabolism 
and energy mobilization by inducing cortisol secretion (not pictured). c, Energy allocation. At the same time, myokine IL-6 increases energy uptake by the 
muscle through increases in insulin receptor sensitivity, GLUT4 expression and possibly fatty acid transporter expression. Evidence suggests that it also 
allocates energy to the muscle indirectly by transiently downregulating other energy-consuming processes, such as the immune activity (not pictured). 
The energy allocated towards the muscle by IL-6 during and after activity is used to fuel muscle contraction and is likely important for muscle recovery and 
repair. SCFA, short-chain fatty acids.
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in energy allocation because, in addition to limiting immune cell 
activity, muscle-specific IL-10 directly increases glucose uptake82.

IL-6 in chronic inflammation and metabolic syndrome
IL-6 is most commonly considered a proinflammatory cytokine 
involved in the acute-phase immune response and chronic inflam-
mation, but an evolutionary perspective on IL-6’s function in 
short-term energy allocation sheds new light on its roles in modern 
post-industrial environments. Many people today in high-income 
countries engage in very low levels of moderate to vigorous PA 
(MVPA)—less than 5% of US adults meet the World Health 
Organization’s recommendation of 30 minutes per day at least 5 
days per week83—and have almost unlimited access to energy-rich 
food. Because hunter gatherers and nonindustrial agricultural pop-
ulations have high levels of MVPA and fluctuating energy availabil-
ity, we can infer that it used to be normal for individuals to regularly 
stimulate myokine IL-6 secretion in order to direct energy towards 
muscle. In the absence of PA-induced energetic stress to stimulate 
myokine IL-6 secretion, more energy is stored as fat that in turn 
drives chronic inflammation. Loss of regular myokine IL-6 secre-
tion in modern environments thus contributes to a mismatch by 
not only increasing energy storage in adipocytes, but also failing to 
stimulate the production of anti-inflammatory myokines.

Our proposed model of IL-6 as an energy allocation can also 
be used to reinterpret IL-6 secretion during another modern phe-
nomenon: chronic IL-6 secretion from leukocytes or stromal cells. 
During the course of an infection, IL-6 mediates the transition from 
granulocyte invasion to monocyte and lymphocyte recruitment in 
inflamed tissue84, representing a switch from damaging inflamma-
tion to long-lasting, targeted pathogen defence. However, when IL-6 
is secreted chronically by tissues, it contributes to chronic inflam-
mation and immune dysregulation. For example, in the presence 
of another proinflammatory cytokine, IL-17, excessive IL-6 stimu-
lation of stromal cells induces a positive feedback loop of NF-kB 
and STAT3 activation, which leads to increased chemokine pro-
duction and prolonged local inflammation85. This loop, termed 
the IL-6 amplifier, is thought to be involved in the pathogenesis of 
several autoimmune diseases86. Chronic IL-6 also supports autoim-
munity and inflammation by biasing the differentiation of naive 
T cells towards type 17 T helper (TH17) cells at the expense of 
anti-inflammatory regulatory T (Treg) cells87. In the bone marrow, 

IL-6 enhances myelopoiesis88 and increases neutrophil mobilization 
into circulation89, suggesting that chronically high levels of IL-6 sus-
tain leukocyte recruitment into inflamed tissues.

From an energetic perspective, immune activation imposes a 
large metabolic burden on the body both acutely and chronically. 
It has long been recognized that inflammation regulates short-term 
energy allocation towards the immune system through insulin resis-
tance90. However, the identity of the cytokines that direct short-term 
energy allocation during inflammation is still an open question. On 
the basis of our model of IL-6, we hypothesize that IL-6 helps to 
maintain short-term energy allocation towards the immune system 
during chronic inflammation. To evaluate this hypothesis, we now 
turn to the metabolic role of IL-6 in chronic inflammatory diseases, 
such as RA or Castleman disease. For example, basal elevations of 
IL-6 induce weight loss and cachexia in RA. IL-6, in combination 
with other proinflammatory cytokines such as TNF-α and IL-1β, 
promotes muscle catabolism91, which may support the ongoing 
immune response. Further support for the hypothesis of IL-6 as 
an energy allocator during chronic inflammation comes from data 
on the metabolic changes that occur during IL-6 blockades that are 
used to treat people with RA and Castleman disease.

Metabolic changes during therapeutic IL-6 blockades
The use of IL-6 receptor blockade is an indisputable breakthrough 
treatment therapy for RA and other inflammatory diseases. 
However, it is also well documented that administration of IL-6 
pathway inhibitors is associated with an increase in body weight92 
and lean mass91,93 in individuals with RA and Castleman disease. 
Importantly, one study in people with RA documented a shift in 
body fat distribution, characterized by a decrease in visceral fat and 
increased subcutaneous fat91. Given that subcutaneous fat is less 
active, this raises the possibility that IL-6 is shuttling body fat into 
readily accessible depots. Furthermore, IL-6 blockades often result 
in an increase in total and low-density lipoprotein cholesterol93,94. 
Importantly, this effect is due to a decrease in serum cholesterol 
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Fig. 3 | Cytokine secretion during an immune response versus myokine 
secretion during exercise. a, In the acute-phase immune response, 
pathogenic proteins activate the innate immune system and initiate a 
NF-κB-mediated cytokine response involving TNF-𝛼, IL-1 and IL-6. b, In 
contrast, myokine IL-6 secretion is induced in the absence of TNF-𝛼 and 
IL-1, leading to a net anti-inflammatory benefit. This figure was adapted, 
with permission, from ref. 139.

Box 1 | adipose tissue IL-6

White adipose tissue (WAT) is one of the major sources of IL-6 
production at rest. During obesity, IL-6 production predomi-
nantly occurs from visceral WAT, whereas subcutaneous WAT 
is the primary source in lean individuals140. Similar to myokine 
IL-6, adipocyte-derived IL-6 is sensitive to energetic stress. In 
visceral WAT of obese rodents, necrotic and hypertrophic adi-
pocytes induce IL-6 secretion by surrounding myeloid cells 
and adipocytes101. In subcutaneous WAT, intracellular signals 
of energetic stress, such as cAMP levels, appear to induce IL-
6. Increasing cAMP levels through inhibition of obesity-driven 
non-canonical IKK-ε and TBK1 signalling significantly increases 
plasma IL-6 values, which then go on to inhibit hepatic gluceo-
neogenesis141. Further evidence comes from an in vitro study that 
exposed human adipocytes to β adrenergic receptor stimulation, 
a potent mechanism to increase cAMP142, and observed a sixfold 
increase in IL-6 secretion143.

In the case of visceral WAT IL-6, our model predicts that IL-6 
increases lipolysis and possibly insulin resistance (see discussion 
in the main text) to generate fuel for an inflammatory response. 
In contrast, subcutaneous WAT IL-6 may be induced to further 
stimulate lipolysis in response to fasting or physical activity. This 
is supported by increases in subcutaneous WAT IL-6 during 
exercise recovery144. We note, however, that insulin can also 
stimulate IL-6 production from adipocytes in vitro through 
cGMP145, suggesting that more research is needed to understand 
the depot-specific functions of adipocyte IL-6.
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catabolism95, rather than an increase in cholesterol production. 
Lastly, a recent study reported that tocilizumab administration 
may ameliorate insulin resistance and decrease HbA1c96, but these 
results could not be replicated91,93. These effects of IL-6 receptor 
blockade in humans are generally compatible with observations 
in experimental models, demonstrating that IL-6-deficient mice 
develop mature-onset obesity97. A perfect match between the effects 
of an IL-6 blockade in humans and the phenotype of IL-6KO mice 
is unlikely because human studies have a different baseline metabo-
lism due to underlying disease inflammation. Despite this, data 
from IL-6 blockades support the hypothesis that IL-6 is crucial in 
providing the energy, particularly cholesterol and fat, to fuel chronic 
inflammation in RA. We do note however, that while IL-6 blockades 
may inhibit IL-6 based energy allocation towards the immune sys-
tem, they also might detrimentally affect the metabolic benefits of 
exercise training in these patients56.

IL-6 as an energy allocator in metabolic syndrome
Aside from inflammatory diseases, elevated systemic IL-6 often 
co-occurs with obesity and metabolic syndrome but the role of IL-6 
in metabolic disease remains controversial. To determine whether 
obesity-induced IL-6 can be characterized as an energy allocator, we 
need to ask whether chronically elevated IL-6 is a marker or a cause 
of obesity-related insulin resistance. In both rodents and humans 
with obesity, necrotic and hypoxic adipocytes induce tissue-resident 
leukocytes and other adipocytes to secrete a milieu of proinflam-
matory cytokines, including IL-6, TNF-𝛼 and IFN-γ, that initiates 
further leukocyte infiltration of adipose tissue and the develop-
ment of chronic inflammation98. This has led to the hypothesis that 
increased levels of circulating or tissue IL-6 in obesity is a cause of 
insulin resistance19,99. Studies on the direct effects of IL-6 in adipose 
tissue from obese mice indicate that different sources of IL-6 drive 
opposing phenotypes with respect to insulin resistance (Box 1). 
For example, IL-6 signalling in adipose tissue T cells and adipocyte 
IL-6 secretion appear to exacerbate insulin resistance100,101, whereas 
macrophage IL-6 is insulin-sensitizing101,102. The data on the effect 
of adipocyte-specific IL-6 in genetically obese (ob/ob) mice are not 
consistent, as studies both support101 and undermine103 the assertion 
that adipocyte IL-6 leads to insulin resistance. In humans, a recent 
report suggests that administration of tocilizumab in people with 
obesity reduces HOMA-IR104. In total, there is no definitive con-
sensus on whether IL-6 from adipose tissue derived from individu-
als with obesity leads to insulin resistance and allocates energy to 

adipose tissue inflammation. One reason for which obesity-induced 
IL-6 may not fit our model is that obesity is characterized by vast 
energy storage and is frequently associated with positive energy bal-
ance. As IL-6-directed short-term energy allocation is predicated 
on an energy deficit, IL-6 secreted within the context of obesity may 
play a different role.

IL-6 and CoVID-19
In addition to its role in chronic inflammation, IL-6 plays a key role 
in initiating and sustaining acute inflammation, as recently high-
lighted by COVID-19. In response to COVID-19 infection, IL-6 acts 
as a proinflammatory cytokine, and baseline IL-6 levels are prog-
nostic of disease severity105. Mechanistically, IL-6 plays a key role 
in COVID-19-associated hyperinflammation, which exacerbates 
acute respiratory distress syndrome and multiorgan failure106. High 
levels of IL-6 are especially seen in COVID-19-infected individuals 
with chronic infection that is accompanied by chronic low-grade 
inflammation107. This subgroup appears to have an impaired abil-
ity to mount a sufficient anti-inflammatory response, leading to a 
cytokine storm. Accordingly, treatment with IL-6 receptor antago-
nists, most commonly tocilizumab, has been demonstrated to lower 
all-cause mortality for hospitalized people with COVID-19 (ref. 108). 
However, IL-6 blockades may be effective only in those with severe 
disease109, suggesting that IL-6-based energy allocation is relevant 
only to limit hyperinflammation.

Conclusions and questions for future research
The energy-allocation model of IL-6 helps to make sense of this 
molecule’s disparate and seemingly contradictory roles. Secreted 
in response to energetic stress within a tissue, IL-6 liberates stored 
somatic energy and directs that energy towards the tissue in ques-
tion while downregulating energy expenditure elsewhere (Fig. 2). 
This framework helps to explain why IL-6 can have both beneficial 
and detrimental effects on human health. In the short-term, it can 
allocate energy towards life-saving immune responses or a burst of 
PA. Chronically, that same energy-allocation mechanism can con-
tinually shunt resources to an activated immune system or cancer 
(Box 2), attenuating beneficial anabolic processes.

Box 2 | Energy allocation by IL-6 in the context of cancer

Cancer is another context in which IL-6 may act to allocate en-
ergy. Because cancer cells compete with other cells for energy, 
we hypothesize that cancer cells sometimes co-opt short-term 
energy-allocation mechanisms, such as IL-6, to gain continued 
access to somatic energy. In support of this view, elevated IL-6 
levels are present in the majority of people with cancer, fuelling 
uncontrolled cell growth and angiogenesis146. Cancer-derived 
IL-6 responds to cellular energy balance, as treatment with 
metabolic inhibitors upregulates transcription and secretion of 
IL-6 in multiple cancer lines147. In another parallel to its role dur-
ing PA, cancer-derived IL-6 liberates energy and contributes to 
cancer-related cachexia137. Finally, IL-6 produced by tumours 
directs energy towards cancer cells in certain contexts. During 
breast cancer, a study found that IL-6 aids cancer cells in evad-
ing anti-vascular endothelial growth factor treatment by pro-
moting resistance to hypoxia148. Although more work is needed, 
this suggests that IL-6 may be important in sustaining cancer 
proliferation.

Box 3 | Key predictions of the IL-6 energy allocation model

•	 IL-6 release by a tissue is regulated by stress, particularly 
metabolic stress. In exercising muscle, the magnitude of IL-6 
release is primarily determined by signals of energetic deple-
tion within the tissue.

•	 IL-6 liberates stored somatic energy for immediate use. Dur-
ing exercise, IL-6 liberates fat and glucose for use by the mus-
cle in order to prevent extreme depletion of intramuscular 
energy reserves.

•	 IL-6 upregulates energy transport proteins of the tissue that 
secreted it, and inhibits energy uptake in other peripheral 
tissues. Myokine IL-6 increases the expression of glucose 
and fatty acid transporters on the muscle membrane and 
enhances muscle insulin sensitivity while impairing energy 
uptake in other tissues.

•	 Disruptions in myokine IL-6 signalling will impair the ability 
of the muscle to restore its energy reserves during recovery 
from exercise. By controlling the flow of energy towards the 
muscle during recovery, IL-6 will affect muscular adaptation 
to and metabolic benefits of exercise.

•	 Chronic IL-6 blockades during chronic inflammation or can-
cer will limit energy uptake by leukocytes and cancer cells, 
respectively, and will reverse cachexia.
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Despite its important role in short-term energy allocation, we 
acknowledge that IL-6 is not responsible for all aspects of short-term 
energy allocation during PA or other contexts involving acute 
energetic stress. The high costs of failing to meet energy demands 
during PA likely drove the evolution of multiple redundant mecha-
nisms, including PA-induced glucocorticoids and catecholamines, 
that rapidly mobilize and divert energy towards contracting muscle 
while restricting reproductive and immune function110. Other myo-
kines, such as IL-15 and IL-13, are thought to act locally to enhance 
muscle insulin sensitivity and metabolic adaption to exercise111,112. 
Therefore, further research is needed to explore potential intracel-
lular crosstalk between these myokines and to determine whether 
they can potentially compensate for one another to meet energetic 
demands within muscle.

Despite many lines of support in human and mouse data, there 
are multiple conflicting reports regarding the role of IL-6-induced 
energy liberation during exercise. The bulk of these data come 
from rodent models of myokine IL-6 secretion, which are discor-
dant with human trials. For example, several rodent studies report 
that IL-6KO and IL-6MKO mice have similar glucose mobilization 
and muscle glucose uptake during activity when compared with 
wild-type mice113–115. Only two studies have measured changes 
in plasma fatty acids in these animals, and they similarly found 
little difference in fat mobilization114,116. That said, many studies 
have also found that a lack of myokine IL-6 leads to increased 
carbohydrate utilization and glycogen depletion69,113,117, suggest-
ing that these animals are compensating for deficient access to 
stored somatic energy. The apparent defect in IL-6-induced 
energy mobilization is puzzling as we might expect myokine IL-6 
to coordinate short-term energy allocation in the broad range of 
animals that produce IL-6. One potential explanation for this is 
the difference between mice and humans with regards to the con-
tribution of liver and muscle to whole body metabolism. IL-6 has 
been shown to activate suppressor of cytokine signalling (SOCS) 
proteins in the liver, leading to hepatic insulin resistance118. 
Although IL-6 weakly increases SOCS3 expression in muscle68, it 
potently activates AMPK signalling67. As muscle tissue dominates 
in humans, the possibility exists that the negative effects of IL-6 
on SOCS3 in the liver may be overridden by the positive effects 
on muscular AMPK.

From an evolutionary perspective, a difference in the myokine 
IL-6 function between humans and mice is expected given that 
there was selection for increased levels of sustained endurance PA in 
the human lineage119. IL-6-directed mobilization of stored somatic 
energy reserves makes sense only if an animal is active enough to 
exhaust muscular energy reserves. Since wild mice are unlikely to 
exhaust their glycogen stores during PA in the wild, IL-6 may only 
serve as a marker of energetic stress. Given the possibility of many 
redundant mechanisms for energy liberation during PA, it is also 
possible that IL-6 is sufficient, but not required, for energy mobi-
lization in these animals. Altogether, more mechanistic studies of 
myokine IL-6 function are needed to determine whether and how 
IL-6-directed energy mobilization and allocation differ between 
humans and model organisms.

Our model also generates several predictions with respect to 
IL-6’s functions and regulation (Box 3). Despite the focus on myo-
kine IL-6, our model of IL-6 as an energy allocator can be applied 
more broadly to other contexts, such as chronic inflammatory dis-
eases in which IL-6 is secreted by other tissues. In these cases, high 
levels of IL-6 seem to liberate energy through cachexia and lipolysis 
and may allocate energy by modulating insulin resistance. However, 
more data are needed to definitively conclude that IL-6 is directly 
upregulating metabolic pathways to increase energy uptake in 
immune cells. In sum, modelling IL-6 as an energy allocator eluci-
dates how it can perform seemingly contradictory metabolic effects 
across the body.
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