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The immune system is strongly linked to the maintenance of healthy bone. Inflammatory

cytokines, specifically, are crucial to skeletal homeostasis and any dysregulation can

result in detrimental health complications. Interleukins, such as interleukin 6 (IL-6),

act as osteoclast differentiation modulators and as such, must be carefully monitored

and regulated. IL-6 encourages osteoclastogenesis when bound to progenitors and

can cause excessive osteoclastic activity and osteolysis when overly abundant.

Numerous bone diseases are tied to IL-6 overexpression, including rheumatoid arthritis,

osteoporosis, and bone-metastatic cancers. In the latter, IL-6 can be released with

growth factors into the bone marrow microenvironment (BMM) during osteolysis from

bone matrix or from cancer cells and osteoblasts in an inflammatory response to cancer

cells. Thus, IL-6 helps create an ideal microenvironment for oncogenesis and metastasis.

Multiple myeloma (MM) is a blood cancer that homes to the BMM and is strongly

tied to overexpression of IL-6 and bone loss. The roles of IL-6 in the progression of

MM are discussed in this review, including roles in bone homing, cancer-associated

bone loss, disease progression and drug resistance. MM disease progression often

includes the development of drug-resistant clones, and patients commonly struggle with

reoccurrence. As such, therapeutics that specifically target the microenvironment, rather

than the cancer itself, are ideal and IL-6, and its myriad of downstream signaling partners,

are model targets. Lastly, current and potential therapeutic interventions involving IL-6

and connected signaling molecules are discussed in this review.
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INTRODUCTION

For many years, the skeletal system was regarded purely as a means for structural
support and movement; however, abundant data have since been collected that reveal
a complex bi-directional interaction between bone cells and surrounding bone marrow
(BM) cells. BM is composed of a heterogeneous cell population including adipocytes,
chondrocytes, endothelial cells, immune cells, fibroblasts, and two multipotent stem cell
populations: mesenchymal stem cells (MSCs) and haematopoietic stem cells (HSCs). MSCs
can differentiate into chondrocytes, bone marrow adipocytes (BMAs), and osteoblasts (bone-
forming cells), while HSCs give rise to both the myeloid and lymphoid immune cell
populations. The myeloid cell precursors are of particular interest as they can give rise to
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both innate monocyte/macrophage immune cells, but can also
fuse and differentiate to form osteoclasts, the cells responsible for
bone resorption.

BM cells are involved in activating and intensifying numerous
signaling pathways that contribute to diseased states. The
instigation of these signaling pathways can be coupled to the
secretion of soluble factors by bone and stromal cells, alike. Such
soluble factors include interleukin 6 (IL-6), insulin-like growth
factor-1 (IGF-1), stromal cell-derived factor-1 (SDF-1), tumor
necrosis factor alpha (TNF-α), interleukin-8 (IL-8), interleukin-
17 (IL-17) and vascular endothelial growth factor (VEGF), which
play roles in inflammation, immunosuppression, tumorigenesis,
and osteolysis and thus contribute to many disease states. A
number of these molecules activate NF-κB signaling, which is key
in the BMM, as it binds to and activates important transcription
factors and signaling cascades.

The NF-κB molecule associates with STAT3, which then
induces the expression of wound healing and cancer gene
products (1), such as anti-apoptotic proteins. Furthermore,
STAT3 signaling results in the release of inflammatory molecules,
such as IL-6 (2), SDF-1 (3), TNF-α (4), interleukin-1 (IL-1) and
(IL-6) (5), which are all known to stimulate NF-κB signaling,
thus creating a positive feedback loop and increased downstream
inflammatory cytokine production (2). This vicious circle of
NF-κB signaling can be detrimental to bone due to chronic
inflammation and damage, yet it remains key in the maintenance
of healthy bone, as it facilitates osteoclast differentiation and
survival (6) and thus bone homeostasis.

Receptor activator of nuclear factor kappa-B ligand (RANKL)
is a molecule expressed on osteoblasts which can facilitate the
fusion of myeloid progenitors into osteoclasts (7). When RANKL
binds to progenitor cells, it promotes NF-κB signaling, blockade
of TNF receptor associated factor-3 (TRAF-3), promotion of NF-
κB inducing kinase (NIK), and a consequential translocation
of RelB and p52 (NF-κB2) into cell nuclei (8), which
promotes signaling for osteoclastogenesis (8). MAPK pathways,
particularly those involving p38, feed into this system, as they
are both activated by NF-κB, but furthermore, are known to
result in the production of RANKL. IL-1, for example, can
stimulate RANKL via p38 in stromal cells thus promoting
osteoclastogenesis (9). The extent of osteoclastogenesis is
regulated by an equilibrium between RANKL and its inhibitor,
osteoprotegerin (OPG).

The regulation of these bone signaling pathways is key in
the limitation of bone disease. Inflammatory cytokines can
disrupt ratios of RANKL:OPG and can result in excessive
osteoclastogenesis. IL-6, is tied to excessive promotion of RANKL
and inhibition of OPG and thus has been linked to bone osteolysis
(10), osteoporosis (11), rheumatoid arthritis (11) and other
bone-related pathologies. Osteolysis has further implications as
it allows for the release of growth factors which promote the
homing and survival of bone-metastatic cancers (12), such as
prostate (13), breast (14) neuroblastoma (15), acute myeloid
leukemia (AML) (16) and MM (17, 18).

MM is a blood cancer which epitomizes the crosstalk between
the immune and bone systems. It is a commonly refractory, and
thus recurrent, pathology characterized by uncontrollable clonal

expansion of plasma cells. Myeloma cells grow in the BMM
where they disrupt the delicate balance between bone growth
and resorption through the secretion of factors that directly
and indirectly promote osteoclasts and inhibit osteoblasts. This
interaction between myeloma cells and the BMM, and the
potential to activate dormant immune cells to kill myeloma
cells in the BM, demonstrate exciting areas of osteoimmunology
under scrutiny. It is the hope that a better understanding of the
signals in the BMmay allow for the identification of better targets
and development of better combination therapies for MM and
other bone disease. This review focuses on just one signaling
pathway, IL-6, and its ability to promote both diseased and
healthy states within the BMM. Since MM is strongly tied to IL-
6, it will be used frequently as a disease example to emphasize
the role of IL-6 in bone osteolysis, bone-metastatic cancer and
general bone disease.

IL-6 AND BONE REMODELING

Healthy bone is maintained by continuous bone resorption
and regrowth, which is held at equilibrium through numerous
signaling cascades (19, 20). Osteoclasts secrete acidic collagenases
that break down matrices and form resorption pits. Osteoblasts
line the border of mineralized bone and produce and deposit
collagen, osteocalcin, and osteopontin to form an osteoid
matrix. Osteoblasts then calcify osteoid through deposition
of calcium phosphate, calcium carbonate and hydroxyapatite.
Osteocytes, or other systemic signals, control the balance
of bone resorption and formation. Osteocytes, the most
abundant cell type in bone, are mechanosensing cells that
produce signaling molecules in response to changes in
pressure, sheer stress, or BMM chemical signals. Sclerostin
is a signaling molecule that is synthesized and secreted by
osteocytes, and acts as a WNT inhibitor causing inhibited
osteoblast differentiation and supporting adipogenesis (21).
Osteocytes also secrete Dentin-Matrix-acidic-Phosphoprotein-
1(DMP-1), Matrix-Extracellular-Phospho-glycoprotein (MEPE),
RANKL, Fibroblast-Growth-Factor-23 (FGF-23) and Phosphate-
regulating-neutral-Endopeptidase-X-linked (PHEX), all of
which play roles in regulating bone mineralisation, cell fate or
phosphate homeostasis (21, 22).

Inflammatory cytokines, such as IL-6 and IL-11, can
modulate skeletal homeostasis and osteoclast differentiation.
When IL-6 binds receptors on pre-osteoclasts, they promote
osteoclastogenesis (23), resulting in increased levels of
bone resorption (Figure 1). Along with its direct roles on
osteoclastogenesis, IL-6 also alters bone remodeling; when
activated by IL-6, osteoblasts induce JAK/STAT3 pathways
and ultimately secrete pro-osteoclast mediators, including
RANKL, IL-1, parathyroid hormone related protein (PTHrP),
and prostaglandin E2 (PGE2) (12, 24–27). PGE2 and PTHrP are
particularly interesting factors as both, along with parathyroid
hormone (PTH) and active vitamin D [1,25(OH)2D3], have been
shown to stimulate IL-6 and RANKL production in osteoblasts
within the BMM (28, 29). Thus, PGE2 and PTHrP reside
both upstream and downstream of IL-6 signaling, facilitating
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FIGURE 1 | Actions of IL-6 in the diseased bone marrow microenvironment. (A) Myeloma cells or other inflammatory triggers can induce osteoclast differentiation and

osteolytic activity, which releases growth factors and IL-6 stored in the bone matrix (B). (C) Myeloma cells, or other inflammatory mediators, activate the release of IL-6

from osteoblasts (D); IL-6 then inhibits the activity of osteoblasts and induces their production of RANKL (E). (F,G) IL-6 from many sources, as well as RANKL from

osteoblasts, induce pre-osteoclasts to differentiate into mature osteoclasts, which then resorb bone to induce greater release of stored growth factors, creating a

vicious cycle. (H) Myeloma cells also alter bone marrow adipocytes to make a more supportive niche for tumor cells and to increase osteoclastic activity through IL-6

and other molecules.

a positive feedback loop that can exacerbate the detrimental
pro-osteoclastic mechanisms seen in many diseased states. IL-6
can promote PTHrP secretion via TNF-α, which itself enhances
osteoclastogenesis, bone loss and hypercalcaemia (30). The
pathways that use osteoblastic mediation require the soluble
IL-6 receptor (sIL-6R), as osteoblasts ordinarily express only
low levels of the endogenous receptor (12). Soluble IL-6R forms
as a result of cleavage or alternate splicing of IL-6R and is
found in circulation in low numbers due to secretion from cells
(31), commonly CD4T cells (32). Therefore, it is necessary for
IL-6 to meet and bind to sIL-6R within circulation, and then
once bound, fuse with the osteoblastic membrane to trigger
IL-6-inducible signaling pathways. Consequently, high levels of
both IL-6 and sIL-6R are markers for osteolytic disorders, such
as rheumatoid arthritis (10).

IL-6 also exacerbates osteolysis through inhibition of
osteoblast differentiation, further disrupting the balance of
healthy bone turnover. Both IL-6 and sIL-6R can cause a
decrease in osteoblastic differentiation by reducing expression
of genes involved in osteoblastic differentiation including
alkaline phosphatase (ALP), Runx2 and osteocalcin (33). IL-
6/sIL-6R signaling can also reduce the ability of osteoblasts to
mineralise bone (Figure 1). This was determined to be a result of
MEK/ERK and PI3K/AKT2 pathways; inhibiting these pathways
increased expression of Runx2 and other mature osteoblastic
phenotypes (33). Similarly, c-Src (a proto-oncogenic tyrosine

kinase) has been shown to activate STAT3 and stimulate IL-6
within immature osteoblasts (34). This stimulation can induce
expression of insulin-like growth factor 5 (IGFP5)—a molecule
thought to act in a paracrine fashion to inhibit osteoclastogenesis
(34). Overall, IL-6 has been shown to have anti-osteogenic and
pro-osteoclastic effects leading to a net inhibition of bone.

IL-6 AND NON-CANCEROUS BONE
DISEASE

Regulation of IL-6 plays a crucial role in bone maintenance
and remodeling. Commonly, when chronic injury and/or
inflammation occurs, it instigates overexpression of IL-6 within
the BMM resulting in pro-osteoclastic pathways, osteopenia,
osteoporosis, and an increased fracture risk (12). In fact, diseases
characterized by excessive bone loss commonly coincide with
IL-6 and RANKL overproduction (10). Numerous signaling
molecules interact with IL-6 to accelerate bone disease including
PGE2/COX2, PTH, 1,25(OH)2D3, estrogen, and VEGF, as
described below.

PGE2 results from metabolism of the fatty acid arachidonic
acid via cyclooxygenase-2 (COX-2). Overexpression of COX-2
is driven by IL-6 signaling and results in increased production
PGE2 (35). PGE2 interacts with G-coupled receptors EP1, EP2,
and EP4, which activate tissue-specific downstream signaling
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pathways (36). Inflammatory conditions such as rheumatoid
arthritis and osteoarthritis appear are tied PGE2-induced
inflammation (37). Mast cells (38), Th17 cells (39) and dendrites
(40) can all be stimulated by PGE2 via EP2 and EP4, resulting
in the release of pro-inflammatory cytokines, e.g., IL-6 (41).
PGE2 is also linked to osteoclastogenesis and breakdown of
juxta-articular-bone and cartilage (42). PGE2 further disrupts
bone homeostasis due to its ability to inhibit OPG secretion by
osteoblasts (27). Use of anti-IL-6 antibodies in osteoblastic and
monocyte/macrophage-like cell lines demonstrated increased
OPG secretion through alleviation of PGE2-driven inhibition
(27), thus concluding that PGE2 increases IL-6 signaling, driving
osteoclastogenesis in part through OPG inhibition.

Similar to PGE2, PTH acts both upstream and downstream
of IL-6 signaling. This hormone is expressed in response to
hypocalcaemia and, once in circulation, it acts upon osteoblasts
to both increase their activity and induce secretion of factors such
as RANKL and IL-6 (43), which promote osteoclastic activity.
PTH-induced bone loss can be inhibited by blocking IL-6R with
neutralizing antibodies (44). Patients who suffer from primary
parathyroidism show elevated IL-6 and markers of increased
bone resorption (45), further demonstrating how this hormone
is involved in IL-6-associated bone diseases.

It would be overly simple to say that IL-6 is solely detrimental
to bone, as recent in vivo work has shown a key role for
it in bone repair. Transgenic mice overexpressing IL-6 have
demonstrated enhanced bone loss, faulty osteoid ossification,
and reduced osteoblast activity (46), but, other studies have also
shown that IL-6 knock-out (KO) mice display abnormalities in
bone architecture and delayed fracture healing (47). These IL-6
KO mice demonstrated delayed mineralization and remodeling
of bone, with enhanced levels of collagen and cartilage at early
stages of healing and reduced osteoclast number (47). This
demonstrates a necessity for IL-6-induced bone loss in the correct
repair of fractures. This is further evidenced in a diabetes-
associated fracture model where reduced osteoclastic activity
resulted in delayed repair (48).

IL-6 and Rheumatoid Arthritis (RA)
RA is a chronic, inflammatory condition prevalent in middle-
aged people and is the leading cause of work-associated disability
in the United States (49). Characterized by inflammation of the
synovium of multiple joints of the body, sufferers exhibit pain
and stiffness in hands, knees, wrists and feet. Progression of the
disease results in detrimental damage to the joint and erosion
of both the cartilage and bone. RA patients commonly express
high levels of IL-6 intracellularly, which has been shown to have
negative correlations clinically with bone mass density (BMD)
(50). Increased vascular permeability and extravasation of fluid
into synovial regions are key characteristics of RA and induce
joint pain. Excess vascularization, a direct effect of IL-6-induced
VEGF overexpression, enhances fluid build-up in joints (51).
Antibodies against IL-6R can reduce VEGF expression in RA
clinically (51).

In IL-6 KOmouse models, mice are protected against arthritis
and have decreased osteoclast activity and bone loss (52). In
addition, IL-6 neutralizing antibodies have been administered to

mice in collagen-induced in vivo arthritis models, where they
protected the mice from bone lesions and disease progression
(53). Similarly, IL-6R antagonists have been shown to reduce
osteoclastogenesis and reduce bone resorption in arthritic mouse
models (54). The sIL-6R has also been shown to be of importance
in vivo, as co-administration of mice with IL-6 and sIL-6R
resulted in restoration of arthritic diseased states in IL-6 KO
models (55). Having said this, some studies using male IL-6 KO
mice demonstrated phenotypes of advanced osteoarthritis upon
aging, complicating the story (56). Overall, most findings suggest
that IL-6 induces RA initiation and progression (57).

Currently, targeting IL-6 therapeutically for RA has been
successful in the clinic, although the negative side effects from
this therapeutic approach should not be minimized. The U.S.
Food and Drug Administration declined to approve Johnson &
Johnson’s RA anti-IL-6 drug called sirukumab, saying additional
clinical data is needed to further evaluate its safety in September
of 2017 (58). Sirukumab is a chimeric (murine-human) IgG1κ
monoclonal antibody (mAb) that binds and neutralizes human
IL-6. FDA panelists were concerned about an imbalance in
the number of deaths in patients taking sirukumab compared
with those taking a placebo, but Johnson & Johnson are
continuing further development and testing of the drug (58).
The most common causes of death were major heart problems,
infection and cancers (58). However, Genentech’s drug known as
Actemra R© (tocilizumab), the first humanized anti-IL-6 receptor
agonist, has been FDA approved since 2010 for RA and was
recently approved (November, 2018) as a prefilled autoinjector
known as ACTPenTM for RA and patients with giant cell
arthritis (GCA), active polyarticular juvenile idiopathic arthritis
(PJIA) or active systemic juvenile idiopathic arthritis (SJIA) (59).
Tocilizumab can cause serious side effects however (59), and
hence safer options are still desired for patients with RA and other
inflammatory diseases. Still, effects of tocilizumab on bone look
promising, as different clinical trials have reported that patients
experienced a decrease in osteogenic inhibitor DKK1, CTX-1
bone turnover markers, and in erosions of bone in the hands,
and an increase in OPG with bone histology and P1NP bone
formation markers in blood (60–65).

In May of 2017, Regeneron Pharmaceutical’s Kevzara R©

(sarilumab), another IL-6 receptor antagonist, received FDA
approval for treatment of adult patients with moderately to
severely active RA (66). Similarly to the IL-6/IL-6R-targeting
drugs, sarilumab also increases the risk of serious side effects
that may lead to hospitalization or death, largely due to the
suppression of the immune system (66). These therapies would be
greatly improved if IL-6 could be targeted in the tissues or areas
of interest rather than systemically. Moreover, better success may
be achievable using bi-specific antibodies, such as one termed
MT-6194 currently in preclinical studies targeting IL-17A and
IL-6R (67). Research into these and other innovative ways to
target IL-6 are crucial new directions for the next generation of
anti-IL-6/IL-6R therapies, but as many of the current therapies
already have FDA approval, despite toxicities, it is unlikely that
pharmaceutical industries feel the financial incentive to move in
this direction in their Research and Development departments.
It may depend on academic scientists, doctors, patients, or
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companies that do not have a currently FDA approved anti-
IL-6 therapeutic, to push for improvements and innovations in
targeting IL-6.

IL-6 and Osteoporosis
Aging increases the production of inflammatory molecules,
including IL-6, which explains some of the increased prevalence
of inflammatory disorders (diabetes, lupus, and RA) in aging
(68–70). Osteoporosis is also common in older and post-
menopausal women due to a natural reduction in estrogen
levels and high IL-6 levels, adding to increased osteoclastogenesis
and pronounced osteopenia (71, 72). Ordinarily, the estrogen
isomer 17-β-oestradiol (E2) reduces monocyte secretion of IL-6
and IL-8 (73), and thus after menopause, these pro-osteoclastic
cytokines become more abundant (74). E2 interacts with the
NFκB pathway, which is ordinarily held in an inactive state by
coupling with an inhibitor known as IκBα (Figure 2). Certain
signals result in IκBα becoming phosphorylated, uncoupling
from NFκB and releasing it from its inactive state, allowing
for signaling of downstream genes (75). Studies show that E2
promotes IκBα coupling to NFκB, keeping it in an inactivate state

(76). This indicates how a loss in estrogen can result in increased
IL-6 and NFκB signaling, and a consequential increase in bone
loss and osteoporosis.

Bone loss induced by the E2-NFκB-IL-6 pathways can
be reversed by administration of E2 (72) or anti-IL-6
neutralizing antibody (77–79). Clinically, post-menopausal
women demonstrate an increased risk of osteoporosis, and
patients with certain polymorphisms in the IL-6 promoter show
further increases in bone resorption rates and reduction in BMD
(80). This highlights how variation in IL-6 expression within
patients can alter the risk of osteoporosis in estrogen-depleted
environments. Currently, targeting IL-6 therapeutically for
osteoporosis has not been explored, but this is an interesting
clinical future direction that holds great potential if the side
effects from these types of therapies can be minimized.

IL-6 AND BONE-METASTATIC CANCER

Paul Ehrlich first proposed the function of the immune system
as the first line of defense against cancer in the early twentieth

FIGURE 2 | IL-6 signaling in the tumor cell of the bone marrow niche. The bone marrow microenvironment augments MAPK and PI3K/Akt pathways resulting in

anti-apoptotic and NF-κB signaling in multiple myeloma cells. Binding of IL-6 to IL-6R and Gp-130 co-receptors induces JAK-2 signaling. This signaling cascade

diverges down STAT3/PI3K/Akt pathways and various MAPK pathways, including MEK/ERK. The former is associated with promoting anti-apoptotic proteins: MCL1,

BCL-XL, BCL-2 and c-Myc, which contribute to drug resistance. STAT3/PI3K/Akt can also promote NF-κB signaling which results in release of angiogenic and

inflammatory molecules, such as IL-6. This can feed into an autocrine positive feedback loop. IκBα can inhibit NFκB through coupling and this interaction can be

maintained by certan signals, such as by estradiol. The IL-6 signaling pathway in MM cells is similar to that of bone marrow stromal cells and overall it promotes an

inflammatory microenvironment in the bone which results in bone loss, increased tumor burden and disease progression. Bone marrow adipocytes (BMAs) are one

cell within the bone microoenvironment thought to feed into this system through secretion of IL-6. This can promote anti-apoptosis and disease progrssion through

NF-κB signaling. BMAs, thus, represent an ideal target for MM therapies in order to reduce drug resistance and relapse, instead of targeting the complicated, clonally

expanding plasma cell.
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century. Since then, the roles of immune and stromal cells,
and their secretory repertoires, have been extensively studied
in conjunction with cancer. Inflammation in particular has
been shown to be key in promoting cancer proliferation and
differentiation, with IL-6 being an integral player (81). Many
cancer types have been shown to be associated with high serum
IL-6 including colorectal (82), breast (83), and prostate cancer
(84), as well as MM (85). These cancers induce phenotypic
changes in the surrounding stromal cells, creating unique cell
types, such as tumor-associated macrophage (TAMs) (86, 87)
and cancer-associated fibroblasts (CAFs) (76, 77). These activated
stromal cells, along with CD4+ T cells and myeloid-derived
suppressor cells (MDSCs), are the main sources of IL-6 in most
tumor microenvironments, alongside the tumor cells themselves
(88–92). Consequently, these BMM cells are associated with
creating pro-oncogenic environments that promote proliferation
and progression of cancer cells by favoring angiogenesis and
metastasis, and inhibiting apoptosis (93–96). For example,
knockdown of IL-6 by RNAi within CAFs can attenuate
metastatic phenotypes in vivo (94). It is not surprising that level
of IL-6 within the serum of various cancer patients is a key
prognostic indicator for their response or disease progression
(88). As a rule, high levels of IL-6 are associated with aggressive
forms of cancers (97–100) and IL-6 levels can act as independent
markers of prognosis in certain cancers (101). Furthermore, high
expression of IL-6 has been more closely linked to recurrent
tumors than primary tumors (102). IL-6 promotes proliferation
(103), facilitates an epithelial-to-mesenchymal transition (94,
104) and enhances angiogenesis via VEGF stimulation (105,
106). Increased IL-6 in cancer cells results in subsequent
release of IL-6 by stromal cells, thus feeding into the pro-
tumoural feed-forward loop and exacerbating the diseased state
(107–109).

Chemotherapeutics and ionizing radiation are the most
common cancer therapies that work by disrupting DNA
and protein synthesis pathways resulting in apoptosis. Yet
both are known to stimulate oxidative stress, the NFκB
pathway, and consequently IL-6 (110–114). IL-6 stimulation then
counteracts the chemotherapy effect by promoting anti-apoptotic
pathways to cause drug resistance (115). The anti-myeloma
drug bortezomib targets the 26S subunit of the proteasome, the
cellular machinery involved in degrading misfolded proteins,
and causes an accumulation of unwanted/toxic proteins within
cells (116). This accumulation of proteins is particularly seen
in cells that already have dysfunctional or excessive protein-
folding processes, such as myeloma cells (117). Misfolded
protein accumulation results in increased ER stress, cell
cycle arrest and programmed cell death (118). However,
IL-6 has been shown to induce anti-apoptotic pathways in
certain cancers, thus attenuating the efficacy of this drug
(119–121). Gemcitabine is a nucleoside analog that causes
termination of DNA synthesis (122). Gemcitabine targets fast-
replicating cancer cells and resistance to this drug may also
be tied to IL-6, as evidenced by a study where gemcitabine-
resistance was observed in cancer cells treated with IL-
6 and sIL-6R. This was thought to be due to a IL-6-
prompted barricade of cells in G0/G1 cell cycle stages,

preventing cells from entering the necessary cell-division stages
necessary drug-induced replicative-associated destruction (26,
123–125).

As stated above, IL-6 also plays roles in apoptosis, which
occurs due to cellular mishaps as a means to reduce malignancy.
Interestingly, IL-6 has been shown to play both pro- and
anti-apoptotic roles depending on tumor type. In some
p53-wild-type breast and colon cancers, when tumors were
treated with kinase inhibitors and general chemotherapies, IL-6
was shown to induce apoptosis via p53 and STAT5, with
downstream signaling occurring through BAX [the reciprocal
protein to anti-apoptotic BCL-2 (126)]. On the other hand,
certain cancers, including many bone-metastases, have an
opposing phenotype and demonstrate a sustained and even
enhanced proliferation due to IL-6 and similar cytokines
(113–115).

Bone metastatic cancer cells can become dormant within the
BMM, thus protecting them from elimination by the immune
system (127). It is common for these tumors to eventually become
proliferative and induce osteoclastogenesis through secretion of
soluble factors (128, 129). Melanoma cell lines have been shown
to home to the bone and induce bone destruction through a TGF-
β-IL-11 axis via osteoblasts (130), whilst other cancers facilitate
similar pathways, such as TGF-β-RANKL-mediated destruction
(131). IL-6 and its bone destructive roles can be tied to certain
cancers, includingMM and neuroblastoma, both of which induce
IL-6 secretion from the surrounding stroma resulting in bone loss
through the NFκB pathway (132, 133). MM cells derive from the
immune plasma cell, home to the BM, cause bone destruction,
and eventually become drug resistant. IL-6 plays a role in all these
steps, so this review will focus on the effects of IL-6 in MM, as a
disease model, from here on.

IL-6 and MM Homing to the Bone Marrow
Niche
Chemokine gradients, such as that created by SDF-1, play a
large role homing of cells to the BMM. The CXCR4-SDF1 axis
is known to promote IL-6 expression in numerous cancers,
including MM (3, 134), and other studies have also indicated
that IL-6 may promote CXCR7-SDF1 or CXCR4-SDF1 signaling
(135), and as such promote bone-homing (136). SDF1 is
constitutively expressed by stromal cells and osteoblasts in the
BMM (127, 128), and attracts CXCR4+/CXCR7+ haemopoietic
or tumor cells to the BMM (137). B-cells, MM cells, and other
bone metastatic cancer cells, including breast and melanoma
cells, express CXCR4, which functions in the proliferation and
migration of these cells to the SDF1-rich BMM (138–141). The
CXCR4-SDF1 axis can also promote the expression of molecules
that enable adhesion of cells to the endothelial lining of the BM
sinus, such as VCAM1 (142). Additionally, α4β1 integrins can
overexpressed due to CXCR4-SDF1 signaling, which can further
enhance homing to the BM (142, 143). In contrast, TGF-β1
supresses expression of SDF-1 and has been shown to reduce
BM stromal cell (BMSC) migration and adhesion, which could
translate to a reduced ability to traffic to the BM (144). It is
unsurprising that a CXCR4 inhibitor has been shown to disrupt
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MM cell interaction with the BMM and thus increase sensitivity
to treatment (145).

Myeloma cells also commonly express cell surface receptors
CCR1 and CCR2 (146, 147), which bind MIP-1α and MCP1-3,
respectively. Similar to SDF1, these ligands are expressed highly
by BMSCs and promote myeloma cell migration and homing
to the BMM (148, 149). All three receptor axes (CCR1, CCR2,
CXCR4) are interesting from a clinical point of view as patients
with low expression of these receptors have shown poor disease
prognosis, associated with high serum β2 microglobulin and C-
reactive protein (146). The former is a molecule secreted by
B cells and acts as a marker of disease progression and poor
prognosis inMM. The latter is amarker of systemic inflammation
and again marks poor clinical prognosis in MM. It is possible
that the downregulation of the receptors results in a reduced
ability to home to and reside within the BMM and an increase
in circulating myeloma cells, which may cause more systemic
spreading of the disease. However, this contradicts our typical
understanding that tumor cells are more protected in the BM,
and thus cause worse outcomes when lodged in the bone rather
than when in circulation. Interestingly, IL-6 KO mice are known
to express lower levels of IL-2 (150), a cytokine known to promote
CCR1 and CCR2 (151). Taken together, these data indicate that
IL-6may increaseMMbone homing through promoting not only
CXCR4 and possibly CCR2/3 signaling.

IL-6–Driven Bone Destruction in MM
MM also increases osteoclast number and activity, which leads
to hypercalcaemia, renal-insufficiency, anemia, osteopenia and
lesions in the bone. The breakdown of bone promotes chronic
pain, increases fracture risk, and results in the release of bone-
derived growth factors, which feed the tumor cells and promote
disease progression (17, 18). This vicious cycle leads to a poor
quality of life and ultimately results in prolific dissemination of
these plasma cells throughout the body, a fatal condition known
as plasma cell leukemia.

A number of factors feed into MM-bone loss including
osteocyte-derived sclerostin. InMMpatients, elevated circulating
sclerostin levels are commonly seen, particularly in advanced
stages (152). Sclerostin has anti-osteoblastic properties and anti-
sclerostin therapeutics are currently being investigated for use
in MM-associated bone loss pre-clinically (153, 154). Anti-
sclerostin antibodies also reduce BM adiposity, and hence
more research into their effects on bone or cancer though
modulating BM adiposity is warranted (155, 156). DKK1
is another Wnt inhibitor involved in MM-mediated bone
loss and disease progression that has been investigated as a
target in MM bone loss (157). DKK1, like sclerostin, inhibits
osteoblastogenesis by blocking differentiation of pre-osteoblasts
by impeding the WNT signaling cascade (158). Recently, a
bispecific antibody targeting sclerostin and DKK-1 has been
shown to promote bone mass accrual and fracture repair in
rodents and non-human primates (159). In addition to simply
reducing numbers of mature osteoblasts, DKK1 also increases the
number of undifferentiated BMSCs, and these undifferentiated
BMSCs secrete higher IL-6 amounts than their differentiated
counterparts (160), thus feeding into the IL-6-bone-destruction

pathway described previously. Inhibition of IL-6 from MSC-
conditioned media slowed the proliferation of DKK-1 secreting
myeloma cells treated with this media, suggesting that in the
myeloma environment, IL-6 increases bone resorption through
promoting proliferation of DKK-1-secreting myeloma cells
(160). However, in other contexts, a negative correlation between
IL-6 and DKK1 was observed, implying that more research into
the role of IL-6 in bone destruction would be useful (161).

IL-6 mediated bone loss also occurs due to direct expression
and release of IL-6 by MM cells and consequential osteoclast
activation. The mechanism of IL-6-mediated osteoclastogenesis
is thought to be due primarily to activation of the JAK2/STAT3
axis, resulting in upregulation of RANKL molecules (24) (see
Figure 2). This overthrows the fine balance between osteoclastic
RANKL molecules and their inhibitor, OPG, pushing the
equilibrium in favor of bone loss (162). In addition, IL-6 may
also make preosteoclasts more sensitive to RANKL stimulation,
presumably due to an IL-6-mediated upregulation of RANK
receptors, which was previously shown in Paget’s disease (163).
In vivo studies have confirmed IL-6 mediated bone loss in
both trabecular and endochondral bone; this bone loss is
enhanced in the presence of MM cells and is associated with
increased osteoclast differentiation (164). This finding is being
investigated in phase II clinical trials, which are currently
examining the efficacy of anti-IL-6 treatment on MM bone-loss
(NCT01484275).

IL-6 and MM Disease Progression
MM begins as a condition known as monoclonal gammopathy
of undetermined significance (MGUS), an asymptomatic stage
where levels of immunoglobulin in the blood and risk of fracture
are elevated. Blood serum IL-6 levels correspond to prognosis
and progression of MM (85); prognosis is worse when levels
exceed 7 pg/ml, with an average survival of 2.7 months compared
to 53.7 months in those with lower levels (85). IL-6/STAT3
pathways are known to promote angiogenesis via enhancement
of VEGF in MM (165). Osteoclasts are also known to secrete
pro-angiogenic molecules, and thus in MMwhen both osteoclast
number and activity is enhanced, there is also an increase in the
development of vasculature (166). IL-6/STAT3 signaling not only
promotes the creation of these new endothelial cells, but also
stimulates Ras, Akt and MAPK pathways which promotes the
survival of said MM cells (167).

IL-6–Mediated Drug Resistance and
Survival in MM
Apoptosis involves the activation of caspase enzymes in a
cascade ending in the activation and release of apoptosis-
inducing factors from mitochondria. Apoptosis-inducing agents
cause DNA fragmentation and chromatin condensation, which
ultimately induces cell death (168). IL-6 promotes JAK/STAT3
and consequently PI3K/Akt and MEK/MAPK (169), (Figure 2);
these pathways are known to upregulate anti-apoptosis proteins
Mcl-1, Bcl-XL and c-Myc in primary MM cells, resulting in cell
survival and chemotherapy resistance (170, 171). A number of
antibodies have been investigated to neutralize IL-6, but little
success has occurred clinically (172, 173). However, evidence
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indicates that indirect targeting of downstream anti-apoptosis
mediators can help reverse the effects of IL-6. In vitro, anti-sense
targeting strategies against MCL-1 sensitized MM cells to drugs
by inhibiting these anti-apoptotic pathways (174). In addition,
IL-6-mediated resistance was reversed by targeting CDC34 (175).
This molecule is an ubiquitin-conjugating enzyme involved in
proteasomal degradation. It has been tied to ubiquitination and
degradation of IκBα, the NFκB inhibitor, and thus promotes
drug resistance via NFκB signaling. Targeting other molecules
within the JAK/STAT3 cascade also appears to aid in resistance
reversal, as the Akt inhibitor, MK2206, has also been found to
help overcome bortezomib resistance in MM cells induced by
co-culturing with IL-6 or MSCs (176). [For more on IL-6 and
proteasome inhibitor resistance in MM, we refer the reader to
our recent review may (121)].

IL-6 may also cause drug resistance through epigenetic
modulation proteins. IL-6 signals via STAT3 and enhances DNA
methyltransferase 1, which promotes the methylation and thus
deactivation of P53, facilitating cells to avoid cell cycle checkpoint
destruction (177). This could clearly have unfavorable effects
in MM, promoting drug resistance and/or disease progression.
Initial studies into use of general histone deacetylase (HDAC)
inhibitors were unfavorable (178), however, subsequent use of
selective HDAC inhibitors, such as chidamide, have shown
anti-MM and bone protective effect, showing synergistic effects
with other therapies such as dexamethasone, carfilzomib and
pomalidomide (179).

Bone Marrow Adipocyte (BMA)-Derived
IL-6 Contribution to MM Progression
Obesity is an increasingly common condition which increases
one’s risk of cardiovascular disease, diabetes, certain cancers,
and many other diseases. One link to cancer is due to the
increased inflammatory state which occurs due to obesity (180).
The excess storage of lipids within adipose tissues causes
the release of inflammatory molecules, TNF-α and IL-6, and
suppression of anti-inflammatory adiponectin (181). This creates
a microenvironment of high oxidative stress and inflammation
and results in damage to tissues, increasing one’s risk of
oncogenic mutations and tumorigenesis (180). Increased fat
intake, which typically causes obesity over time, is linked to
higher levels of BM adiposity in rodents (182); recently, BM
adipocytes (BMAs) have been shown to play significant roles
in MM drug resistance and disease progression (183), possibly
through the secretion of soluble factors, such as IL-6 (184). BMAs
have such a profound effect on MM that, clinically, obese and
older populations, both of whom suffer from enhanced systemic
inflammation and increased BMA levels, demonstrate higher risk
of developing MM than other groups of people (185).

BMAs may contribute to disease progression in numerous
ways. In vitro work has demonstrated an ability of BMAs
extracted from MM patient femurs to support MM cell growth
and protect them from chemotherapy-induced apoptosis (186).
In addition, MM is known to increase expression of PGC-
1α within BMAs, resulting in VEGF and GLUT-4 expression
(187), which increases proliferation, angiogenesis and metastasis,
as described above. BMAs have also been shown to increase
expression of autophagic proteins within MM cells, which can

promote drug resistance (186). Finally, BMA-derived IL-6 has
been hypothesized to contribute to chemotherapy resistance due
to an upregulation of anti-apoptotic proteins and inhibition of
cell checkpoint proteins (Figure 2). The latter pathway remains
unverified, yet studies are currently underway to investigate this
further. If true, IL-6 and its downstream signaling molecules
represent good targets for possible re-sensitization of MM
cells in refractory disease. Investigation into the blockade of
anti-apoptotic pathways downstream of IL-6 and other IL-6
mediated pathways is warranted. In addition, efforts should be
made to find therapeutics that target BMAs specifically, and to
investigate the secretory repertoires of all BMM cells to better
understand and manipulate the microenvironment into one of
anti-tumorigenicity.

Clinically Targeting IL-6 in Cancer
Despite extensive pre-clinical in vitro and in vivo support for
the role of IL-6 in MM and other osteolytic bone cancers,
clinical translation results have been dismal. Clinical trial
results with siltuximab, formerly CNTO 328, in MM have been
disheartening and no clinical trials in other bone cancers have
been initiated as of yet. As presented in an abstract for the
American Society of Hematology (ASH), 2017 annual meeting,
IL-6 blockade did not add benefit to chemotherapy in a phase 2,
randomized, double-blind, placebo-controlled multicenter study
in patients with high-risk smoldering MM (188). A clinical
trial examining if siltuximab can decrease symptom burden
after autologous stem cell transplantation for patients with MM
or AL amyloidosis is currently underway (ClinicalTrials.gov
Identifier: NCT03315026). No data on MM and siltuximab was
presented at the ASH 2018 conference. A study of CNTO 328
in Japan from 2011 to 2014 in relapsed or refractory MM
patients was halted due to safety concerns (ClinicalTrials.gov
Identifier: NCT01309412). An open-label, phase I trial of CTNO
with lenalidomide, bortezomib and dexamethasone (RVD)
was performed (ClinicalTrials.gov Identifier: NCT01531998),
however the efficacy data were limited by the small number of
patients since the trial was halted and did not proceed to phase
II. The abandonment of the phase II trial was due to the negative
outcomes from another phase II study of bortezomib-melphalan-
prednisone (VMP) vs. VMP+siltuximab, which demonstrated
no significant improvement in progression-free survival. After
this finding, further development of siltuximab in symptomatic
myeloma was halted by the sponsor (189). Trials have also
been initiated examining the safety and efficacy of siltuximab
in metastatic, hormone-refractory prostate cancer, renal and
other solid tumors (ovarian, pancreatic, colorectal, and others),
and the field is currently waiting to see the results of these
trials (190).

Tocilizumab, a humanized anti-IL-6R mAb, is currently
the subject of investigation in many clinical cancer trials.
Current clinical trials are ongoing for metastatic HER2-positive
breast cancer resistant to trastuzumab, lymphoblastic leukemia,
pancreatic cancer, myeloid leukemia, B-cell chronic lymphocytic
leukemia, non-Hodgkin’s lymphoma, B-cell lymphoma,
and diffuse large B-cell lymphoma (ClinicalTrials.gov).
Trials in myeloma were terminated due to low accrual rate
(ClinicalTrials.gov Identifier: NCT02057770). In Europe, there
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is currently a clinical trial to explore the use of tocilizumab
in fibrous dysplasia of bone (FD), a rare, painful bone disease
affecting one or several bones (191). If promising data result,
more clinical trials may arise studying the drug for bone pain
relief applications.

Unfortunately, overall, large randomized trials show no
efficacy of IL-6 inhibitors in various cancers, particularly
myeloma. These results are despite a full inhibition of C-reactive
protein (CRP) production in treated patients, the numerous
preclinical studies showing an involvement of IL-6 in these
diseases, and initial short-term treatments demonstrating a
dramatic inhibition of cancer cell proliferation in vivo (192).
Similarly, a meta-review of 48 clinical studies concluded that
inhibition of IL-6 has unknown and unproven effects on
decreasing GI (gastric, pancreatic, colorectal, bile duct and gall
bladder) cancer syndromes or improving quality of life (191).
A likely explanation for this lack of efficacy is the plasticity
of cancer cells and their ability to clonally evolve and develop
subclones that are less dependent on IL-6. Moreover, many
therapies targeting tumor cells already decrease IL-6 or pathways
downstream of IL-6, so that no additive or synergistic effect is
derived from the anti-IL-6 therapy. Still, anti-IL-6 therapeutics
are able to neutralize IL-6 production in vivo and are safe and
useful in inflammatory diseases and Castleman disease. Their
application may hold promise in treatment of bone-resident
cancers if more developed (e.g., bi-specific mAbs against tumor
cells and IL-6, or against RANKL and IL-6) therapies can
be developed to increase their efficacy. Moreover, getting the
treatment more specifically to the cancer may allow for higher
doses and less off-target effects, and thus better outcomes, and
more research into tumor-homing drug delivery or targeted
nanomedicine technology may accelerate this process. As we
understand more about the role of the immune system in
cancer and the ability for tumor cells to block the immune
response, researchers and clinicians may be able to design anti-
IL-6 clinical trials using patient populations that are identified
to have a positive response to these therapies. Similarly, a better
understanding of the full activity of anti-IL-6 therapy will mean
that different combination regimens or dosing strategies may be
designed to be optimal for different patient subgroups.

CONCLUSIONS

IL-6 is a pro-inflammatory cytokine that promotes NF-κB,
MAPK and PI3K/Akt signaling. Together these pathways
promote anti-apoptosis signaling and drug resistance in cancer

cells, in addition to further inflammatory signaling. The latter

contributes to bone destruction and osteopenia, which promotes
homing of metastatic cancers to the bone marrow niche. Bone
marrow adipocytes, as well as mesenchymal stromal cells, may be
a source of IL-6 or other factors, that contribute to chemotherapy
resistance in the bone microenvironment. Targeting of these
adipocytes, or their secreted factors, may help alleviate refractory
disease.

Because MM demonstrates such genetic heterogeneity and
high levels of refractory disease, targeting the BMM, along with
the tumor cell directly, is an ideal plan of attack. The IL-
6 signaling pathway in MM cells promotes an inflammatory
bone microenvironment that results in osteopenia, increased
tumor burden and disease progression. Bone marrow adipocytes
are one cell type within the bone microoenvironment thought
to feed into this system through secretion of IL-6 and other
adipokines. Thus, bone marrow adipocytes represent an ideal
target for MM therapies in order to reduce drug resistance and
relapse, instead of targeting the complicated, clonally expanding
plasma cells. The more we learn, the better we can target such
pathways and not only improve quality of life for patients,
but hopefully extend that lifetime as well. As this dream
has not become realized in the clinic yet, more efforts on
understanding and maximizing the targeting of IL-6 and its
downstream pathways may be necessary. Moreover, building
mouse cancer models, or tissue-engineered 3Dmodels, that more
accurately model the effects of targeting IL-6 in the human
should lead to better clinical results in the future and avoid
the pitfalls of wasted time and money on unsuccessful clinical
trials.
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