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1 Introduction

The performance of many asset markets – e.g., prices of mortgage-backed securities, corporate

bonds, etc. – depend on the financial health of the intermediary sector, broadly defined

to include traditional commercial banks as well as investment banks and hedge funds. The

subprime crisis and the 1998 hedge fund crisis are two compelling data points in support of this

claim.1 However, traditional approaches to asset pricing ignore intermediation by invoking the

assumption that intermediaries’ actions reflect the preferences of their client-investors. With

this assumption, the traditional approach treats intermediaries as a “veil,” and instead posits

that a representative household is marginal in pricing all assets. Thus, the pricing kernel for

the S&P500 stock index is the same as the pricing kernel for mortgage-backed securities. Yet,

many crises, such as the subprime crisis and the 1998 episode, play out primarily in the more

complex securities that are the province of the intermediary sector. The traditional approach

cannot speak to this relationship between financial intermediaries and asset prices. It sheds

no light on why “intermediary capital” is important for asset market equilibrium. It also does

not allow for a meaningful analysis of the policy actions, such as increasing intermediaries’

equity capital or discount window lending, which are commonly considered during crises.

We offer a framework to address these issues. We develop a model in which the intermedi-

ary sector is not a veil, and in which its capital plays an important role in determining asset

market equilibrium. We calibrate the model to data on the intermediation sector and show

that the model performs well in replicating asset market behavior during crises.

The striking feature of financial crises is the sudden and dramatic increase of risk premia.

For example, in the hedge fund crisis of the fall of 1998, many credit spreads and mortgage-

backed security spreads doubled from their pre-crisis levels. Our baseline calibration can

replicate this dramatic behavior. When intermediary capital is low, losses within the inter-

mediary sector have significant effects on risk premia. However, when capital is high, losses

have little to no effect on risk premia. The asymmetry in our model captures the non-linearity

that is present in asset market crises. Simulating the model, we find that the average risk

premium when intermediaries’ capital constraint is slack is 3.1%. Using this number to reflect

a pre-crisis normal level, we find that the probability of the risk premium exceeding 6%, which

1There is a growing body of empirical evidence documenting the effects of intermediation constraints

(such as capital or collateral constraints) on asset prices. These studies include, research on mortgage-backed

securities (Gabaix, Krishnamurthy, and Vigneron, 2005), corporate bonds (Collin-Dufresne, Goldstein, and

Martin, 2001), default swaps (Berndt, et. al., 2004), catastrophe insurance (Froot and O’Connell, 1999), and

index options (Bates, 2003; Garleanu, Pedersen, and Poteshman, 2005).
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is twice the “normal” level, is 1.6%. The 1998 episode saw risk premia and Sharpe ratios rise

considerably, in the range of 2X.

Another important feature of financial crises is the pattern of recovery of spreads. In the

1998 crisis, most spreads took about 10 months to halve from their crisis-peak levels to pre-

crisis levels. In the subprime crisis, most bond market spreads recovered in about 6 months.

As we discuss later in the paper, half-lives of between 6 months and extending over a year

have been documented in a variety of asset markets and crisis situations. We note that these

types of recovery patterns are an order of magnitude slower than the daily mean reversion

patterns documented in the market microstructure literature (e.g., Campbell, Grossman, and

Wang, 1993). A common wisdom among many observers is that this recovery reflects the

slow movement of capital into the affected markets (Froot and O’Connell, 1999, Berndt, et.

al., 2004, Mitchell, Pedersen, and Pulvino, 2007). Our baseline calibration of the model can

replicate these speeds of capital movement. We show that simulating the model starting from

an extreme crisis state (risk premium of 12%), the half-life of the risk premium back to the

unconditional average risk premium is 8 months. From a risk premium of 10%, the half-life is

11 months.

We also use the model as a laboratory to quantitatively evaluate government policies. Be-

ginning from an extreme crisis state with risk premium of 12%, we trace the crisis recovery

path conditional on three government policies: (1) Infusing equity capital into the intermedi-

aries during a crisis; (2) Lowering borrowing rates to the intermediary, as with a decrease in

the central bank’s discount rate; and, (3) Direct purchase of the risky asset by the government,

financed by debt issuance and taxation of households. These three policies are chosen because

they are among those undertaken by central banks in practice. Both the equity infusion and

risky asset purchase policies have an immediate impact of lowering the risk premium. More-

over, in comparing $205bn of equity infusion to $1.8tn of risky asset purchase, we find that

the equity infusion is far more effective in reducing the risk premium. This occurs in our

model because the friction in the model is an equity capital constraint. Thus infusing equity

capital attacks the problem at its heart. The interest rate policy is also effective, uniformly

increasing the speed of crisis recovery.

The contribution of our paper is to work out an equilibrium model of intermediation

that is dynamic, parsimonious, and can be realistically calibrated. The paper is related to a

large literature in banking studying disintermediation and crises (see Diamond and Dybvig

(1983), Holmstrom and Tirole (1997), Diamond (1997), and Diamond and Rajan (2005)).

We differ from this literature in that our model is dynamic, while much of this literature
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is static. The paper is also related to the literature in macroeconomics studying effects of

collateral fluctuations on aggregate activity (Kiyotaki and Moore (1997)). In much of the

macro literature, equilibrium is derived by log-linearizing around the steady-state. As a result,

there is almost no variation in equilibrium risk premia, which does not allow the models to

speak to the behavior of risk premia in crises. We solve a fully stochastic model that better

explains how risk premia varies as a function of intermediary capital. Brunnermeier and

Sannikov (2010) is another recent paper that develops a macroeconomic model that is fully

stochastic and links intermediaries’ financing position to asset prices. Our paper is also related

to the literature on limits to arbitrage studying how impediments to arbitrageurs’ trading

strategies may affect equilibrium asset prices (Shleifer and Vishny (1997)). One part of this

literature explores the effects of margin or debt constraints for asset prices and liquidity in

dynamic models (see Gromb and Vayanos (2002), Geanokoplos and Fostel (2008), Adrian and

Shin (2010), and Brunnermeier and Pedersen (2008)). Our paper shares many objectives and

features of these models. The principal difference is that we study a constraint on raising

equity capital, while these papers study a constraint on raising debt financing. Xiong (2001)

and Kyle and Xiong (2001) model the effect of arbitrageur capital on asset prices by studying

an arbitrageur with log preferences, where risk aversion decreases with wealth. The effects

that arise in our model our qualitatively similar to these papers. An advantage of our paper is

that intermediaries and their equity capital are explictly modeled allowing our paper to better

articulate the role of intermediaries in crises.2 Finally, many of our asset pricing results come

from assuming that some markets are segmented and that households can only trade in these

markets by accessing intermediaries. Our paper is related to the literature on asset pricing

with segmented markets (see Allen and Gale, 1994, Alvarez, Atkeson, and Kehoe, 2002, and

Edmond and Weill, 2009).3

Our paper is also related to a companion paper, He and Krishnamurthy (2009). We solve

for the optimal intermediation contract in that paper, while we assume the (same) form of

contract in the current analysis. That paper also solves for the equilibrium asset prices in

closed form, while we rely on numerical solutions in the present paper. On the other hand,

that paper has a degenerate steady state distribution which does not allow for a meaningful

simulation or the other quantitative exercises we perform in the present paper. In addition, the

2The paper is also related to Vayanos (2005) who studies the effect of an open-ending friction on asset-

demand by intermediaries. We study a capital constraint rather than an open-ending friction.
3Our model is also related to the asset pricing literature with heterogenous agents (see Dumas (1989) and

Wang (1996)).
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present paper models households with labor income and an intermediation sector which always

carries some leverage. Both aspects of the model are important in realistically calibrating the

model. However, these same features of the model require us to rely on numerical solutions.

Apart from these differences, the analysis in He and Krishnamurthy (2009) provides theoretical

underpinnings for some of the assumptions we make in this paper.

The paper is organized as follows. Sections 2 and 3 outline the model and its solution.

Section 4 explains how we calibrate the model. Section 5 presents the results of the crisis

calibration. Section 6 studies policy actions. Section 7 concludes and is followed by an

Appendix with details of the model solution.

2 The Model: Intermediation and Asset Prices

Figure 1: The Economy

SPECIALISTS/ 

INTERMEDIARIES
HOUSEHOLDS

RISKY ASSET 

MARKET

RISKLESS 

ASSET 
MARKET

Ht

SAVINGS

SAVINGS

This figure depicts the agents in the economy and their investment opportunities.

Figure 1 lays out the building blocks of our model. There is a risky asset that repre-

sents complex assets where investment requires some sophistication. In our calibration, we

match the risky asset to the market for mortgage-backed securities, as a representative large

asset class that fits this description. Investment in the mortgage-backed securities market

is dominated by financial institutions rather than households, and sophisticated prepayment

modeling is an important part of the investment strategy. The calibration is also appropriate

for analyzing the financial crisis that began in 2007, where mortgage-backed securities have a

prominent role.
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We assume that households cannot invest directly in the risky asset market. There is

limited market participation, as in Mankiw and Zeldes (1991), Allen and Gale (1994), Basak

and Cuoco (1998), or Vissing-Jorgensen (2002). Specialists have the knowledge to invest in

the risky assets, and unlike in the limited market participation literature, the specialists can

invest in the risky asset on behalf of the households. This investment conduit is the interme-

diary of our model. In our model, the households demand intermediation services while the

specialists supply these services. We are centrally interested in describing how this interme-

diation relationship affects and is affected by the market equilibrium for the “intermediated”

risky asset.

We assume that if the household does not invest in the intermediary, it can only invest in

a riskless short-term bond. This is clearly counterfactual (i.e. households invest in the S&P

500 index), but simplifies the analysis considerably.

Households thus face a portfolio choice decision of allocating funds between the interme-

diaries and the riskless bond. The intermediaries accept Ht of the household funds and then

allocate their total funds under management between the risky asset and the riskless bond.

We elaborate on each of the elements of the model in the next sections.

2.1 Assets

The assets are modeled as in the Lucas (1978) tree economy. The economy is infinite-horizon,

continuous-time, and has a single perishable consumption good, which we will use as the

numeraire. We normalize the total supply of intermediated risky assets to be one unit. The

riskless bond is in zero net supply and can be invested in by both households and specialists.

The risky asset pays a dividend of Dt per unit time, where {Dt} follows a geometric

Brownian motion,
dDt

Dt

= gdt + σdZt given D0. (1)

g > 0 and σ > 0 are constants. Throughout this paper {Zt} is a standard Brownian motion

on a complete probability space (Ω,F ,P). We denote the processes {Pt} and {rt} as the risky

asset price and interest rate processes, respectively. We also define the total return on the

risky asset as,

dRt =
Dtdt + dPt

Pt

. (2)
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2.2 Specialists and intermediation

There is a unit mass of identical specialists who manage the intermediaries in which the

households invest. The specialists represent the insiders/decision-makers of a bank, hedge

fund, or mutual fund. We collapse all of an intermediary’s insiders into a single agent, following

the device of modeling entrepreneur-managers of firms in the corporate finance literature (e.g.

Holmstrom and Tirole, 1997). The specialists are infinitely-lived and maximize an objective

function,

E

[∫ ∞

0

e−ρtu(ct)dt

]
ρ > 0; (3)

where ct is the date t consumption rate of the specialist. We consider a CRRA instantaneous

utility function with parameter γ for the specialists, u(ct) = 1
1−γ

c1−γ
t .

Each specialist manages one intermediary. We denote the date t wealth of specialists as wt

and assume that this is wholly invested in the intermediary. We think of wt as the specialist’s

“stake” in the intermediary, possibly capturing financial wealth at risk in the intermediary.

Although outside the scope of the model, we may imagine that wt also captures reputation that

is at stake in the intermediary and the future income from being an insider of the intermediary.

We envision the following to describe the interaction between specialists and households.

At every t, each specialist is randomly matched with a household to form an intermediary.

These interactions occur instantaneously and result in a continuum of (identical) bilateral

relationships.4 The household allocates some funds Ht to the intermediary. Specialists then

execute trades for the intermediary in a Walrasian risky asset and bond market, and the house-

hold trades in only the bond market. At t + dt the match is broken, and the intermediation

market repeats itself.

Consider one of the intermediary relationships between specialist and household. The

specialist manages an intermediary whose total capital is the sum of the specialist’s wealth,

wt, and the wealth that the household allocates to the intermediary, Ht. The specialist makes

all investment decisions on this capital and faces no portfolio restrictions in buying or short-

selling either the risky asset or the riskless bond. Suppose that the specialist chooses to invest

a fraction αI
t of the portfolio in the risky asset and 1 − αI

t in the riskless asset. Then, the

4Why the matching structure instead of a Walrasian intermediation market? In the Walrasian case, when

intermediation is supply constrained, specialists charge the households a fee for managing the intermediary

that depends on the tightness of the intermediation constraint. In the matching structure the fee is always

zero which makes solving the model somewhat easier. Introducing a constant fee into the model is both easy

and does not alter results appreciably. See He and Krishnamurthy (2009) where we study the Walrasian case.
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return delivered by the intermediary is,

d̃Rt = rtdt + αI
t (dRt − rtdt), (4)

where dRt is the total return on the risky asset.

2.3 Intermediary equity capital constraint

The key assumption of our model is that the household is unwilling to invest more than mwt

of funds in the intermediary (m > 0 is a constant). That is, if the specialist has one dollar of

wealth invested in the intermediary, the household will only invest up to m dollars of his own

wealth in the intermediary. He and Krishnamurthy (2009) derive this sort of capital constraint

by assuming moral hazard by the specialist. In their model, the household requires that the

specialist have a sufficient stake in the intermediary to prevent shirking. Here we adopt the

constraint in reduced form.

The wealth requirement implies that the supply of intermediation facing a household is at

most,

Ht ≤ mwt. (5)

If either m is small or wt is small, the household’s ability to indirectly participate in the risky

asset market will be restricted.

We may interpret the wealth requirement in two ways. First, as noted above, we can think

of wt as the specialist’s stake in the intermediary, and this stake must be sufficiently high for

households to feel comfortable with their investment in the intermediary. The managers of a

hedge fund typically have much of their wealth tied up in terms of the returns of the hedge

fund. Hedge fund managers invest some of their wealth in a hedge fund and moreover earn

future income based on the returns of the fund. Thus they have a significant stake in the hedge

fund’s performance which is captured in our model by their ownership share, wt

wt+Ht
≥ 1

1+m
.

The minimum stake requirement ensures that the incentives of the hedge fund’s managers

and investors are aligned. If a hedge fund loses a lot of money then the capital of the hedge

fund will be depleted. In this case, investors will be reluctant to contribute money to the

hedge fund, fearing mismanagement or further losses. A hedge fund “capital shock” is one

phenomena that we can capture with our model.

The ownership stake interpretation also applies more broadly to the banking sector. Hold-

erness, Kroszner and Sheehan (1999) report that the mean equity ownership of officers and
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directors in the Finance, Insurance, and Real Estate sector was 17.4% in 1995. This stake can

also be related to the fraction of the intermediary that the specialist owns, wt

wt+Ht
.

Another interpretation, which is more in keeping with regularities in the mutual fund

industry, is that the wealth of a specialist summarizes his past success in making investment

decisions. Low wealth then reflects poor past performance by a mutual fund, which makes

households reluctant to delegate investment decisions to the specialist. The relation between

past performance and mutual fund flows is a well-documented empirical regularity (see, e.g.,

Warther (1995)). As wt falls, reflecting poor past performance, investors reduce their portfolio

allocation to the mutual fund. Shleifer and Vishny (1997) present a model with a similar

feature: the supply of funds to an arbitrageur in their model is a function of the previous

period’s return by the arbitrageur.

Since we adopt constraint (5) in reduced form, we do not take a stand on the interpretation

of the constraint. Indeed, in our calibration scenarios, we match the specialist-intermediary

to the entire intermediary sector – including hedge funds, banks, and mutual funds. From

this standpoint, it is useful that the constraint may be appropriate across a variety of inter-

mediaries.

The novel feature of our model is that wt, and the supply of intermediation, evolve en-

dogenously as a function of shocks and the past decisions of specialists and households. In

both the bank/hedge-fund and the mutual fund example, if the intermediation constraint (5)

binds, a fall in wt causes households to reduce their allocation of funds to intermediaries and

invest in the riskless bond. Of course, the risky asset still has to be held in equilibrium.

As households indirectly reduce their exposure to the risky asset, via market clearing, the

specialist increases his exposure to the risky asset. To induce the specialist to absorb more

risk, the risky asset price falls and its expected return rises. This dynamic effect of wt on

the equilibrium is the central driving force of our model. We think it arises naturally when

considering the equilibrium effects of intermediation.

We note that both the household and specialist receive the return d̃Rt (see (4)) on their

contributions to the intermediary; that is, both household and specialist invest in the equity

of the intermediary. Constraint (5) describes an equity capital constraint on the contribution

by the household to the intermediary as a function of the specialist’s equity contribution.

Another form of financing constraint that appears important in practice and has been stud-

ied by other papers is a debt or leverage constraint. In our model, the intermediaries raise

equity capital from households as well as borrow by selling (i.e. shorting) riskless bonds. We

impose a constraint on raising equity capital but none on borrowing. Denote such borrowing
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as Bt. We can imagine a constraint whereby,

Bt ≤ mbwt.

Kiyotaki and Moore (1997) in their study of collateral values and business cycles impose a

similar constraint. Papers in the asset pricing literature studying margin constraints also

impose a similar constraint (see Gromb and Vayanos (2002), Geanokoplos and Fostel (2008),

Adrian and Shin (2010), and Brunnermeier and Pedersen (2009)). The margin requirement

of these models can be related to 1/mb.

We do not study a debt constraint in our model. First, within the logic of the model,

any debt that is contracted is always default-free and it thus seems unnatural to impose a

debt constraint. That is, Bt is always less than Pt so that if one considers a loan that is

collateralized by the asset (i.e. a repo contract), such borrowing carries no default risk. This

occurs because the asset price has a continuous sample path so that it is not possible to “jump”

into a default state. A model with jumps rather than our Brownian model or a discrete-time

model will carry default risk.5 Second, equity claims are junior to debt claims and particularly

to the collateralized debt claims we observe in practice. Thus any financing constraints are

likely to be tighter on equity than debt. The inability of financial institutions to raise equity

capital figures prominently in discussions of the subprime crisis.6 It is therefore interesting to

study a model that drills in particularly on the role of equity capital constraints. Third, as

an empirical matter, He, Khang, and Krishnamurthy (2010) document that, during the 2008

crisis period, the commercial banking sector through its access to deposits, discount window

financing, as well as other forms of government financing, has essentially faced no constraints

on borrowing, while the hedge fund sector has faced such constraints. On the other hand,

both the banking sector and the hedge fund sector have had limited equity capital. This

suggests that equity capital constraints are more widespread than debt constraints. It would

5It is likely that the constrained borrowing we observe in practice is not on 100% safe debt but on risky

debt. The fact that repo haircuts vary across the riskiness of the underlying collateral suggests that the

repo debt is only partly collateralized. Given standard spanning arguments, we can think of risky debt as a

combination of safe debt and a position in the underlying risky asset. That is define risky debt, B̃t as being

composed of safe debt Bt and a position δ in the risky asset. Investors may ration their supply of risky debt

because they are rationing their exposure δ to the risky asset. The equity capital constraint we have imposed

is directly a restriction on investors willingness to own exposure to the risky asset; i.e. it is qualitatively similar

to a restriction on δ. In this sense, our model captures aspects of constrained risky-debt financing.
6In He and Krishnamurthy (2009), we allow for all forms of contracts and derive an optimal contract that

places a constraint on equity capital contributions but no constraint on debt contributions.
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be interesting in future work to study a model with both debt and equity capital constraints

where different parts of the intermediary sector are modeled to have different constraints.

Indeed, it is likely, as we discuss later in the paper, that the model’s fit can be improved with

such an embellishment.

2.4 Specialist/intermediary decision

The specialist chooses his consumption rate and the portfolio decision of the intermediary to

solve,

max
{ct,α

I

t
}
E

[∫ ∞

0

e−ρtu(ct) dt

]
s.t. dwt = −ctdt + wtrtdt + wt

(
d̃Rt

(
αI

t

)
− rtdt

)
. (6)

We can also rewrite the budget constraint in terms of the underlying return:

dwt = −ctdt + wtrtdt + αI
t wt (dRt − rtdt) .

Note that αI
t is effectively the specialist’s portfolio share in the risky asset.

2.5 Households: The demand for intermediation

We model the household sector as an overlapping generation (OG) of agents. This keeps the

decision problem of the household fairly simple.7 On the other hand, we enrich the model

to include household labor income and introduce heterogeneity within the household sector.

Without household income it is possible to reach states where the household sector vanishes

from the economy, rendering our analysis uninteresting (see, for example, Dumas (1989) and

Wang (1996) for more on this problem in two-agent models). We also introduce labor in-

come to more realistically match the consumption-savings profile of households. Likewise,

heterogeneity within the household sector is useful in realistically calibrating the model.

For the sake of clarity in explaining the OG environment in a continuous time model, we

index time as t, t + δt, t +2δt, ... and consider the continuous time limit when δt is of order dt.

A unit mass of generation t agents are born with wealth wh
t and live in periods t and t + δt.

They maximize utility:

ρδt ln ch
t + (1 − ρδt)Et[ln wh

t+δt]. (7)

7Note the specialists are infinitely lived while households are modeled using the OG structure. As we will

see, specialists play the key role in determining asset prices. Our modeling ensures that their choices reflect the

forward-looking dynamics of the economy. We treat households in a simpler manner for tractability reasons.

We deem the cost of the simplification to be low since households play a secondary role in the model.
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ch
t is the household’s consumption in period t and wh

t+δt is a bequest for generation t + δt.

Note that both utility and bequest functions are logarithmic.

In addition to wealth of wh
t , we assume that generation t households receive labor income

at date t of l Dt δ. l > 0 is a constant and Dt is the dividend on the risky asset at time t. Labor

income is assumed proportional to dividends in order to preserve some useful homogeneity

properties of the equilibrium.

It is easy to verify that as δt → dt in the continuous time limit, the household’s consump-

tion rule is,

ch
t = ρwh

t . (8)

In particular, note that the labor income does not affect the consumption rule because the

labor income flow is of order dt. Interpreting ρ > 0 as the household’s rate of time preference,

we note that this is the standard consumption rule for logarithmic agents. The household is

“myopic” and his rule does not depend on his investment opportunity set.

A household invests its wealth from t to t+δ in financial assets. As noted earlier, households

are not directly able to save in the risky asset and can only directly access the riskless bond

market. We assume that the household can choose any positive level of bond holdings when

saving in the riskless bond (note that short-selling of the bond is ruled out). The household

must use an intermediary when accessing the risky asset market.

We consider a further degree of heterogeneity in the intermediation investment restriction.

We assume that a fraction λ of the households can ever only invest in the riskless bond. The

remaining fraction, 1 − λ, may enter the intermediation market and save a fraction of their

wealth with intermediaries which indirectly invest in the risky asset on their behalf. We refer

to the former as “debt households” and the latter as “risky asset households.”8

The heterogeneity among households is realistic. Clearly, there are many households that

only save in a bank account. In the literature cited earlier on limited market participation, all

households are “debt households.” The demand for intermediation in our model stems from

the risky asset households. Introducing this degree of heterogeneity allows for a better model

calibration.

8The wealth of the debt household and risky asset household evolve differently between t and t + δ. We

assume that this wealth is pooled together and distributed equally to all agents of generation t+ δ. The latter

assumption ensures that we do not need to keep track of the distribution of wealth over the households when

solving for the equilibrium of the economy.
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2.6 Household decisions

To summarize, a debt and risky asset household are born at generation t with wealth of wh
t .

The households receive labor income and choose a consumption rate of ρwh
t . They also make

savings decisions, respecting the restriction on their investment options. The debt household’s

consumption decision, given wealth of wh
t , is described by (8). The savings decision is to invest

wh
t in the bond market at the interest rate rt. The risky asset household’s consumption is also

described by (8). His portfolio decision is how much wealth to allocate to intermediaries. We

denote αh
t ∈ [0, 1] as the fraction of the household’s wealth in the intermediary and recall that

the intermediary’s return is d̃Rt in (4). The remaining 1−αh
t of household wealth is invested

in the riskless bond and earns the interest rate of rtdt. The risky asset household chooses αh
t

to maximize (7). Given the log objective function, this decision solves,

max
αh

t
∈[0,1]

αh
t Et[d̃Rt] −

1

2

(
αh

t

)2
V art[d̃Rt] s.t. αh

t (1 − λ)wh
t ≡ Ht ≤ mwt. (9)

Note the constraint here, which corresponds to the intermediation constraint we have discussed

earlier.

Given the decisions by the debt household and the risky asset household, the evolution of

wh
t across generations is described by,

dwh
t = (lDt − ρwh

t )dt + wh
t rtdt + αh

t (1 − λ)wh
t

(
d̃Rt − rtdt

)
. (10)

2.7 Equilibrium

Definition 1 An equilibrium is a set of price processes {Pt} and {rt}, and decisions {ct, c
h
t , α

I
t , α

h
t }

such that,

1. Given the price processes, decisions solve the consumption-savings problems of the debt

household, the risky asset household (9) and the specialist (6);

2. Decisions satisfy the intermediation constraint of (5);

3. The risky asset market clears:

αI
t (wt + αh

t (1 − λ)wh
t )

Pt

= 1; (11)

4. The goods market clears:

ct + ch
t = Dt(1 + l). (12)
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Given market clearing in risky asset and goods markets, the bond market clears by Walras’

law. The market clearing condition for the risky asset market reflects that the intermediary is

the only direct holder of risky assets and has total funds under management of wt+αh
t (1−λ)wh

t ,

and the total holding of risky asset by the intermediary must equal the supply of risky assets.

Finally, an equilibrium relation that proves useful when deriving the solution is that,

wt + wh
t = Pt.

That is, since bonds are in zero net supply, the wealth of specialists and households must sum

to the value of the risky asset.

3 Solution

We outline the main steps in deriving the solution in this section. For detailed derivations, see

the Appendix A. We begin with an example that illustrates the main features of our model

and helps in understanding the steps in the solution.

3.1 Example

Suppose that m = 1 and λ = 0. Moreover, suppose we are in a state where wt = 100

and wh
t = 200. Then it is clear that since mwt < wh

t , this is a state where intermediation

is constrained by (5). Since the riskless asset is in zero net supply, the value of the risky

asset is equal to the sum of wt and wh
t (i.e. 300). Suppose that households saturate the

intermediation constraint by investing 100 in intermediaries. Then intermediaries have total

equity contributions of 200 (the households’ 100 plus the specialists’ wt). Since intermediaries

hold all of the risky asset worth 300, their portfolio share in the risky asset must be equal to

150%. Their portfolio share in the bond is −50%. That is, the intermediary holds a levered

position in the risky asset. The household’s portfolio shares are 0.5 × 150% = 75% in risky

asset; and, 25% in debt. The households and specialists have different portfolio exposures to

the risky asset. But since the specialist drives the pricing of the risky asset, risk premia must

adjust to make the 150% portfolio share optimal.

From this situation, suppose that dividends on the risky asset fall. Then, since the spe-

cialists are more exposed to the risky asset than households, wt falls relative to wh
t . The shock

then further tightens the intermediation constraint, which creates an amplified response to

the shock.
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Contrast this situation with one in which there is no intermediation constraint. Suppose

that households invest all of their wealth with the intermediaries. Since intermediaries now

have 300 and the risky asset is worth 300, the portfolio share of both specialists and households

is equal to 100%. Both agents share equally in the asset’s risk and shocks do not affect the

distribution of wealth between the agetns.

3.2 State Variables and Specialists’ Euler Equation

We look for a stationary Markov equilibrium where the state variables are (yt, Dt), where

yt ≡ wh
t

Dt
is the dividend scaled wealth of the household. As the example illustrates, the inter-

mediation frictions depend on the distribution of wealth between households and specialists.

We capture this relative distribution by yt.

As standard in any CRRA/GBM economy, our economy is homogeneous in dividends Dt.

We conjecture that the equilibrium risky asset price is,

Pt = DtF (yt), (13)

where F (y) is the price/dividend ratio of the risky asset.

Now we use the agents’ optimal decisions and market clearing conditions to derive the

equation for F . While the household faces investment restrictions on his portfolio choices, the

specialist (intermediary) is unconstrained in his portfolio choices. This important observation

implies that the specialist is always the marginal investor in determining asset prices, while

the household may not be. Standard arguments then tell us that we can express the pricing

kernel in terms of the specialist’s equilibrium consumption process.

We have noted in (8) that the household’s optimal consumption given wh
t is ch

t = ρwh
t ,

which we can rewrite as ch
t = ρytDt. Now the market clearing condition for goods (from (12))

is,

ct + ρytDt = Dt(1 + l).

Thus, in equilibrium, the specialist consumes:

ct = Dt(1 + l − ρyt). (14)

We thereby express specialist consumption as a function of the state variables Dt and yt.

Optimality for the specialist gives us the standard consumption-based asset pricing rela-
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tions (Euler equation):9

−ρdt − γEt

[
dct

ct

]
+

1

2
γ(γ + 1)V art

[
dct

ct

]
+ Et [dRt] = γCovt

[
dct

ct

, dRt

]
; (15)

and for interest rate, we have

rtdt = ρdt + γEt

[
dct

ct

]
− γ(γ + 1)

2
V art

[
dct

ct

]
. (16)

Using (14) and (13), we can express dRt and dct

ct
as a function of the derivatives of F (y), and

the unknown drift and diffusion of yt. These unknown drift and diffusion will depend on the

households’ equilibrium portfolio choices, which is the focus of the next section. Combining

these results, we arrive at a differential equation that must be satisfied by F (y) (see Appendix

A).

3.3 Dynamics of Household Wealth

Given the wealth dynamics of the household in (10) and the intermediary return d̃Rt − rtdt =

αI
t (dRt − rtdt), we have

dwh
t = (lDt − ρwh

t )dt + wh
t rtdt +

(
αh

t α
I
t

)
(1 − λ)wh

t (dRt − rtdt) .

We now determine the household’s exposure to the risky asset return
(
αh

t α
I
t

)
(1 − λ). First,

note that when the intermediation constraint of equation (5) binds, the household choice must

satisfy

αh,const
t (1 − λ)wh

t = mwt, which implies, αh,const
t =

m (F (y) − y)

(1 − λ)y
. (17)

That is, the binding constraint pins down the household’s portfolio share in the intermediary.

Moreover, since all risky assets are held through the intermediary, the equilibrium market

clearing condition (11) gives,

αI,const
t (wt + mwt)

Pt

= 1.

Using the fact that wt + wh
t = Pt, we find,

αI,const
t =

1

1 + m

F (y)

F (y)− y
. (18)

The logic in arriving at this expression is the same as in the example.

When the intermediation constraint does not bind, the household is unconstrained in

choosing αh
t . We make an assumption that implies that αh

t = 1 in this case:

9The Euler equation is a necessary condition for optimality. In Appendix B, we prove sufficiency.
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Parameter Assumption 1 We focus on parameters of the model such that in the absence

of any portfolio restrictions, the risky asset household will choose to have at least 100% of his

wealth invested in the intermediary, i.e., αh
t = 1.

Although we are unable to provide a precise mathematical condition for this parameter re-

striction, in our calibration it appears that γ ≥ 1 is a sufficient condition. Loosely speaking,

if the specialist is more risk averse than the household, the household will hold more risky

assets than the specialist. But given market clearing in the risky asset market, the specialist

always holds more than 100% of his wealth in the risky asset. Recall that we assume that the

household cannot short bonds. Thus, the household allocates the maximum of 100% of his

wealth to the intermediary. Using the market clearing condition for risky assets, we find,

αI,unconst
t =

F (y)

F (y)− λy
. (19)

3.4 Constraint Threshold

We now characterize the conditions under which the intermediation constraint binds. Setting

αh
t = 1 in (5) yields that the constraint binds when,

(1 − λ)wh
t ≥ mwt.

Using wh
t + wt = Pt, we rewrite the inequality to find an expression that gives a cutoff for the

constrained states:

yc =
m

1 + m − λ
F (yc).

This equation has a unique solution in all of our parameterizations.

In summary, when y < yc, the intermediation constraint is binding, and we have the

expressions for αh
t and αI

t as in (17) and (18). When y > yc, the household chooses αh
t = 1

and αI
t is given by (19).

3.5 Boundary Condition

The model has a natural upper boundary condition on y that is determined by the goods

market clearing condition. Since

ct = Dt (1 + l − ρyt) ,

17



and the specialist’s consumption ct must be positive, yt has to be bounded by

yb ≡ 1 + l

ρ
.

In Appendix B, we show that yb is an entrance-no-exit boundary, and that yt never reaches

yb.

On an equilibrium path in which y approaches yb, the specialist’s equilibrium consumption

c goes to zero. Since the specialist’s wealth is w = D (F (y) − y), one natural guess for the

boundary condition at this singular point yb is

F
(
yb
)

= yb. (20)

In words, when the specialist’s consumption approaches zero, his wealth also converges to zero.

In the argument for verification of optimality of the specialist’s equilibrium strategy which is

detailed in Appendix B, we see that this condition translates to the transversality condition

for the specialist’s budget equation. Therefore the boundary condition (20) is sufficient for

the equilibrium presented in this paper to be well-defined.

4 Calibration

Table 1 provides data on the main intermediaries in the US economy. Households hold wealth

through a variety of intermediaries including banks, retirement funds, mutual funds, and hedge

funds.10

4.1 Choice of m

The main challenge in the calibration is that the model treats the entire intermediary sector

as a group of identical institutions, while it is clear from Table 1 that there is functional

heterogeneity across the modes of intermediation. In particular, some of the intermediaries,

such as mutual and pension funds, are financed only by equity, while some intermediaries,

such as banks or hedge funds always carry leverage. Note that in our model the capital

structure of the intermediary plays a central role in asset price determination. When the

intermediation constraint (5) binds, losses among intermediaries lead households to reduce

their equity exposure to these intermediaries. If the intermediaries scale down their asset

10We need to be careful in interpreting these numbers because there is some amount of double counting –

i.e. pension funds invest in hedge funds.
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Table 1: Intermediation Data ($ Billions) a

Group Assets Debt Debt/Assets
Commercial banks 11,800 10,401 0.88
S&L and Credit Unions 2,574 2,337 0.91
Property & Casualty Insurance 1,381 832 0.60
Life Insurance 4,950 4,662 0.94
Private Pensions 6,391 0 0.00
State & Local Ret Funds 3,216 0 0.00
Federal Ret Funds 1,197 0 0.00
Mutual Funds (excluding Money Funds) 7,829 0 0.00
Broker/Dealers 2,519 2,418 0.96
Hedge Funds 6,913 4,937 0.71
a

Most data are from the Flow of Funds March 2010 Level Tables, corresponding to the year 2007. The

broker/dealer and hedge fund total assets are as computed in He, Khang, and Krishnamurthy (2010), who use data

from SEC filings for the broker/dealer sector and data from Barclay’s Hedge for the hedge fund sector. We assume

that the average broker/dealer runs a leverage of 25, based on Adrian and Shin (2010). We assume the average

hedge fund leverages up its capital base 3.5 times (taken from McGuire, Remolona and Tsatsaronis (2005))

holdings proportionately, the asset market will not clear – i.e. the intermediary sector’s

assets still have to be held in equilibrium. In the model, the equilibrium is one where the

[identical] intermediaries take on debt and hold a riskier position in the asset. Asset prices

are then set by the increased risk/leverage considerations of the intermediaries. In practice,

if households withdraw money from mutual funds, then mutual funds do not take on debt.

Rather, they reduce their holdings of financial assets and some other entity buys their financial

assets. In practice, the other entity may be a trading desk at a bank or a hedge fund that

temporarily provides liquidity to the mutual fund. It may be that the buyers have excess equity

capital in which case the purchase can occur without specialists having to increase their risk

exposure/leverage and therefore without equilibrium asset prices adjusting appreciably. This

situation corresponds to the unconstrained region of the model. However, if equity capital is

constrained, as in the model’s constrained region, then the purchase will be financed by raising

debt, increasing leverage, and increasing risk concentration. In this case, asset prices will be

affected and driven by the limited equity capital of the buyers (i.e. banks/hedge funds).

The m of the model parameterizes the equity capital constraint of the intermediaries. From

the discussion of the preceding paragraph, we see that to model asset price behavior we want

m to correspond to the equity capital constraints of banks/hedge funds rather than features

of the broad intermediary sector. This is because it is the marginal pricing condition of these
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intermediaries that is most relevant during a liquidation crisis.

We set m equal to 4, which matches both ownership data of banks and compensation data

from hedge funds. Holderness, Kroszner and Sheehan (1999) report that the mean equity

ownership of officers and directors in the Finance, Insurance, and Real Estate sector was

17.4% in 1995. This translates to an m of 4.7(= 1−0.174
0.174

). We also present an m = 8 case to

provide a sense as to the sensitivity of the results to the choice of m. Hedge fund contracts

typically pay the manager 20% of the fund’s return in excess of a benchmark, plus 1 − 2% of

funds under management (Fung and Hsieh, 2006). The choice of m dictates how much of the

return of the intermediary goes to the specialist ( 1
1+m

) and how much go to equity investors

( m
1+m

). A value of m = 4 implies that the specialist’s share 1/5 = 20%. The 20% that is

common in hedge fund contracts is an option contract so it is not a full equity stake as in our

model, suggesting that perhaps we should use a larger value of m. However, to balance this,

note that the 1 − 2% fee is on funds under management and therefore grows as the fund is

successful and garners more inflows. We thus settle on a value of m = 4 as representative, in

a linear scheme, of the payoff structure of the hedge fund.

4.2 Choice of λ

As noted above, m only plays a role in the constrained region of the model. In practice, we

can see from Table 1 that the intermediary sector always has some leverage, whether in a crisis

or not. It is important to match leverage in the unconstrained region because leverage affects

how dividend shocks get magnified and hence how the state transits from unconstrained to

constrained region.

We choose λ = 0.6 to match leverage in the unconstrained region. In this region, we

interpret the model’s single intermediary as being an amalgam of all the intermediaries in Table

1. Within the model, when λ > 0 some households only demand debt, and the intermediaries

supply the debt and thereby achieve leverage even when intermediation is not constrained.

Across all of the intermediaries of Table 1, the Total Debt/Total Assets ratio is 0.52. Setting

λ = 0.6 in the model produces an average debt-to-asset ratio in the unconstrained region of

0.50, and an unconditional average debt-to-asset ratio of 0.55.

4.3 σ and g

We calibrate the intermediated asset to the market for mortgage-backed securities (MBS)

as a representative large intermediated asset class. The Securities Industry and Financial
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Markets Association (SIFMA) reports that the total outstanding MBS securities (Agency-

backed MBS, private-label MBS, commercial MBS) totaled $8.9tn in 2007. SIFMA reports

that the outstanding amount of asset-backed securities (auto, credit card, etc.) totaled $2.5tn

in 2007. We are unaware of data that allow us to know precisely who holds these securities.

However, the pattern of losses as reported by financial institutions in the subprime crisis, and

most analyses of losses (e.g., see the IMF’s Global Financial Stability Report of October 2008)

suggests these securities are mostly held in intermediary portfolios.

The Barclays Capital U.S. MBS Index (formerly the Lehman Brothers U.S. MBS index)

tracks the return on the universe of Agency-backed MBS from 1976 onwards. The annual

standard deviation of the excess return of this index over the Treasury bill rate, using data

from 1976 to 2008, is 8.1%. Note that this index measures the returns on Agency-backed MBS

which is the least risky (although largest) segment of the MBS market. As another benchmark,

the annual standard deviation of the excess return on Barclays index of commercial MBS over

the period 1999 (i.e. inception of the index) to 2008 is 9.6%.

We choose σ to be 9%. With this choice, the standard deviation of the excess return on

the intermediated asset in our model is 9.2%. This number is in the range between the low

risk Agency MBS and the higher risk commercial MBS. 11

We choose g = 1.84%. We would expect that the payouts on mortgage assets should grow

11Our choice of σ = 9% is an order of magnitude higher than aggregate consumption volatility of close

to 3%. In standard general equilibrium approaches to asset pricing, exemplified by Campbell and Cochrane

(1999) or Barberis, Huang, and Santos (2001), models assume a representative agent whose consumption is

equal to NIPA aggregate consumption and price a payoff with a dividend stream that matches properties of

aggregate stock market dividends.

The marginal investor in our model is the specialist-intermediary rather than a representative agent because

intermediaries are not a veil. As our analysis shows, the specialist’s marginal utility is endogenously affected by

fluctuations in the value of assets that the specialist holds. Thus, we do not exogenously specify the marginal

investor’s consumption process based on aggregate consumption, but endogenously derive the joint behavior

of specialist consumption and the prices of intermediated assets. For this reason, we choose the volatility

of the risky asset’s dividends to match those of financial payoffs rather than that of aggregate consumption.

Indeed, we see the endogenous relationship between financial wealth fluctuations and the pricing kernel as an

important reason to model intermediaries rather than treat them as a veil.

Finally, in principle it seems possible to reconcile the low aggregate consumption volatility we observe in

practice with the 9% dividend volatility of the model by assuming that the household sector has income from

other assets (i.e stock market dividends) and labor income, and that this income is weakly correlated with the

returns from mortgage-backed securities. Unfortunately, such a model will no longer be homogeneous with

respect to Dt which will considerably complicate the analysis.
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with the economy. We set g based on the growth of dividends in the stock market, taking such

growth to reflect the general rate of cash-flow growth in the economy. The choice of g has a

minor effect on results. On the other hand, σ is critical because it is closely related to the

amount of risk borne by the specialist and the volatility of the intermediary pricing kernel.

Table 2: Parameters

Panel A: Intermediation
m Intermediation multiplier 4
λ Debt ratio 0.6
Panel B: Preferences and Cashflows
g Dividend growth 1.84%
σ Dividend volatility 9%
ρ Time discount rate 5%
γ RRA of specialist 2
l Household labor income ratio 1.3

4.4 γ, l, and ρ

We choose γ = 2 as risk aversion of the specialist. This choice of γ produces an average excess

return on the intermediated asset of 3.4%. Over the 1976 to 2008 period, the average excess

return on the Barclay’s Agency MBS index was 2.6%. Over the 1999 to 2008 period, the

return on the commercial MBS index was 0.32%. However, the latter sample is quite short

and heavily weighted by a large -22.9% return in 2008. Note also that allowing for γ > 1 for

the specialist allows us to capture dynamic hedging effects that would be absent if set the

specialist to have log preferences to match with the household.

We choose l to match the income profile of a typical household. In our model, households

receive expected capital and dividend income of E
[
wtrtdt + (1 − λ)αh

t

(
d̃Rt − rtdt

)]
and ex-

pected labor income of E[lDtdt]. We set l = 1.3 which produces a capital income to total

income share of 33.7%. Parker and Vissing-Jorgensen (2010) report that the average capital

income to total income for households over the period from 1982 to 2006 was 32%.

We choose ρ = 0.05. This choice produces an average riskless interest rate of 0.62%, which

is in the range of typical numbers in the literature. Finally, our parameter choices are also

dictated by the restriction that, ρ+ g(γ −1)− γ(γ−1)σ2

2
− lγρ

1+l
> 0. This restriction is necessary

to ensure that the economy is well-behaved at t = ∞ (see Appendix A).
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4.5 Numerical method

We present numerical solutions based on the calibration of Table 2. We use one of MATLAB ’s

built-in ODE solvers to derive solutions for F (y), µy, and σy. Further details are provided in

the Appendix A.

With these solutions in hand, we numerically simulate the model to obtain the steady

state distribution of the state variable y as well as a number of asset price measurements

that we report in the next sections. We begin the economy at a state (y0 = yc, D0 = 1) and

simulate the economy for 5000 years. That is we obtain a sequence of independent draws from

the normal distribution and use these draws to represent innovations in our shock process

Zt. The path of Zt can then be mapped into a path of the state variable. We compute the

time-series averages of a number of relevant asset price measurements from years 1000 to 5000

of this sample. The simulation unit is monthly, and based on those monthly observations

we compute annual averages. We repeat this exercise 5000 times, averaging across all of the

simulated Zt paths. We find that changing the starting value y0 does not affect the computed

distribution or any of the asset price measurements, indicating that the distribution truly

represents the steady state distribution of the economy.

5 Crisis Behavior

5.1 Risk Premium and Sharpe Ratio

Figure 2 graphs the risk premium and Sharpe ratio for the calibration of Table 2 as a function

of the specialist wealth relative to the value of the risky asset (w/P ). The latter ratio can

be interpreted as the inside capital of the intermediation sector as a percentage of the assets

held by the intermediation sector. Even though we solve our model based on the household’s

scaled wealth y = wh/D, we decide to illustrate our results using w/P in order to more clearly

discuss the role of intermediation capital.

The prominent feature of our model, clearly illustrated by the graphs, is the asymmetric

behavior of the risk premium and Sharpe ratio. The right hand side of the graphs represent

the unconstrained states of the economy, while the left hand side represent the constrained

states. The cutoff for the constrained region in the figures is 0.091. In words, the constrained

region arises when specialists own [less than] equity equivalent to 9.1% of the assets held by

intermediaries. Note that this number refers to the equity ownership of the entire interme-
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Figure 2: Risk Premium and Sharpe Ratio
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Risk premium (left panel) and Sharpe ratio (right panel) are graphed against w/P , the specialist

wealth as a percentage of the assets held by the intermediation sector. Parameters are those given

in Table 2.

diation sector; there may be some sectors where the specialists own far less than 9.1%, and

some where the specialists own more. Risk premia and Sharpe ratio rise as specialist wealth

falls in the constrained region, while being relatively constant in the unconstrained region.

This asymmetric behavior is intuitively what one would expect from the model: the model’s

intermediation constraint is by its nature asymmetric, and binding only when specialist wealth

is low. To sharpen understanding of the mapping between the constraint and risk premia,

consider the following calculation. As noted above, the pricing kernel in our model can be

expressed in terms of the specialist’s consumption. Thus, the risk premium on the risky asset

is equal to:

γ covt

(
dct

ct

, dRt

)

To a first-order approximation, the volatility of the specialist’s consumption growth is equal

to the volatility of the return on his wealth (the approximation is exact if γ = 1). Thus,

vart

(
dct

ct

)
≈
(
αI

t

)2
vart(dRt),

where αI
t is the portfolio exposure to the risky asset in the intermediary’s (and specialist’s)

portfolios. Therefore, the risk premium is approximately,

γ
(
αI

t

)2
vart (dRt) .
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In our model, the variance of returns is roughly constant as a function of state (see the

discussion of this point below). Most of the action in the risk premium comes from the

changing αI
t . We have noted before that in the constrained region, as households withdraw

from intermediaries and limit their participation in the risky asset market, the specialists

increase their exposure to the risky asset (see equation (18)). This dynamic, driven through

αI
t , explains the behavior of the risk premium. Figure 3 graphs αI . We note the close

correspondence between this graph and those in Figure 2.

Figure 3: Portfolio Holdings
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The intermediary’s portfolio share in the risky asset (αI) is graphed

against w/P .

An interesting point of comparison for our results is to the literature on state-dependent

risk premia, notably, Campbell and Cochrane (1999), Barberis, Huang, and Santos (2001),

and Kyle and Xiong (2001). In these models, as in ours, the risk premium is increasing in

the adversity of the state. Campbell and Cochrane and Barberis, Huang, and Santos modify

the utility function of a representative investor to exhibit state-dependent risk aversion. We

work with a standard CRRA utility function, but generate state dependence endogenously as

a function of the frictions in the economy. For empirical work, our approach suggests that

measures of intermediary capital/capacity will help to explain risk premia. In this regard, our

model is closer in spirit to Kyle and Xiong who generate a risk premium that is a function

of “arbitrageur” wealth. The main theoretical difference between Kyle and Xiong and our
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model is that the wealth effect in their model comes from assuming that the arbitrageur has

log utility, while in our model it comes because the intermediation constraint is a function of

intermediary capital. For empirical work, our model suggests that measures of intermediary

capital will explain risk premia. One notable distinction of our model is the sharp asymmetry

of our model’s risk premia: a muted dependence on capital in the unconstrained region and a

strong dependence in the constrained region. In Kyle and Xiong, the log utility assumption

delivers a risk premium that is a much smoother function of arbitrageur wealth. Plausibly, to

explain a crisis episode, one needs the type of asymmetry delivered by our model.

5.2 Discussion: Leverage and Heterogeneity

Figure 3 also shows that the rise in the risk premium in the constrained region is closely

related to the rise in leverage of the intermediary sector. In practice, many intermediary

sectors during a crisis reduce leverage, while other sectors increase leverage. As with our

earlier discussion of calibration, there is heterogeneity within the intermediation sector that

our single intermediary model cannot capture. Adrian and Shin (2010) document that the

leverage of the broker/dealer sector is procyclical, suggesting that it falls during recessions

and crises. He, Khang, and Krishnamurthy (2010) document that in the period from the

fourth quarter of 2007 to the first quarter of 2009, spanning the worst episode of the subprime

crisis, the hedge fund and broker/dealer sector shed assets, consistent with the deleveraging

evidence of Adrian and Shin as well as theoretical papers modeling leverage constraints (see

Gromb and Vayanos, 2002, Geanokoplos and Fostel, 2008, and Brunnemeier and Pedersen,

2008). He, Khang, and Krishnamurthy show that the commercial banking sector increased

asset holdings over this period significantly. Moreoever, the leverage of the top 19 commercial

banks sector rises from 10.4 at the end of 2007 to near 30 at the start of 2009. He, Khang, and

Krishnamurthy suggest that the differential behavior of the commercial banking sector vis-a-

vis the hedge fund sector is that the former had access to government-backed debt financing,

which aided their leverage growth. The differential behavior of the banking sector in 2008 is

reflective of a broader pattern of reintermediation during financial downturns, as documented

by Gatev and Strahan (2006) and Pennacchi (2006). Importantly for the present analysis, in

accord with our model the intermediaries that are the buyers during the crisis (i.e. banks) do

so by borrowing and increasing leverage. Our model does not capture the other aspect of this

process, as reflected in the behavior of the hedge fund and broker/dealer sector, that other

parts of the financial sector reduce asset holdings and leverage. It would be interesting to
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build a model with heterogeneity within the intermediary sector to more fully address these

patterns.

5.3 Steady State Risk Premia

Quantitatively, as one can read from Figure 2, the calibration produces an average risk pre-

mium in the unconstrained region of approximately 3%. The numbers for the risk premium

are higher in the constrained region; however, without knowing the probability that a given

specialist-wealth state may occur, it is not possible to interpret a statement about how much

higher. To provide some sense for the values of the risk premium we may be likely to observe

in practice, we simulate the model as described in Section 4.5 and compute the equilibrium

probability of each state. The resulting steady state distribution over the specialist wealth

as a percentage of the assets held by the intermediation sector (w/P ) is graphed in Figure 4.

Also superimposed on the figure in a dashed line is the risk premium from the previous graph.

Figure 4: Steady State Distribution
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The steady state distribution of w/P is graphed. The vertical line gives the state where the inter-

mediation constraint starts binding (w/P = 0.091). The dashed line graphs the risk premium in

order to illustrate the actual range of variation of the risk premium. Risk premium is indicated on

the left scale, while the distribution is indicated on the right scale.

There are two forces driving the center-peaked distribution in Figure 4. First, as w/P

falls, the risk premium rises. This in turn means that the specialist, who is holding a levered

position in the risky asset, increases his wealth on average. This force is stronger as the risk
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premium rises, which is why the distribution places almost no weight on risk premia as high

as 30%. At the other end, when w/P is large so that wh is small, the households are poor

and consuming little but still receive labor income. Thus, their wealth grows as they save the

labor income, which shifts the wealth distribution back towards the constrained region.

Table 3: Measurements

Panel A: Constrained and Unconstrained Regions
We present average measurements for the economy, broken down into conditional on being in
the constrained region, conditional on being in the unconstrained region, and unconditional
average. Parameters are as given in Table 2. We also include a case for m = 8.

m = 4 Case m = 8 Case
Avg. Unc. Const. Avg. Unc. Const.

Probability 64.45 33.55 80.39 19.61
Risk Premium (%) 3.41 3.14 3.99 3.43 3.28 4.07
Sharpe Ratio (%) 36.95 33.79 43.19 37.34 35.57 44.64
Interest Rate (%) 0.62 0.87 0.12 0.58 0.72 0.00
Debt/Assets Ratio (%) 55.29 50.26 65.24 54.86 51.89 67.08
Income Ratio (%) 33.72 26.80 38.09 37.35 31.42 38.87

Panel B: Measures at Different Risk Premia
The second row reports the probability that the economy will ever reach a value of risk
premium greater than the given π. The rest of the rows report measures at the given π.

m = 4 m = 8
Risk Premium (%) ≡ π 3% 6% 9% 12% 3% 6% 9% 12%
Prob (Risk Premium> π) 93.93 1.58 0.26 0.08 94.55 1.01 0.17 0.06
Sharpe Ratio at π 31.89 65.46 101.46 140.67 31.88 65.95 100.89 136.95
Interest Rate at π 0.96 -1.77 -4.79 -8.05 0.95 -1.86 -4.89 -7.99
Debt/Assets Ratio at π 44.00 81.96 89.76 93.19 43.30 82.26 89.58 92.76

Table 3 provides further information on the range of variation of the state variable. Fo-

cusing on Panel A (m = 4 case), the economy spends 66.45% of the time in the unconstrained

region. We may think of the unconstrained region as a “normal” non-crisis period. The av-

erage risk premium and Sharpe ratio, conditional on being in the unconstrained region, is

3.14% and 33.89, respectively (Panel A). In the constrained region, the risk premium rises to

average 3.99%. The probability that the risk premium will exceed 6% is 1.58%. For the risk

premium to exceed 9%, which is about triple the unconstrained region average in terms of

both risk premium and Sharpe ratio, the probability is 0.26% (Panel B). An extreme crisis

that increases risk premia and Sharpe ratio about 4X to 12% is very unlikely, in keeping with

the historical record. Our model puts this probability at 0.08%.
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Figure 5: Crisis Spreads
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The left panel graphs the spreads between the Moody’s index of AAA corporate bonds and the

10 year Treasury rate (grey line, “credit”), the spreads between FNMA 6% TBA mortgage-backed

securities and the 10 year Treasury rate (black line, “MBS”), and the option-adjusted spreads on

a portfolio of interest-only mortgage-backed securities relative to Treasury bonds (dashed line, “IO

OAS”) from 1997 to 1999. The right panel graphs the same credit spread as well as the OAS on the

FNMA 6% MBS from 2007 to 2009.

To put the numbers from Table 3 in perspective, consider the 1998 crisis and the 2008

subprime crisis. Figure 5, left-panel graphs the behavior of the high grade credit spread

(AAA bonds minus Treasuries), the spread on FNMA mortgage backed securities relative

to Treasuries, and the option adjusted spread on volatile interest-only mortgage derivative

securities (data are from Gabaix, Krishnamurthy, and Vigneron, 2007). The spreads are

graphed over a period from 1997 to 1999 and includes the fall of 1998 hedge fund crisis.

During 1997 and upto the middle of 1998 spreads move in a fairly narrow range. If we

interpret the unconstrained states of our model as this “normal” period, then the muted

response of risk premia to the state can capture this pre-crisis period. In a short period

around October 1998 spreads on these securities increase sharply. The credit spreads and

MBS spreads double from their pre-crisis level. The mortgage derivative spread increases by

many multiples. The right-panel graphs the credit spread and the FNMA mortgage spread

from 2007 to 2009. The subprime crisis begins in the summer of 2007, escalating until the fall

of 2008. From the pre-crisis period to the fall of 2008, the MBS spread quadruples, while the

credit spread rises six-fold. It is hard to say precisely how much Sharpe ratios increase during

these episodes, because the underlying default risk in these bonds is also increasing. However,
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a doubling or tripling is plausibly within the range of estimates. Our simulations suggest that

the probability of the risk premium tripling from a normal level is 0.26%, indicating these

crises are rare events. Moreover, from the standpoint of standard representative household

asset pricing models, even a modest increase in risk premia during the 1998 event is difficult to

understand as aggregate consumption was barely at risk. In our model, the asymmetry in the

intermediation constraint calibrated to hedge fund data can generate the dramatic increase in

risk premia around crises.

The table also presents an m = 8 case to gauge the sensitivity of the calibration to the

choice of m, which is perhaps the hardest parameter to confidently pin down. The larger m

leads to a smaller constrained region (“constraints” effect). The probability of falling into

the constrained region is 19.61% for this case, compared to 33.54% for the m = 4 case. As

discussed in Section 3.4, when m is larger the specialist is able to raise more external capital

based on any given level of his own wealth. Thus his wealth has to be lower in order to fall

into the constrained region. On the other hand, the risk premium in the constrained and

unconstrained regions are higher in the m = 8 case. More generally, the higher m case also

displays a “sensitivity” effect. When m is higher a $1 fall in specialist wealth leads to an $m

reduction in household contributions to the intermediary, creating a sharper rise of the risk

premium for any given specialist wealth. The two effects of changing m roughly cancel out:

risk premia are conditionally higher in the m = 8 case, but the economy is also less likely to

fall into the constrained region.

5.4 Flight to quality

The row in Table 3, Panel A corresponding to the interest rate shows that the interest rate

falls from an average of 0.62% in the unconstrained region to 0.12% in the constrained region.

There are two intuitions behind this fall in interest rates. First, as the specialist’s consumption

volatility rises with the tightness of the intermediation constraint, the precautionary savings

effect increases specialist demand for the riskless bond. Second, as specialist wealth falls,

households withdraw equity from intermediaries, increasing their demand for the riskless bond.

To clear the bond market, the equilibrium interest rate has to fall. Both the behavior of the

interest rate and the disintermediation-driven demand for bonds is consistent with a flight to

quality.

However, we can also see from the table that the interest rate is over-sensitive to the state

in our model. At the 6% risk premium state, the interest rate is around −1.77%, falling to
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−4.79% at the 9% risk premium state (for the m = 4 case).

The main reason for this over-sensitive interest rate is that we are pushing the general

equilibrium of our model too far. Our model-economy consists of only an intermediation

sector and therefore ascribes all movements in interest rates to shocks within that sector. In

practice, part of the demand for bonds in the economy is from sectors that are unaffected

by the intermediation constraint, so that it is likely that our model overstates the interest

rate effect. However, it also does not seem appropriate to fix the interest rate exogenously,

since interest rates do fall during a crisis episode. Thus, while the qualitative prediction of

our model for interest rates seems correct, the quantitative implications are the least credible

results of our analysis.

5.5 Price/Dividend Ratio and Volatility

Figure 6: P/D Ratio and Volatility
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Price/Dividend ratio (left panel) and risky asset return volatility (right panel) are graphed against

the specialist wealth as a percentage of the assets held by the intermediation sector (w/P ). Param-

eters are given in Table 2.

The left-hand panel of Figure 6 graphs the price/dividend ratio F (·) against w/P . Con-

sistent with intuition, over most of the range, F (·) falls as specialist wealth falls. There is a

non-monotonicity that arises when the specialist wealth is very small – although this occurs

for values of w/P for which the steady state distribution places very little weight (see Figure

4). The non-monotonicity arises because interest rates diverge to negative infinity when the

specialist wealth approaches zero. There are two forces affecting the discount rates applied to
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dividends in determining F (·): On the one hand, the risk premium is high when the specialist

wealth is low; on the other hand, the interest rate is low for higher specialist wealth. These

two effects combine to produce the non-monotonicity of F (·).
The right-hand panel of Figure 6 gives the pattern of the risky asset return volatility when

the specialist wealth varies. Over most of the relevant range of variation of the state variable,

the volatility is constant between 9% and 9.5%. In particular, the model fails to replicate the

observed increase in conditional volatility accompanying a crisis period.

The non-monotonicity in F (·) also causes volatility to fall in the region where w/P ap-

proaches zero. The risky asset price is equal to Dt ×F (wt/Pt). The non-monotonicity means

that a shock that causes a fall in Dt leads to a rise in F (since wt/Pt decreases as Dt falls,

and F ′(·) < 0). We stress again that the steady state distribution places almost no weight on

these small values of w/P .

5.6 Capital movement and recovery from crisis

Referring to Figure 5, left-panel, the corporate bond spread and MBS spread widen from 90

bps in July 1998 to a high of 180 bps in October 1998 before coming down to 130 bps in

June 1999. Thus, the half-life — that is, the time it takes the spread to fall halfway to the

pre-crisis level — is about 10 months. The interest-only mortgage derivative spread, which is

very sensitive to market conditions, widens from 250 bps in July 1998 to a high of 2000 bps

before coming back to 500 bps in June 1999. In the right-panel, the MBS spread recovers

back to its pre-crisis level by June 2009, while the credit spread remains elevated through the

end of the period. We note that this timescale for mean reversion, on the order of months,

is much slower than the daily mean-reversion patterns commonly addressed in the market

micro-structure literature (e.g., Campbell, Grossman, and Wang, 1994).

A common wisdom among many observers is that this pattern of recovery reflects the

slow movement of capital into the affected markets (Froot and O’Connell, 1999, Berndt, et.

al., 2004, Mitchell, Pedersen, and Pulvino, 2007, Duffie and Strulovici, 2009). Our model

captures this slow movement. We will show in this section that our baseline calibration can

also replicate these speeds of capital movement.

In the crisis states of our model, risk premia are high and the specialists hold leveraged

positions on the risky asset. Over time, profits from this position increase wt, thereby in-

creasing the capital base of the intermediaries. The increase in specialist capital is mirrored

by an m-fold increase in the allocation of households’ capital to the intermediaries, as the

32



intermediation constraint is relaxed. Together these forces reflect a movement of capital back

into the risky asset market and lead to increased risk-bearing capacity and lower risk premia.

Note, however, that one dimension of capital movement that plausibly occurs in practice but

is not captured by our model is the entry of “new” specialists into the risky asset market.

We can use the model simulation to gauge the length and severity of a crisis within our

model. Table 4 presents data on how long it takes to recover from a crisis in our model. We

fix a state (y, D) corresponding to an instantaneous risk premium in the “Transit from” row.

Simulating the model from that initial condition, we compute and report the first passage

time that the state hits the risk premium corresponding to the “Transit to” column. The time

is reported in years.

Table 4: Crisis Recovery

This table presents transition time data from simulating the model. We fix a state
corresponding to an instantaneous risk premium of 12% (“Transit from”). Simulating
the model from that initial condition, we compute and report the first passage time
that the state hits the risk premium corresponding to that in the “Transit to” column.
Time is reported in years. The column “Increment time” reports the time between
incremental “Transit to” rows.
Transit to 10 7.5 6 5 4 3.5
Transit time from 12 0.17 0.66 1.49 2.72 5.88 9.84
Increment time 0.17 0.49 0.83 1.24 3.15 3.97

If we start from the extreme crisis state of 12% and compute how long it takes to recover

to 7.5% — i.e. halfway back to the unconditional average levels we report earlier of around 3%

— the time is 0.66 years (7.9 months). From the 10% crisis state to the 6.5% state (halfway to

3%) takes 0.93 years (this number is not reported in the table). For the fall of 1998 episode,

the half-life we suggested was around 10 months. The model half-life from 10% is of the same

order of magnitude of the empirical observation.

The slow adjustment of risk premia, in timescales of many months, during the 1998 episode

is also consistent with other studies of crisis episodes. Berndt, et. al. (2005) study the credit

default swap market from 2000 to 2004 and note a dramatic market-wide increase in risk

premia (roughly a quadrupling) in July 2002 (see Figures 1 and 2 of the paper). Risk premia

gradually fall over the next two years: From the peak in July 2002, risk premia halve by

April 2003 (9 months). The authors argue that dislocations beginning with the Enron crisis

led to a decrease in risk-bearing capacity among corporate bond investors. Mirroring the

decreasing risk-bearing capacity, risk premia rose before slowly falling as capital moved back
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into the corporate bond market and expanded risk bearing capacity. Gabaix, Krishnamurthy,

and Vigneron (2007) note a dislocation in the mortgage-backed securities in late 1993 trig-

gered by an unexpected wave of consumer prepayments. A number of important hedge fund

players suffered losses and went out of business during this period, leading to a reduction in

risk bearing capacity. Figure 3 in the paper documents that risk premia reached a peak in

December 1993 before halving by April 1994 (5 months). Froot and O’Connell (1999) study

the catastrophe insurance market and demonstrate similar phenomena. When insurers suffer

losses that deplete capital they raise the price of catastrophe insurance. Prices then gradually

fall back to long-run levels as capital moves back into the catastrophe insurance market. Froot

and O’Connell show that the half-life in terms of prices can be well over a year.12

Each of these markets are intermediated markets that fit our model well. Investors are

institutions who have specialized expertise in assessing risk in their markets. Our theory

explains the slow movement of risk bearing capacity and risk premia documented in these

case-studies. The calibrated model also captures the frequency of the slow adjustment of risk

premia.

6 Crisis Policy Experiments

We study the effect of policy interventions in the crisis of the model. We study three policies:

(1) Lowering borrowing rates to the intermediary, as with a decrease in the central bank’s

discount rate; (2) Direct purchase of the risky asset by the government, financed by debt

issuance and taxation of households; and,(3) Infusing equity capital into the intermediaries

during a crisis. These three policies are chosen because they are among those undertaken by

central banks in practice. Our aim is to quantify the effects of these policies on the equilibrium

of our model. The analysis is purely positive, and we make no claims as to optimality.

Our policy experiments correspond to the following exercise. Suppose we are in a crisis

state currently, with a given asset/liability position for the households and specialists. From

this initial condition, suppose that the government conducts a policy that was not anticipated

by the agents. We trace the effects of this policy on the recovery of the economy from that

12Mitchell, Pedersen, and Pulvino (2007) document similar effects in the convertible bond market in 1998

and again in 2005. In both cases, crisis recovery times are in the order of months. They also note that spreads

in merger arbitrage strategies took several months to recover following the October 1987 risky asset-market

crash.
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crisis state.13

To be more precise, we compute two equilibria, one with the policy and one without the

policy. For example, the first policy we consider is a borrowing subsidy that is given to

intermediaries as long as the economy is in the constrained region. We write the subsidy as

a function of the primitive state variables and solve the equilibrium of the model under such

a policy. We then suppose that the economy is currently in a given crisis state of the no-

policy equilibrum (12% risk premium state in the simulations), characterized by the portfolio

positions of the households and the specialists. The government policy enacted in this state

causes asset prices to jump because the policy is unanticipated. From that point on, the

dynamics of the economy are described by the solution to our model under the with-policy

equilibrium.14

6.1 Borrowing Subsidy

During financial crises, the central bank lowers its discount rate and its target for the overnight

interbank interest rate. Financial intermediaries rely heavily on rolling over one-day loans

for their operation (see, for example, Adrian and Shin (2010) on the overnight repurchase

market). Because of this dependence, intermediaries are perhaps the most sensitive sector

within the economy to overnight interest rates. Commercial and investment banks have access

to overnight funds at the discount window of the central bank. Thus, to the extent that the

central bank lowers overnight rates, including the discount rate, it reduces the borrowing costs

of financial intermediaries.

While our model does not have a monetary side within which to analyze how a central bank

alters the equilibrium overnight interest rate, we can go some way towards examining the effect

of this policy by studying the following transfer. The debt position of intermediaries at date

t is (αI
t − 1)wt. Suppose that the government makes a lumpsum transfer of ∆r× (αI

t − 1)wtdt

from households to intermediaries, where ∆r measures the size of the transfer. The transfer

13The government policy is a zero-probability event in our exercise. Another experiment would be to study

a policy that is expected to be enacted given some value of the state variable – say the government infuses

equity capital if the risk premium touches 12%. Such a policy would be anticipated by agents within the

equilibrium of the model. Analyzing such a policy does not pose any difficulty for our modeling structure,

but it adds an extra layer of complexity to the model. For the sake of brevity, we have opted to focus on the

simpler experiment.
14The initial condition from which we simulate the with-policy equilibrium is chosen so that it matches the

portfolio holdings of the household in the 12% risk premium state of the no-policy equilibrium.
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is proportional to the debt of the intermediary.

The subsidy experiment can be thought of as a reduction in the central bank’s discount

rate. In practice, when the central bank makes funds available more cheaply to the financial

sector through the discount window it is transferring real resources from taxpaying households

to the financial sector. However, since our model is cast in real terms, the subsidy is only a

stand-in for a reduction in something like the overnight Federal Funds rate.

Formally, we examine an equilibrium where ∆r is paid only if w > wc. For w < wc there

is no subsidy. We express this transfer of ∆r × (αI
t − 1)wtdt in terms of the primitive state

variables yt and Dt. Then, the dynamic budget constraints of household and specialist are

altered to account for the transfer (see equation 10), and this change is traced through to

rederive the ODE for the price/dividend ratio (see Appendix C for details).

Table 5: Borrowing Subsidy

This table presents transition time data from simulating the
model. We begin in the 12% risk premium state and report
the first passage time for the state to reach that in the first
column of the table (“Transit to” column). Time is reported
in years. We report the case of no subsidy (∆r = 0), as
well as subsidies of 0.01, 0.02 and 0.045. A subsidy of 0.01
corresponds to 100 bps. The first row of the table reports the
instantaneous jump downwards in the risk premium when the
government initiates the policy.
Transit to ∆r = 0 ∆r = 0.01 ∆r = 0.02 ∆r = 0.045

11.05% 10.11% 8.38%
10 0.17 0.10 0.03
7.50 0.66 0.48 0.34 0.12
6 1.49 1.08 0.79 0.40
5 2.72 1.94 1.43 0.75
4 5.88 4.02 2.81 1.36

Table 5 presents the results. We start the economy in the state corresponding to the 12%

risk premium. The subsidy of ∆r is provided to the intermediaries as long as the economy is

in the constrained region. The table reports the recovery times from the 12% extreme crisis

state for different levels of ∆r. Consistent with intuition, a higher subsidy speeds up the

recovery process. The 200 bps subsidy speeds up the recovery to 7.5% by 0.32 years. Note

that from August 2007 to October 2008, the discount rate decreased by 450 bps. The last

column in the table indicates the effect of this policy within our model. Figure 7 presents the
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data graphically.

Figure 7: Response to borrowing subsidy
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The figure describes the path of recovery, measured in terms of risk premium,

to a shock that moves the economy at t = 0 to the 12% risk premium state.

The recovery path is drawn for different levels of borrowing subsidy given to

intermediaries. The horizontal line indicates the unconstrained average risk

premium of 3.14%.

6.2 Direct Asset Purchase

In both the subprime crisis as well as the Great Depression the government directly entered

the asset market to purchase distressed assets. The Federal Reserve and GSEs purchased

nearly $1.8tn of mortgage-backed securities over the period from August 2007 to August 2009

($1.25tn by the Federal Reserve and $550bn by the GSEs). We can evaluate the impact of this

policy as follows. Suppose that the government purchases a fraction s the risky asset in states

w < wc, financing this purchase by issuing sP of instantaneous debt (where P is the price of

the risky asset). The cash-flow, after repaying debt, from this transaction is sP (dRt − rtdt)..

We assume that the government raises lumpsum taxes from (or rebates to) the households to

balance this cash-flow.

Table 5 reports the results for three values of s, which is the share of the intermediated

risky asset market that the government purchases. If we take the stock of intermediated assets

to be $15tn, then the $1.8tn number cited above is 12% of this stock. We assume that the
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policy is initiated in the state corresponding to 12% risk premium and not removed until the

economy is in the unconstrained region. We trace the recovery path from this state.

Table 6: Asset Purchase

This table presents transition time data from simulating the
model. We begin in the 12% risk premium state and report the
first passage time for the state to reach that in the first column of
the table (“Transit to” column). Time is reported in years. We
report the case of no purchase (s = 0), as well as purchases of
0.04, 0.08, and 0.12. A purchase with s = 0.04 corresponds to the
government buying 4% of the outstanding stock of intermediated
risky assets. The first row of the table reports the instantaneous
jump downwards in the risk premium when the government be-
gins its purchase.
Transit to s = 0 s = 0.04 s = 0.08 s = 0.12

11.63% 11.18% 10.77%
10 0.17 0.17 0.14 0.10
7.50 0.66 0.68 0.63 0.58
6 1.49 1.47 1.44 1.40
5 2.72 2.70 2.64 2.56
4 5.88 5.87 5.81 5.63

The policy causes a downward jump in the risk premium. The asset purchase policy

indirectly increases the household’s exposure to the risky asset because future taxes now

depend on the returns to the risky asset. In turn, this means that specialists bear less risk

in equilibrium and hence the risk premium falls. Effectively this policy puts less risk on the

limited risk-bearing capacity of the intermediary sector. After this initial jump the recovery

path is almost the same as the case of no intervention. For example, if we compare the

incremental time it takes the economy to move from 7.5% to 6%, we see that the time for the

no intervention case is 0.83 years, while it is 0.82 years for the case of s = 0.12. Intuitively

the purchase has no further effect because there is a countervailing force: the specialist holds

a smaller position in the risky asset (since the taxpayer holds a larger share) and hence less

of the risk premium accrues to it, which causes intermediary capital to recover more slowly.

6.3 Capital infusion

A number of crisis interventions are aimed at increasing the equity capital of intermediaries.

For example, in the Great Depression, the government directly acquired preferred shares in
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banks, thereby increasing their equity capital. In the subprime crisis, the U.S. Treasury

purchased $205 bn of preferred shares in the intermediary sector through the capital purchase

program.

We examine an equilibrium in which m is increased to m̄ > 4 in a crisis, defined as states

where w < w∗, or equivalently y > y∗. The higher m indicates that the intermediary increases

its equity capital proportionate to m̄ − m. The extra equity capital is purchased by the

government, and paid for by lumpsum taxes on the households. Returns on the government

investment are rebated in a lumpsum fashion to the households. We think of the increase in

m as a temporary relaxation of the equity capital constraint. For example, one may imagine

that the government is temporarily able to monitor intermediaries better than households

during a crisis and can thus relax the capital constraint. Our aim is to quantify the effect of

the relaxation of the constraint on the crisis recovery.

To evaluate the Treasury’s policy with our model, we need to choose m̄ and w∗. As with

the asset purchase policy, we express the policy formally in terms of y. We set y∗ equal to

yc, so that the policy is reversed when the economy enters the unconstrained region. For

technical reasons, to avoid a discontinuity in m, we increase m from to m̄ over an interval

from y∗ to y∗ + 0.22, where 0.22 is the drift of y around y∗ in the new equilibrium. Our aim

here is to implement the policy to last 1 year from the time at which it is initiated, matching

the duration of the stimulus we have observed in practice. Our results are not sensitive to the

choice of 0.22.

We choose m̄ to represent the Treasury’s purchase of $205 bn of bank capital. Note

that capital in our model refers to common shares, while in practice, the Treasury purchased

preferred shares. The distinction is important because our model works through the sharing

of risk between the specialist and the household/government, rather than directly through

the amount of funds that are transferred to the intermediary sector. When the government

invests in the intermediary and shares some of the risk in the specialist’s investment, then

the specialist bears less risk in equilibrium and the risk premium adjusts downwards. The

returns on common shares are more sensitive to the returns on intermediary investment than

are the returns on preferred shares, indicating that common shares allow for more risk sharing

than preferred shares. Franks and Torous (1994), based on a sample of distressed firms over

the period 1983 to 1988, document that in a bankruptcy/reorganization, preferred shares are

repaid 42% of face value. In our model, the value of common shares approaches zero as the

value of assets falls towards the value of liabilities (the bankruptcy threshold). Likewise, as

the value of assets rises, preferred shares received a relatively fixed dividend, while the value
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of common shares increases. We translate the preferred share purchase in terms of common

shares using the 42% number of Franks and Torous. We assume that an injection of $1 of

preferred shares is equal to an injection of $0.58 (= 1 − 0.42)of common shares.

The Treasury’s capital injection was distributed across many banks, from pure lending

institutions to trading institutions. Since our model is primarily about securities markets

and trading institutions, we apportion the $205 bn capital to reflect the injection of capital to

support securities trading. We multiply the injection by 0.40, which is the fraction of securities

in total bank assets, as computed from the Flow of Funds 2007 data. We thus evaluate the

effect in our model of raising m to m̄ in the crisis states, where m̄ is chosen so that the implied

increase in equity capital (as fraction of total assets under intermediation) in the 12% crisis

state is $48 bn (=205 × 0.58 × 0.40) divided by $15 tn. We also present results for a $38 bn

and $58 bn equity injection. The results are in Table 7.

Table 7: Equity Injection

This table presents transition time data from simulating the
model. We begin in the 12% risk premium state and report the
first passage time for the state to reach that in the first column of
the table (“Transit to” column). Time is reported in years. We
report the case of a purchase of equity capital of $38 bn, $48 bn
and $58 bn, which is reversed in roughly one year. The first row
of the table reports the instantaneous jump downwards in the risk
premium when the government injects the equity capital.
Transit to Baseline $38bn $48bn $58bn

9.12% 8.67% 8.28%
7.50 1.09 0.39 0.31 0.23
6 1.49 1.14 1.05 0.96
5 2.72 2.33 2.20 2.10
4 5.88 5.13 5.06 4.98

The effects of policy are qualitatively similar to the other cases: there is a jump downwards

in the risk premium and a gradual adjustment afterwards. It is most interesting to compare

the effects of the three policies. Compared to the asset purchase case, we see that a relatively

small amount of funds used towards equity purchase produces a much faster recovery. The

reason that the equity injection has such a large effect is because the fundamental friction in

our model is an equity capital constraint. The equity capital injection of $48 bn, corresponding

to the actually policy enacted in 2008/2008, leads to a recovery time to the 6% state of 1.05

years. The 450 basis point borrowing subsidy, corresponding to actual policy, leads to the
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fastest recovery time of of 0.40 years. This policy has a large effect because the intermediaries

are very leveraged in our model, carrying a debt/asset ratio of 82% in the 12% risk premium

state. These numbers concern the benefits of these policies. To provide a more comprehensive

assessment of the policies, one also needs to evaluate the costs of these interventions.

7 Conclusion

We have presented a model to study the dynamics of risk premia in a crisis episode where

intermediaries’ equity capital is scarce. We calibrate the model and show the model does well

in matching two aspects of crises: the nonlinearity of risk premia in crisis episodes; and, the

recovery from crises in the order of many months. We also use the model to evaluate the

effectiveness of central bank policies, finding that infusing equity capital into intermediaries

is the most effective policy in our model.

A limitation of our model is that it does not shed any light on the connection between

the performance of intermediated asset markets we model (i.e. the mortgage-backed securities

market) and the aggregate stock market. Yet, as we have seen during the subprime crisis, the

deterioration in intermediation does spillover to the S&P500. It will be interesting to explore

such a connection by introducing a second asset, in positive supply, that the households invest

in directly. Such an asset can represent the S&P500 and may shed light on the equity premium

puzzle. Introducing such an asset is also likely to dampen the over-sensitive interest rate effect

that is present in our model.
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A ODE Solution

In this appendix, we detail the ODE that characterizes the equilibrium. We analyze our ODE based

on state variable y, i.e., the scaled households wealth. Denote the dynamics of yt as,

dyt = µydt + σydZt, (21)

for unknown functions µy and σy

We write dct

ct
and dRt as functions of µy,σy and the derivatives of F (y). Because ct =

Dt (1 + l − ρyt), we have

dct
ct

=
dDt

Dt
− ρdy

1 + l− ρy
− ρ

1 + l− ρy
Covt

[
dy,

dD

D

]

=

(
g − ρ

1 + l − ρy
(µy + σyσ)

)
dt+

(
σ − ρσy

1 + l− ρy

)
dZt.

We also have

dRt =
dPt +Dtdt

Pt
=

[
g +

F ′

F
µy +

1

2

F ′′

F
σ2

y +
1

F
+
F ′

F
σyσ

]
dt+

(
σ +

F ′

F
σy

)
dZt.

Substituting these expressions into (16) we obtain the following ODE,

g +
F ′

F
µy +

1

2

F ′′

F
σ2

y +
1

F
+
F ′

F
σyσ = ρ+ γg− γρh

1− ρhy
(µy + σyσ) (22)

+γ

(
σ − ρh

1 − ρhy
σy

)(
σ +

F ′

F
σy

)
− 1

2
γ(γ + 1)

(
σ − ρh

1 − ρhy
σy

)2

.

A.1 Derivation of µy and σy

We rewrite equation (10) which describes the wealth dynamics (budget constraint) of the household
sector as:

dwh = θsdP +Dθsdt+ rθ̂bdt+ lDtdt− ρwhdt. (23)

In this equation,

θs = αIαh(1 − λ)
wh

P
(24)

are the number of shares that the risky asset household owns, and

θ̂bD = wh − θsP (25)

is the amount of funds that the risky asset and debt households together have invested in the riskless

bond. αh and αI are defined in the text and depends on whether the economy is constrained or not.

We apply Ito’s Lemma to P = DF (y) to find expressions for the drift and diffusion of dP . We

can then substitute back into equation (23) to find expressions for the drift and diffusion of dwh.
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Now, we have defined wh = Dy. We apply Ito’s Lemma to this equation to arrive at a second

expression for the drift and diffusion of dwh. Matching the drift and diffusion terms from these two

ways of writing dwh, we solve to find µy and σy.
The result of this algebra is that:

σy = − θ̂b
1 − θsF ′

σ,

and,

µy =
1

1− θsF ′

(
θs + l + (r + σ2 − g)θ̂b − ρy +

1

2
θsF

′′σ2
y

)
.

A.2 ODE

Substituting for µy derived in (A.1) into (22), we find,
(
F ′

F
+

γρ

1 + l − ρy

)(
1

1 − θsF ′

)(
θs + l+ θ̂b(r − g)− ρy

)
+

1

F

+
1

2
F ′′σ2

y

(
1

1 − θsF ′

)(
1

F
+ θs

γρ

1 + l − ρy

)

= ρ+ g(γ − 1) + γ

(
σ − ρ

1 + l− ρy
σy

)(
σ +

F ′

F
σy

)

−1

2
γ(γ + 1)

(
σ − ρ

1 + l− ρy
σy

)2

where,

r = ρ+ gγ − ργ

1 + l − ρy

θs + l + (r − g) θ̂b − ρy + σ2

2 θsF
′′ θ̂2

b

(1−θsF ′)2

1 − θsF ′

−γ (γ + 1)σ2

2

(
1 +

ρθ̂b
1 + l− ρy

1

1 − θsF ′

)2

We define a function, G(y) ≡ 1
1−θsF ′ ; with this definition, we can write G′ = θsG

2F ′′, and

σy = − θ̂b
1 − θsF ′

σ = −θ̂bσG.

Therefore we have

G′ (θ̂bσ)2

2
G

(
1

θsF
+

γρh

1 + l− ρy

)
= ρ+ g(γ − 1)− 1

F

+
1

2
γσ2

(
1 +

ρ

1 + l − ρy
θ̂bG

)


2
(
y −Gθ̂b

)

θsF
− (1 + γ)

1 + l − ρy + ρGθ̂b
1 + l− ρy




−
(
G− 1

θsF
+

γρh

1 + l− ρy
G

)(
θs + l + θ̂b(r− g)− ρy

)
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and

r =
ρ+ gγ − ργG

1+l−ρy

(
θs + l− gθ̂b − ρy + σ2

2 G
′θ̂2b

)
− γ(γ+1)σ2

2

(
1 + ρθ̂bG

1+l−ρy

)2

1 + ργGθ̂b

1+l−ρy

.

We combine these two pieces, using the relation, θ̂b

(
G−1
θsF

+ γρhG
1+l−ρy

)
= −y−Gθ̂b

θsF
+ 1+l−ρy+γρhGθ̂b

1+l−ρy
, and

arrive at a final expression of the ODE:

G′ (θ̂bσ)2

2

G

θsF

(
1 + l+ ρy(γ − 1)

1 + l− ρy + ργGθ̂b

)
(26)

= ρ+ g(γ − 1) − 1

F
+
γ (1 − γ)σ2

2

(
1 +

ρGθ̂b
1 + l− ρy

)
y −Gθ̂b
θsF

[
1 + l− ρy − ρGθ̂b

1 + l− ρy + ργGθ̂b

]

−
(

(1 + l − ρy) (G− 1)

θsF
+ γρhG

)
θs + l+ θ̂b(g(γ − 1) + ρ) − ρy

1 + l − ρy + ργGθ̂b
.

The expressions for the bond holding θ̂b and risky asset holding θs depend on whether the

economy is constrained or not. In the unconstrained region, as shown in Section 3.3, αh = 1, and

αI = F
F−λy

. Utilizing (25) and (24), we have θs = (1−λ)y
F−λy

, and θ̂b = λy F−y
F−λy

. In the constrained

region αh = m(F−y)
(1−λ)y

, αI = 1
1+m

F
F−y

, therefore θs = m
1+m

, and θ̂b = y − m
1+m

F . Finally, as illustrated

in Section 3.3, the cutoff for the constraint satisfies yc = m
1−λ+mF (yc), and the economy is in the

unconstrained region if 0 < y ≤ yc.

A.3 Boundary conditions and technical parameter restriction

The upper boundary condition is described in Section 3.5. A lower boundary condition occurs when
y → 0. This case corresponds to one where specialists hold the entire financial wealth of the economy.

Using L’Hopital’s rule, it is easy to check that G−1
θsF

→ F ′(0)
F (0) . Plugging this result into (26), and noting

that both θs and θ̂b go to zero as y goes to zero, we obtain,

F (0) =
1 + F ′ (0) l

ρ+ g(γ − 1) + γ(1−γ)σ2

2 − lγρ
1+l

. (27)

When l = 0, one can check that F (0) is the equilibrium Price/Dividend ratio for the economy with
the specialists as the representative agent. However because in our model the growth of the household

sector affects the pricing kernel, this boundary P/D ratio F (0) also depends on the household’s labor
income l. As in the case where l = 0, for the P/D ratio to be well defined we require that parameters

satisfy,

ρ+ g(γ − 1) +
γ (1 − γ)σ2

2
− lγρ

1 + l
> 0. (28)

Furthermore, a straightforward calculation yields that F ′
(
yb
)

= 1 if F (yb) = yb. This result

also ensures that the mapping from the scaled household’s wealth y to the scaled specialist wealth
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w/D = F (y) − y is strictly decreasing in the scaled household’s wealth y (this monotone relation

clearly fails if F
(
yb
)
> yb.) As a result, it is equivalent to model either agent’s wealth as our state

variable.

A.4 Numerical Method

In our ODE (26) both boundaries are singular, causing difficulties in directly applying the built-in

ODE solver ode15s in Matlab. To overcome this issue, we approximate the upper-end boundary
(
yb, F

(
yb
)

= yb
)

by
(
yb − η, yb − η

)
(where η is sufficiently small), and adopt a “forward-shooting

and line-connecting” method for the lower–end boundary. Take a small ε > 0 and call F̃ as the

attempted solution. For each trial φ ≡ F̃ ′ (ε), we set F̃ ′ (0) = φ, solve F̃ (0) based on (27), and let

F̃ (ε) = F̃ (0)+φε. Since
(
ε, F̃ (ε)

)
is away from the singularity, by trying different φ’s we apply the

standard shooting method to obtain the desired solution F that connects at
(
yb − η, yb − η

)
. For

y < ε, we simply approximate the solution by a line connecting (0, F (0)) and (ε, F (ε)). In other

words, we solve F on
[
ε, yb

]
with a smooth pasting condition for F ′ (ε) = F (ε)−F (0)

ε
and a value

matching condition for F
(
yb
)

= yb.

We use ε = 0.1 and η = 0.001 which give ODE errors bounded by 3 × 10−5 for y > ε. Different

ε’s and η’s deliver almost identical solutions for y > 1. Because we are mainly interested in the

solution behavior near yc (which takes a value of 14 even in the m = 1 case) and onwards, our main

calibration results are free of the approximation errors caused by the choice of ε and η. Finally we

find that, in fact, these errors are at the same magnitude as those generated by the capital constraint

around yc (3.5× 10−5).

B Verification of optimality

In this section we take the equilibrium Price/Dividend ratio F (y) as given, and verify that the

specialist’s consumption policy c = Dt (1 + l − yt) is optimal subject to his budget constraint. Our

argument is a variant of the standard one: it uses the strict concavity of u (·) and the specialist’s

budget constraint to show that the specialist’s Euler equation is necessary and sufficent for the

optimality of his consumption plan.
Specifically, fixing t = 0 and the starting state (y0, D0), define the pricing kernel as

ξt ≡ e−ρtc−γ
t = e−ρtD−γ

t (1 + l − ρyt)
−γ .

Consider another consumption profile ĉ which satisfies the budget constraintE
∫∞
0 ĉtξtdt ≤ ξ0D0 (F0 − y0)

(recall that the specialist’s wealth isD0 (F0 − y0); here we require that the specialist’s feasible trading
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strategies be well-behaved, e.g., his wealth process remains non-negative). Then we have

E

∫ ∞

0
e−ρtu (ct) dt ≥ E

∫ ∞

0
e−ρtu (ĉt) dt+E

∫ ∞

0
e−ρtu′ (ct) (ct − ĉt) dt

= E

∫ ∞

0

e−ρtu (ĉt) dt+E

∫ ∞

0

ξtctdt−E

∫ ∞

0

ξtĉtdt.

If the specialist’s budget equation holds in equality for the equilibrium consumption process c, i.e.,
if

E

∫ ∞

0
ξtctdt = ξ0D0 (F0 − y0) ,

then the result follows. Somewhat surprisingly, for our model this seemingly obvious claim requires

an involved argument because of the singularity at yb = 1+l
ρ

.

One can easily check that, for ∀T > 0, we have

ξ0D0 (F0 − y0) =

∫ T

0
ctξtdt+

∫ T

0
σ (Dt, yt) dZt + ξTDT (FT − yT ) , (29)

where σ (Dt, yt) corresponds to the specialist’s equilibrium trading strategy (which involves terms

such as (1 + l− ρy)−γ−1 and is NOT uniformly bounded as y → yb). Our goal in the following steps

is to show that in expectation, the latter two terms vanishes when T → ∞.

Step 1: Limiting Behavior of y at yb The critical observation regarding the evolution of y is

that when y approaches yb, it approximately follows a Bessel process with a dimension δ = γ+2 > 2.

(Given a δ-dimensional Brownian motion Z, a Bessel process with a dimension δ is the evolution of

‖Z‖ =

√∑δ
i=1 Z

2
i , which is the Euclidean distance between Z and the origin.) According to standard

results on Bessel processes, yb is an entrance-no-exit point, and is not reachable if the starting value

y0 < yb (if δ > 2). Intuitively, when y is close to yb, the dominating part of µy is proportional to

1
y−yb < 0, while the volatility σy is bounded— therefore a drift that diverges to negative infinity

keeps y away from the singular point yb. This result implies that our economy never hits yb.
To show that for y close to yb, y’s evolution can be approximated by a Bessel Process, one can

easily check that when y → yb,

r ' −(γ + 1)σ2

2

ρhθ̂bG

1 + l − ρhy
, µy ' −(γ + 1)σ2

2

ρhθ̂2bG
2

1 + l − ρhy
, σy = −Gσθ̂b;

and therefore

dy = −(γ + 1)σ2

2

ρθ̂2bG
2

1 + l − ρy
dt−Gσθ̂bdZ t.

Utilizing the result F ′
(
yb
)

= 1 established in Section 3.5, we know that when y → yb, θ̂b ' F −θsy '
1

1+m
yb = 1

1+m
1+l
ρ

, and G ' 1 +m. Let

xt = 1 + l − ρyt;
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then it is easy to show that q = x

Gσθ̂bρ
= x

σ(1+l)
evolves approximately according to

dq = − 1

Gσθ̂b
dy =

(γ + 1)

2q
dt+ dZt,

which is just a standard Bessel process with a dimension δ = γ + 2. Therefore, x is also a scaled

version of a Bessel process, and can never reach 0 (or, y cannot reach yb). In the following analysis,

we focus on the limiting behavior of x.

Step 2: Localization Note that in (29), due to the singularity at x = 0 (or, y = yb), both the local

martingale part
∫ T

0 σ (Dt, yt) dZt and the terminal wealth part ξTDT (FT − yT ) are not well-behaved.
To show our claim, we have to localize our economy, i.e., stop the economy once y is sufficiently close
to yb (or, once D is sufficiently close to 0). Specifically, we define

Tn = inf

{
t : xt =

1

n
or Dt =

1

nh

}

where h is a positive constant (as we will see, the choice of h, which is around 1, gives some flexibility

for γ other than 2). Since y and x have a one-to-one relation (x = 1 + l − ρy), for simplicity we

localize x instead.

Clearly this localization technique ensures that the local martingale part
∫ Tn

0 σ (Dt, yt) dZt is a
martingale (one can check that σ (Dt, yt) is continuous in Dt and yt, in turn Dt and xt; therefore

σ (Dt, yt) is locally bounded). As Tn → ∞ when n→ ∞, for our claim we need to show

lim
n→∞

E [ξTn
DTn

(FTn
− yTn

)] = 0

We substitute from the definition of ξ:

E
[
e−ρTnD1−γ

Tn
x−γ

Tn
(F (yTn

) − yTn
)
]
≤ E

[
e−ρTnnh(γ−1)x−γ

Tn
(F (yTn

) − yTn
)
]
.

Since the analysis will be obvious if x−γ (F (y) − y) is uniformly bounded (notice here x = 1+ l−ρy),
it is sufficient to consider xTn

= 1
n
. Because F

(
yb
)

= yb and F ′
(
yb
)

= 1, by Taylor expansion we

know that F
(
yb − 1

nρ

)
−
(
yb − 1

nρ

)
can be written as ψ (n) 1

n
when n is sufficiently large, and

ψ (n) → 0 as n→ ∞. Therefore we have to show that, as n→ ∞,

E
[
e−ρTnn(γ−1)(1+h)

]
ψ (n) → 0

and a sufficient condition is that,

E
[
e−ρTn

]
n(γ−1)(1+h) → K

where K is bounded.

We apply existing analytical results in the literature to show our claim. To do so, we have to
separate our two state variables. We define

TD
n = inf

{
t : Dt =

1

nh

}
, T x

n = inf

{
t : xt =

1

n

}
.
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We want to bound E
[
e−ρTn

]
by the sum of E

[
e−ρT D

n

]
and E

[
e−ρT x

n

]
; note that they are Laplace

transforms of the first-hitting time distribution of a GBM and Bessel processes, respectively. The

Laplace transform of Tn is simply

E
[
e−ρTn

]
=

∫ ∞

0
e−ρT dF (T ) = ρ

∫ ∞

0
e−ρT F (T ) dT,

where the bold F denotes the distribution function of Tn. The similar relation also holds for TD
n or

T x
n . Denote FD (·) (or Fx (·)) as the distribution function for TD

n (or T x
n ), and notice that

1 − F (T ) = Pr (Tn > T ) = Pr
(
TD

n > T, T x
n > T

)
> Pr

(
TD

n > T
)
Pr (T x

n > T )

= 1− FD (T ) −Fx (T ) + FD (T ) Fx (T ) ,

because 1{T D
n >T } and 1{T x

n
>T } are positively correlated (both take the value 1 when Z is high).15

Therefore F (T ) < FD (T ) + Fx (T ), or

E
[
e−ρTn

]
n(γ−1)(1+h) < E

[
e−ρT D

n

]
n(γ−1)(1+h) +E

[
e−ρT x

n

]
n(γ−1)(1+h)

Now we use the standard result of the Laplace transform of the first-hitting time distribution for a

GBM process (e.g., Borodin and Salminen (2002), page 622):

E
[
e−ρT D

n

]
= n

− h

σ2

“√
2ρσ2+(g−0.5σ2)2+g−0.5σ2

”

;

therefore when we choose some appropriate h so that

h

σ2

(√
2ρσ2 + (g − 0.5σ2)2 + g − 0.5σ2

)
> (γ − 1) (1 + h) ,

the first term E
[
e−ρT D

n

]
n(γ−1)(1+h) vanishes as n → ∞. For instance, this condition holds when

h = 0.9 under our parameterization.

Step 3: Regulated Bessel Process The challenging task is the second term. Notice that our

economy (i.e., evolution of x) differs from the evolution of a Bessel process when x is far away from 0;

therefore an extra care needs to be taken. We consider a regulated Bessel process which is reflected

at some positive constant x. Intuitively, by doing so, we are putting an upper bound for E
[
e−ρT x

n

]
,

as the reflection makes xt to hit 1
n more likely (therefore, a larger Fx). Also, for a sufficiently small

15Technically, using the technique of Malliavian derivatives, we can show that both xs and Ds

have positive diffusions in the martingale representations for all s. Then, the running minimum
xT = min{xt : 0 < t < T} and DT = min{Dt : 0 < t < T} have positive loadings always on the
martingale representations (using the technique in Methods of Mathematical Finance, Karatzas and
Shreve (1998), Page 367). The same technique can be applied to 1{T x

n>T } = 1{x
T

>T } and 1{T D
n >T } =

1{D
T

>T }, as an indicator function can be approximated by a sequence of differentiable increasing
functions.
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x > 0, when x ∈ (0, x], x can be approximated by a Bessel process with a dimension γ + 2 − ε.

Therefore, Fx must be bounded by the first-hitting time distribution of a Bessel process with a

dimension δ, where δ takes value from γ + 2 − ε to γ + 2, where ε is sufficiently small. Finally, note

that by considering a Bessel process we are neglecting certain drift for x. However, one can easily

check that when x is close to 0, the adjustment term for µy is −1+l
ρ
γσ2 < 0. This implies that we

are neglecting a positive drift for x—which potentially makes hitting less likely—thereby yielding an

upper-bound estimate.

We have the following Lemma from the Bessel process.

Lemma 1 Consider a Bessel process x with δ > 2 which is reflected at x > 0. Let ν = δ
2 − 1.

Starting from x0 ≤ x, we consider the hitting time T x
n = inf

{
t : xt = 1

n

}
. Then we have

E
[
e−ρT x

n

]
∝ n−2ν as n→ ∞

Proof. Due to the standard results in Bessel process and the Laplace transform of the hitting time
(e.g., see Borodin and Salminen (1996), Chapter 2), we have

E
[
e−ρT x

n

]
=
ϕ (x0)

ϕ
(

1
n

) ,

where

ϕ (z) = c1z
−νIv

(√
2ρz
)

+ c2z
−νKv

(√
2ρz
)
,

and Iv (·) (and Kv (·)) is modified Bessel function of the first (and second) kind of order v. Because
R is a reflecting barrier, the boundary condition is

ϕ′ (x) = 0,

which pins down the constants c1 and c2 (up to a constant multiplication; notice that this does not af-

fect the value of E
[
e−ρT x

n

]
). Therefore the growth rate of E

[
e−ρT x

n

]
is determined by nνKv

(√
2ρn−1

)

as Kv dominates Iv near 0. Since Kv (x) has a growth rate x−ν when x→ 0, the result is established.

For any y0, redefine starting point as x0 = min (1 + l− y0, x); clearly this leads to an upper-

bound estimate for E
[
e−ρT x

n

]
. However, since for all δ ∈ [γ + 2 − ε, γ + 2], the above Lemma tells

us that for any ε ∈ [0, ε], when n→ ∞,

n(γ−1)(1+h)E
[
e−ρT x

n

]
∝ n(γ−1)(1+h)n−2ν = n(γ−1)(1+h)−γ+ε → 0

uniformly if γ = 2 and h = 0.9 (and for some sufficiently small ε > 0). Therefore we obtain our

desirable result.

Finally ctξt > 0 implies that
∫∞
0 ctξtdt converges monotonically, and therefore the specialist’s

budget equation lim
T→∞

E
∫ T

0 ξtctdt = ξ0D0 (F0 − y0) holds for all stopping times that converge to

infinity. Q.E.D.
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C Appendix for Section 6

C.1 Borrowing Subsidy

We have the same ODE as in Appendix A. The only difference is that

µy =
1

1 − θsF ′

(
θs + l + (r + σ2 − g)θ̂b − θ̂b∆r− ρy +

1

2
θsF

′′σ2
y

)
.

C.2 Direct Asset Purchase

In this case, the intermediary holds 1 − s of the risky asset (where s is a function of (y, D)). In the

unconstrained region, αh = 1, and

αI
(
w + αh (1 − λ)wh

)

P
= 1 − s

which implies that αI =
(1−s)F
F−λy . Therefore the households’ holding of the risky asset through inter-

mediaries is

θI
s =

(1 − s) (1 − λ)y

F − λy
,

and the total holding is θs = θI
s + s =

(1−s)(1−λ)y
F−λy + s (y, D).

In the constrained region, αh = m(F−y)
(1−λ)y and αI = 1

1+m
(1−s)F
F−y

. So

θI
s =

m (F − y)

(1 − λ)y

1

1 +m

(1 − s)F

F − y
(1 − λ)

y

F
=

m

1 +m
(1 − s)

and the total holding is

θs =
m

1 +m
(1 − s) + s =

m+ s

1 +m
.

The same constraint cutoff applies yc = m
1−λ+mF

c.

Finally, the formal expressions for the case of capital infusion (i.e., changing m) is isomorphic to

the case of s > 0.
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