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Abstract

Background: Cytokines such as interleukin 6 (IL-6) have been implicated in dual functions in neuropsychiatric
disorders. Little is known about the genetic predisposition to neurodegenerative and neuroproliferative properties
of cytokine genes. In this study the potential dual role of several IL-6 polymorphisms in brain morphology is
investigated.

Methodology: In a large sample of healthy individuals (N= 303), associations between genetic variants of IL-6
(rs1800795; rs1800796, rs2069833, rs2069840) and brain volume (gray matter volume) were analyzed using voxel-
based morphometry (VBM). Selection of single nucleotide polymorphisms (SNPs) followed a tagging SNP approach
(e.g., Stampa algorigthm), yielding a capture 97.08% of the variation in the IL-6 gene using four tagging SNPs.
Principal findings/results
In a whole-brain analysis, the polymorphism rs1800795 (−174 C/G) showed a strong main effect of genotype (43 CC
vs. 150 CG vs. 100 GG; x = 24, y =−10, z =−15; F(2,286) = 8.54, puncorrected = 0.0002; pAlphaSim-corrected = 0.002; cluster
size k = 577) within the right hippocampus head. Homozygous carriers of the G-allele had significantly larger
hippocampus gray matter volumes compared to heterozygous subjects. None of the other investigated SNPs
showed a significant association with grey matter volume in whole-brain analyses.

Conclusions/significance: These findings suggest a possible neuroprotective role of the G-allele of the SNP
rs1800795 on hippocampal volumes. Studies on the role of this SNP in psychiatric populations and especially in
those with an affected hippocampus (e.g., by maltreatment, stress) are warranted.
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Introduction
Inflammation is implicated in the etiology and pathophysi-
ology of several brain pathologies (e.g., major depression
[1-3], Alzheimer’s disease [4], and post-stroke depression
[5]), as well as in cognitive aging [6] and mortality [7].
Specific markers of systemic inflammation such as cyto-
kines have been identified as important mediators of neu-
rodegenerative [8] and neuroplastic [9,10] processes
relevant to neuropsychiatric disorders. Some of these pro-
teins (e.g., interleukin 1 beta, interleukin 6, tumor necrosis
factor) play a critical role in physiological CNS processes,
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such as cognitive function under immunologically uncha-
llenged conditions [2,6].
Interleukin 6 (IL-6) is a cytokine that has demonstrated

both neurodegenerative [4] and neuroprotective [11,12]
properties. For example, increased levels of IL-6 are asso-
ciated with neuropsychiatric conditions, such as depres-
sion [13] and Alzheimer’s disease [14]. In addition, first
studies on the association between IL-6 and brain volume
suggested a role of increased serum levels of IL-6 in brain
atrophy during normal aging in conjunction with other
cytokines [15]. In addition, an association between IL-6
levels and decreased hippocampal gray matter volume in
middle-aged adults has recently been reported [16].
However, the hypothesis that IL-6 is mainly proinflam-

matory and neurodegenerative is challenged [17] with
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results supporting that this cytokine has several anti-
inflammatory and immunosuppressive activities that
may play a downregulating role in inflammatory condi-
tions [17]. In addition, IL-6 may act as a developmental
neurotrophic factor [18,19], and it has been shown to
improve survival in vitro of several classes of neurons
[20-22]. Moreover, it is suggested that IL-6 predomi-
nantly plays a protective role by improving survival of
neurons in culture [21,23,24], protecting neurons from
excitotoxic and ischemic insults [25-28], and promoting
the growth of axons and consequently the number of
synapses in a region [29-32]. Additionally, evidence
shows that IL-6 may play a major role in promoting syn-
aptic plasticity, LTP, and memory consolidation [33-35].
Furthermore, IL-6 is found to regulate survival of differ-
entiated neurons and the development of astrocytes
[36,37]. Overall, these findings from previous studies
suggest that higher IL-6 levels may play a dual role with
both neurodegenerative and neuroprotective biological
functions.
The current evidence in humans relies on measures of

IL-6 in serum and CSF, whereas limited research on the
influence of genetic variants of IL-6 on brain pathology
has been published. The IL-6 gene is located on chromo-
some 7p21, and the GG genotype of the frequently stud-
ied IL-6 promoter −174 C/G variation relates to higher
levels of IL-6 compared to the CC genotype [38].
Although this single nucleotide polymorphism (SNP)
has received a lot of attention in research in aging and
longevity, the findings are inconclusively showing an as-
sociation between the numbers of G alleles either with
increased [39] or decreased [38] longevity depending on
the study design, ethnicity, lifestyle, and cultural differ-
ences. Additional single nucleotide polymorphisms
(SNPs), such as rs1800796, influence IL-6 expression (G
allele carriers increase IL-6 plasma levels) [40] and are
influenced by the presence of other polymorphisms (e.g.,
rs2069833, rs2069840) at this chromosomal locus [41].
However, these other genetic variants of IL-6 have hardly
been studied in brain function yet.
Table 1 Selection of single nucleotide polymorphisms within

Gene Gene
position

Total
no. of
SNPs
(MAF
≥0.01)

No. of
tagging
SNP

Mean
r2

Selected
SNPs

P

IL-6 chr7:
22,731,750-
22,738,790

43 22 0.991 rs1800795 2

rs1800796 2

rs2069833 2

rs2069840 2

SNP, single nucleotide polymorphism; MAF, minor allele frequency; r2, linkage diseq
II + III [50].
Further clarification of the biological role of genetic
variants of IL-6 in the human brain is needed to describe
its multifunctional effects. In this study, we investigate
the role of the IL-6 gene in brain function and brain
morphology by investigating the association between
several genetic variants of interleukin 6 and brain
morphology in healthy adult individuals. While this ana-
lysis is conducted in a whole-brain fashion, we expect
genetic effects particularly in the hippocampus (HC)
since this brain region has a critical role in normal brain
function and several neuropsychiatric disorders. The HC
region is a highly important structure for memory con-
solidation, and it has shown a strong susceptibility to
stress and response to cytokines [42]. Specifically, several
studies have shown that depression, post-traumatic
stress disorder (PTSD), and childhood maltreatment are
associated with smaller hippocampal volumes [42-44].
The role of genetic inflammatory biomarkers, such as
IL-6, in these relationships is unclear.
This study aims at an improved understanding of the

genetic background of the dual role of IL-6 in brain
morphology and the hippocampal structure in particular.
We hypothesize that IL-6 polymorphisms are related to
brain gray matter volumes, specifically in the hippocam-
pus. The analysis will inform future studies in clinical
psychiatric populations on the possible role and selec-
tion of genetic variants of IL-6 for the study of hippo-
campal function in neuropsychiatric disorders.

Material and methods
Subjects. Healthy subjects (N= 303) aged 18–65 of Cen-
tral European ancestry participated in the study. Data
were pooled from various studies conducted at the De-
partment of Psychiatry, University of Münster, Germany,
all employing the same MRI sequence on the same scan-
ner. All included subjects were thoroughly investigated
by experienced psychologists and were free from any
lifetime history of psychiatric disorders according to
DSM-IV criteria [45], as diagnosed with the SCID inter-
view [46]. Exclusion criteria were scores ≥ 10 on the Beck
IL-6 gene

osition Function Alleles MAF
HapMapCEU

Alleles
captured

Prediction
(STAMPA)

2733170 5' near
gene

CG 0.467 (G) 8 97.08%

2732771 5' near
gene

CG 0.043 (C) 3

2734189 intron CT 0.475 (T) 8

2735097 intron CG 0.317 (G) 1

uilibrium statistic [49]. MAF data relates CEU population from HapMap Phase



Table 2 Sample characteristics dependent on IL-6 -174 C/
G genotype

CC
(N=43)

CG
(N=150)

GG
(N=100)

p-value,
according to χ²-
test
(df =2) or
ANOVA (F2,290)

Age 34.6 ± 12.3 34.0 ± 12.3 31.8 ± 10.4 0.25

Sex (m/f) 19/24 61/89 42/58 0.92

Verbal IQ1 119.1 ± 13.8 118.3 ± 12.1 118.1 ± 11.9 0.92

Education
years

15.0 ± 2.4 14.8 ± 2.1 14.7 ± 2.1 0.82

STAI trait2 31.0 ± 6.7 32.8 ± 6.3 32.3 ± 6.8 0.32

BDI 2.2 ± 3.0 2.3 ± 2.7 2.4 ± 2.9 0.93
1Assessed with the Mehrfachwahl-Wortschatz test (multiple-choice vocabulary
test; Lehrl, 1995), data from N= 230 subjects available. 2 State-Trait Anxiety
Inventory, data from N= 258 subjects available. 3 Beck Depression Inventory,
data from N= 283 subjects available.
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Depression Inventory (BDI) [47], any neurological
abnormalities, history of seizures, head trauma or un-
consciousness, intake of any psychotropic medication,
and the usual MRI contraindications. Six subjects had to
be excluded because of anatomical abnormalities (abnor-
mally enlarged ventricles) or strong movement artifacts
discovered in the structural MRI images checked by vis-
ual inspection and identification as extreme outliers in
the check data quality function of the VBM8 Toolbox.
The remaining N= 297 scans (mean age 33.4 ± 11.7;
N= 124 men, N=173 women) were clear of such pro-
blems. Verbal intelligence was estimated by the
Mehrfachwahl-Wortschatz-Intelligenztest (multiple-choice
vocabulary intelligence test; MWT-B) [48]. See Table 1 for
sample characteristics. The study was approved by the
Ethics Committee of the University of Münster. After
complete description of the study to the participants, writ-
ten informed consent was obtained.

Selection of polymorphisms and genotyping
The presently analyzed sequence of the IL-6 gene com-
prising about 4.8 kb. We investigated genetic poly-
morphisms within this region as well as neighboring 5’-
and 3’- segments containing possible gene regulatory
elements including positions between 22,731,750 and
22,738,790 at chromosome 7p21. The investigated region
contains 43 single nucleotide polymorphisms (SNPs)
[50]. Applying a tagging SNP approach, we used various
techniques to limit the number of SNPs assessed to the
most relevant as follows. Initially, we constructed the
linkage disequilibrium (LD) pattern of the CEPH popula-
tion of the HapMap Phase II genotype data to identify
tagging SNPs by an aggressive tagging approach (MAF
> 1% and r2> 0.8) using the Gevalt v2 software package
[51]. Subsequently, we reduced SNP numbers by asses-
sing the ability of limited numbers of the tagging SNPs
to predict the total SNP population using the Stampa al-
gorithm [52]. With this approach, 97.08% of the vari-
ation in the gene was captured using four tagging SNPs
(rs1800795; rs1800796; rs2069833; rs2069840). The
mean r2 of individual tagging SNPs in conjunction with
one or more tagged SNPs was 0.991 (see Table 2 for
details). While the SNPs rs1800795 and rs1800796 have
been shown to directly regulate IL-6 expression, the
other two SNPs (rs2069833, rs2069840) are non-coding
variants [53]. The G allele of marker rs2069840 has
shown to be associated with lower IL-6 plasma concen-
trations under a dominant model in a recently published
cohort study [54].
Genotyping of four tagging IL-6 SNPs was carried out

following published protocols applying the multiplex
genotyping assay iPLEX™ for use with the MassARRAY
platform [55], yielding an overall genotyping completion
rate of 98.9% [4/297 genotyping failures for rs1800795
and rs2069833 (99.0%), 5/297 for rs1800796 and
rs2069840 (98.7%)]. Genotypes were determined by
investigators blinded for the study.
Hardy-Weinberg equilibrium was fulfilled for all four

SNPs, according to the program Finetti provided as an
online source (http://ihg.gsf.de/cgi-bin/hw/hwa1.pl;
Wienker TF and Strom TM) (exact test: rs1800795,
p= 0.33; rs1800796, p= 1; rs2069833, p= 0.33;
rs2069840, p= 0.80).
MRI methods
Voxel-based morphometry: T1-weighted high-resolution
anatomical images were acquired on a 3-Tesla scanner
(Gyroscan Intera 3 T, Philips Medical Systems, Best, The
Netherlands) with a 3D fast gradient echo sequence
(Turbo Field Echo, TFE), TR = 7.4 ms, TE 3.4 ms, FA=
9°, two signal averages, inversion prepulse every
814.5 ms, acquired over a field of view of 256 (FH) × 204
(AP) × 160 (RL) mm, phase encoding in AP and RL dir-
ection, reconstructed to cubic voxels of 0.5 mm×0.5
mm×0.5 mm. The VBM8 toolbox (version 419; http://
dbm.neuro.uni-jena.de/vbm) was used for preprocessing
the structural images with default parameters. Images
were bias-corrected, tissue classified, and normalized to
MNI-space using linear (12-parameter affine) and non-
linear transformations, within a unified model [56] in-
cluding high-dimensional DARTEL normalization to the
default DARTEL template provided with the VBM8 tool-
box (resolution 1.5 × 1.5 × 1.5 mm). Gray and white
matter segments were modulated only by the non-linear
components in order to preserve actual GM and WM
values locally (modulated GM and WM volumes), which
results in a correction for total brain volume.
Homogeneity of gray matter images was checked using

the covariance structure of each image with all other
images, as implemented in the check data quality
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function. As described above, six extreme outliers
showing anatomical abnormalities or movement artifacts
were identified and excluded. The modulated gray
matter images were smoothed with a Gaussian kernel of
8-mm FWHW. Group statistics were calculated with
second level models using SPM8. For each SNP a sepa-
rate full factorial model was conducted using genotype
as the between-subjects factor. Age, education, and
gender were added to the model as nuisance regressors.
There was an upgrade of the scanner gradient system in
2008 (“Master” Gradient System to “Quasar Dual”
Gradient System). Although the MRI sequence remained
identical before and after the gradient system upgrade,
we additionally modeled the scanner upgrade as regres-
sors of no interest.
To control for multiple statistical testing within the

entire brain, we maintained a cluster-level false-positive
detection rate at p< 0.05 using a voxel-level threshold of
p< 0.005 with a cluster extent (k) empirically deter-
mined by Monte Carlo simulations (n= 1,000 iterations).
This was performed by means of the AlphaSim proced-
ure, which accounted for spatial correlations between
BOLD signal changes in neighboring voxels [57], imple-
mented in the REST toolbox (http://restfmri.net/forum/
index.php). The empirically determined cluster thresh-
olds were k = 340 voxels. The anatomical labeling for the
whole-brain data was performed by means of the widely
used AAL Toolbox [58] and additionally by means of the
Anatomy Toolbox [59]. The present sample had suffi-
cient power (1-β= 80%) to detect relatively small effect
sizes in a three-group ANOVA (f = 0.17) and in an allele-
dose regression (r= 0.14), as calculated with G*Power
[60].

Results
rs1800795 (−174 C/G): The whole-brain analysis yielded
a strong main effect of genotype [43 CC vs. 150 CG vs.
100 GG), x = 24, y =−10, z =−15; F(2,286) = 8.54, puncor-
rected = 0.0002; pAlphaSim-corrected = 0.002; cluster size
k = 577, effect size f = 0.23 (Figure 1)]. According to the
automated anatomical labeling, this cluster was located
in the right hippocampus head, extending to the para-
hippocampal gyrus and the dorsal parts of the right
amygdala. The Anatomy toolbox yielded similar localiza-
tions (peak effect was found in the cornu ammonis and
subiculum area, extending to the laterobasal amygdala).
There were no other areas in the entire brain surviving
our corrected statistical threshold. Repeating this ana-
lysis with smoothing kernels of 6 mm or 10 mm still
would yield significant findings.
According to post-hoc t-contrasts, subjects homozy-

gous for the G-allele had significantly larger hippocam-
pal gray matter volumes compared to heterozygous
subjects, x = 24, y =−10, z =−15; t(286) = 3.88, puncorrected
< 0.0001; pAlphaSim-corrected< 0.001; cluster size k = 1210.
Again, there were no other brain regions surviving the
statistical threshold. However, there were no significant
differences between heterozygous subjects and CC car-
riers in this model. Nonetheless, testing for allele-dose
effects via regressing the number of rs1800795 (−174 C/
G) G-alleles (0, 1, 2) on whole brain gray matter volume
(again, including age, gender, education, and scanner
gradient system as nuisance regressors) also yielded a
significant cluster at a similar location in the right
hippocampus, x = 21, y =−12, z =−15; t(287) = 3.82, pun-
corrected< 0.0001; pAlphaSim-corrected = 0.001; cluster size
k = 853, r = 0.22 (see Figure 1).
We further checked for interactions of the rs1800795

genotype and age as well as gender by modeling the
interaction term in the three-group ANOVA model and
the allele-dose regression. However, none of the interac-
tions reached even a trend level of significance. Thus,
the observed genotype effect on hippocampal gray mat-
ter volumes was comparable in men and women, and
found across the entire age range.
rs1800796, rs2069833, rs2069840: No significant

effects of these SNPs on hippocampus morphometry
could be discerned in the whole-brain analysis.

Discussion
This imaging genetics study investigated the association
between the IL-6 gene and brain morphology in a large
cohort of healthy adult participants in a whole-brain
analysis approach. Carriers of the G-allele of the IL-6
genetic variant rs1800795 (−174 C/G) showed a signifi-
cant association with larger hippocampal volumes on
the right side in healthy subjects. This genotype effect
was remarkably specific to the hippocampus, with no
other structure surviving our statistical threshold cor-
rected for the entire brain. The findings are suggestive of
a neuroprotective role of the IL-6 gene [rs1800795
(−174 C/G)] on hippocampal morphology. The IL6
genotype effect was found lateralized to the right. How-
ever, at a more lenient uncorrected statistical threshold,
a similar genotype effect in the same direction could also
be detected in the left hippocampus (p= 0.007, uncor-
rected, in the allele-dose model). Therefore, we discuss
the observed effects for the hippocampus in general.
The other investigated three SNPs showed no significant
association with gray matter volume in our study. Since
the SNPs 2069840 has been related to reduced IL-6
plasma levels, the lack of association in our study can be
interpreted as consistent with the assumption that
reduced plasma levels do not exert neuroplastic, neuro-
proliferative, or neuroprotective effects. In contrast, the
marker rs1800796 showed no association with gray mat-
ter volume in our study, although, in a previous study,
the G allele of this SNP has also been associated with

http://restfmri.net/forum/index.php
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Figure 1 Effect of IL-6 rs1800795 (−174 C/G) genotype on brain morphometry. Left panel: Sagittal view through the right hippocampus
(x = 24) depicting gray matter volume significantly modulated by the IL-6 -174 C/G genotype, thresholded at p< 0.005, k = 340 (corresponding to
p< 0.05, corrected on the cluster level for the entire brain), adjusted for age, education and gender. Color bar, F-value (df = 2,286); Right panel:
Bar graph depicting gray matter concentration at x = 21, y =−12, z =−15 dependent on IL-6 -174 C/G genotype.
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higher IL-6 plasma levels [40]. Since these findings were
derived from a clinical cohort of patients with diabetic
nephropathy without data on brain morphometry, a dir-
ect comparison with our study is precluded.
Our study shows the strongest association between the

IL-6 genetic variant and HC volume, which has a num-
ber of critical functions under healthy and pathological
conditions. It is part of a brain network including the
dorsomedial and dorsolateral prefrontal cortex, the an-
terior cingulate cortex, and the amygdala dysregulated in
major depression [61]. The HC is central to memory im-
pairment, as seen in non-clinical samples [62] as well as
in MDD [63]. Because the HC is a highly stress-sensitive
brain region [64] and stress (psychological or psycho-
social stress) is related to structural changes in the HC
[65-67], atrophy of the HC has been described in im-
aging studies as a pathological neurobiological feature of
depression associated with stress [68]. A meta-analysis
of hippocampal volumes in patients with MDD con-
firmed that patients had hippocampal volumes approxi-
mately 4–6% smaller than matched control subjects in
the left and right HC [69,70].
Although the possible role of IL-6 in brain morph-

ology has not been extensively studied yet, our findings
are in contrast with previous reports. These show asso-
ciations between increased IL-6 plasma levels and
reduced hippocampal volume in a relatively small study
(N= 76) of middle-aged, relatively healthy individuals
[16] in a study on first-episode psychosis [71], and in
two studies investigating various brain areas and total
brain volume, respectively, during aging [72,73]. Except
in one study in relatively healthy individuals, these previ-
ous studies investigated individuals with underlying
neuropsychiatric conditions. Variation in findings be-
tween these studies may be due to other methodological
differences, such as the location of gray matter volume
changes. While volume changes were located in the left
HC in the study by Marsland et al. [16], and in various
brain areas and total brain volume in the above-
mentioned studies on aging [72,73], our results were
specific to the HC. Another important difference be-
tween studies is the biological model of IL-6 effects in
the brain. While those previous studies explain their
findings using an inflammatory model in which it is pro-
posed that IL-6 plays a proinflammatory role, the ex-
planation of our study builds on the proven anti-
inflammatory and immunosuppressive effects of IL-6
according to the well-established dual role of IL-6 [74].
A possible mechanistic explanation to support our find-
ing that IL-6 was associated with increased HC volumes
relates to the previously reported neuroproliferative
effects of IL-6. For example, it has been shown that cyto-
kines, including IL-6, despite being large molecules not
freely passing through the blood–brain barrier, can enter
the brain via various pathways (humoral, cellular, neural)
[75] to exert their biological effects in the brain even
under physiological conditions. More specifically, it has
been shown that IL-6 primarily exerts its biological
effects through a hexameric receptor ligand complex in-
cluding the gp130 receptor [11] and the IL-6 receptor



Baune et al. Journal of Neuroinflammation 2012, 9:125 Page 6 of 9
http://www.jneuroinflammation.com/content/9/1/125
[76]. Distinct regions of gp130 activate specific signal-
transduction pathways, such as the Janus kinase (JAK)
signal transducer and activator of transcription (STAT),
mitogen-activated protein kinase (MAPK)/cAMP
responsive element-binding protein (CREB), Ras-MAPK,
and PI-3 kinase (for review [77]). These pathways are
related to neural plasticity by their ability to induce pro-
cesses of neurogenesis, such as gliogenesis, neuronal dif-
ferentiation, cAMP response element binding (cAMP),
neural progenitor proliferation, and neuronal survival
[77-79], and to enhance synaptic plasticity, LTP, and
memory consolidation [33-35]. Through activation of
these pathways, IL-6 has the ability to exert neuropro-
tective and neuroproliferative effects. In addition, IL-6
has been found to regulate survival of differentiated neu-
rons and the development of astrocytes [36,37]. Some
in-vitro studies show IL-6 release by activated microglia
is a key inhibitor of neurogenesis by approximately 50%;
others show IL-6 promoting differentiation of neural
stem cells (NSCs) [10,80-82]. NSCs derived from rodent
spinal cord show that IL-6 induces NSC proliferation via
the JAK2/STAT3 and MAPK pathways [83]. Supporting
a role of IL-6 in neuroproliferation is an in-vivo study
showing that IL-6 knockout mice have reduced prolifer-
ating NSCs specifically in the HC, hence underlining the
importance of IL-6 in cell proliferation and cell survival
[84].
Despite mechanistic evidence and studies in humans

for both pro- and anti-inflammatory effects of IL-6 in
the brain, the role of IL-6 in the hippocampus remains
to be clarified. Specifically, it is questionable that
increased levels of IL-6 have purely degenerative effects
since proliferative effects of IL-6 in the HC were demon-
strated in an exercise study in mice: a wheel-running
study in mice over 16 weeks showed that exercise
increased IL-6 levels in the HC, whereas other cytokines
such as TNF and IL-1ra decreased during exercise [85].
These results suggest that an upregulation of IL-6 could
have anti-inflammatory effects and be neuroprotective in
the cytokine milieu of the HC, and thereby IL-6 may
buffer cognitive decline through exercise-induced
changes in the HC milieu.
Translating these findings into a human study, one

could argue that peripherally increased IL-6 levels could
be interpreted as an anti-inflammatory activity rather
than a proinflammatory state. Hence, previously observed
correlations between increased plasma levels of IL-6 and
decreased HC volumes could alternatively be interpreted
as an anti-inflammatory response of IL-6 to other
increased cytokines such as TNF and IL-1beta. Indeed,
both cytokines have previously been shown to be asso-
ciated with hippocampal volumes (TNF) [86] and with
increased white matter hyperintensities (IL-1beta) [87] in
healthy individuals. In such a case, IL-6 would only be a
marker of a global inflammatory process, and reduced
brain volume might primarily be induced by proinflam-
matory cytokines such as TNF and IL1-beta.
In light of these studies suggesting effects of IL-6 on

various mechanisms subserving neuroproliferation and
assuming that the carriers of the G-allele of the IL-6
polymorphism rs1800795 (−174 C/G) in our sample
have increased IL-6 levels as previously reported, it can
be suggested that in our imaging study, this particular
SNP might exert neuroprotective effects on the HC via
increased IL-6 levels, hence the observed increased gray
matter volume.
Our study has strengths and limitations. We were able

to employ the genetic analysis in a large imaging sample
using a cohort of carefully selected and well-
characterized healthy individuals. For future studies,
clinical measures such as hypertension or BMI could be
useful covariates when investigating genetic inflamma-
tory biomarkers such as IL-6; however, the relevance of
hypertension might be of greater relevance in clinical
samples than in our healthy cohort. Our discussion is
based on the assumption that larger gray matter values
in the hippocampus correspond to better function. Al-
beit reduced hippocampal volumes are consistently
found in neuropsychiatric disorders, the relation of vol-
ume and function remains to be established more firmly.
Although no protein data were available to validate the
well-described upregulation of IL-6 by the SNP
rs1800795 (−174 C/G), our study is the first genetic
study investigating the association between the IL-6 gene
and brain morphometry, and the HC in particular. Fu-
ture genetic imaging studies would benefit from add-
itional protein data. Moreover, a clinical control group
with a psychiatric disorder such as depression or psych-
osis/schizophrenia might add knowledge on the dual
role of the IL-6 gene in health and disease states. An-
other important consideration for interpreting these
results is related to the lack of a cutoff of level of IL-6
defining normal, increased, and decreased peripheral IL-
6 levels, limiting the interpretation of physiological and
pathological brain conditions. The LD indices indicate
complete LD (D’= 1) for the correlation of all four mar-
ker combinations (except D’= 0.993 for rs1800795 x
rs2069833), which indicates that the reported findings
are not explained by relevant SNP correlations.
Conclusion
This imaging genetic study suggests the IL-6 genetic
variant rs1800795 (−174 C/G) as a biomarker of hippo-
campal morphometry. This genetic variant may exert
neuroprotective effects on hippocampal volume in
healthy individuals. Replication in independent and clin-
ical samples is warranted.
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