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Abstract A theoretical framework has been developed to describe the nonlinear regimes
of line-tied g modes in slab geometry and ballooning instabilities in toroidal configura-
tions. This work is motivated by the correlation of edge localized mode (ELM) activity
in H-mode plasmas with ideal MHD peeling-ballooning instability. Recent experimental
observation and numerical simulations demonstrate a persistence of ballooning-like fila-
mentary structures well into the nonlinear stage. Our theory is based on an expansion
using two small scale lengths, which are the mode displacement across magnetic flux sur-
face and the mode width in the most rapidly varying direction, both normalized by the
equilibrium scale length. When the mode displacement across magnetic flux surface is
much less than the mode width in the most rapidly varying direction, the mode is in the
linear regime. When the mode displacement grows to the order of the mode width in
the rapidly varying direction, the plasma remains incompressible to lowest order, and the
Cowley-Artun regime is obtained. The detonation regime, where the nonlinear growth of
the mode could be finite-time singular, is accessible when the system is sufficiently close
to marginal stability. At higher levels of nonlinearity, the system evolves to the intermedi-
ate nonlinear regime, when the mode displacement across magnetic flux surface becomes
comparable of the mode width in the same direction. During this phase, the nonlinear
growth of the mode in parallel and perpendicular directions are coupled, and sound wave
physics contributes to nonlinear stabilization. The governing equations for the line-tied g
mode and the ballooning instability in the intermediate nonlinear regime have been de-
rived. A remarkable feature of the nonlinear equations is that solutions of the associated
local linear mode equations continue to be valid solutions into the intermediate nonlinear
regime. This property has been confirmed in direct ideal MHD simulations of both the
line-tied g mode in a shearless slab and the ballooning instability in a tokamak, and may
help explain the persistence of the filamentary ELM structures observed in experiments
well into the nonlinear growth phase.

1 Introduction

Filamentary structures and their localization in the unfavorable curvature region of the
tokamak edge have been routinely observed during periods of edge localized modes (ELMs)
in recent Mega Amp Spherical Tokamak (MAST) experiments [1, 2] and extended magne-
tohydrodynamic (MHD) simulations [3, 4]. This suggests that the ballooning instability
properties of the pedestal region continue to play a dominant role in determining the non-
linear temporal and spatial structures of ELMs. Thus it may be possible to understand
the dynamics of the ELM filaments in terms of the nonlinear properties of the ballooning
instability. In this work, we develop an ideal MHD theory for the nonlinear evolution of
the line-tied g mode in a shearless slab geometry and the ballooning instability in general
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toroidal magnetic configurations. We also compare the prediction from theory with our
direct MHD simulations of both modes.

For simplicity, in this introduction we use the term “ballooning instability” to refer to
both the line-tied g mode in a shearless slab geometry and the ballooning mode in toroidal
configurations. This is because both modes share similar linear and nonlinear dynamics
despite the very different associated geometry [5, 6]. Due to its simpler geometry, the
line-tied g mode has been studied as a prototype for the more geometrically complicated
ballooning instability [7, 8, 9, 10, 11].

Different phases of ELMs may relate to different linear and nonlinear regimes of bal-
looning instability. To describe the different nonlinear phases, we introduce two small
parameters given by

n−1 =
k‖
k⊥

� 1, ε =
|ξ|
Leq

� 1. (1)

Here, k‖ and k⊥ are the dominant wavenumbers of the perturbation parallel to and per-
pendicular to the equilibrium magnetic field lines, respectively; ξ is the ideal MHD plasma
displacement produced by instability, and Leq is the equilibrium scale length (which is
used as the normalization length later so that Leq = 1).

The linear structure and growth rates of ballooning instabilities can be determined
using an asymptotic expansion of the linearized ideal MHD equation in terms of n−1 [12,
13, 14]. The mode structure in the fastest varying direction perpendicular to the field line
is given by n−1, which is the scale of the dominant wavelength. At lowest order in n−1, the
ballooning mode is described by two coupled one-dimensional ordinary differential equa-
tions along each field line, which together with proper boundary conditions, determines
the local eigenfrequency or local growth rate as well as the local mode structure along
the equilibrium magnetic field as a function of magnetic flux surface, field line, and radial
wavenumber. At higher order in n−1, a global eigenmode equation, the envelope equa-
tion, which uses information from the local mode calculations, governs the global growth
rate and mode structure across magnetic surfaces. In axisymmetric equilibria, the global
growth rate is given by the most unstable value of the local growth rate with stabilizing
corrections of order n−1. As shown earlier [7, 15, 16, 10, 11] and in this work, the prop-
erties of linear ballooning instability are crucial to the construction and understanding of
the theory of nonlinear ballooning instability.

The perturbation amplitude of the nonlinear ballooning mode, measured by ε (∼ |ξ|),
can be compared to the characteristic spatial scales of its linear mode structure. In the
early nonlinear regime, the filament scale |ξ| across the magnetic flux surface is comparable
to the mode width λα in the most rapidly oscillating direction, |ξ| ∼ λα ∼ n−1 [7, 15, 16].
In this regime, nonlinear convection |ξ| across the flux surface is small relative to the
mode width λΨ in that direction, and nonlinearities modify the radial envelope equation
describing mode evolution across the magnetic surface. Here Ψ and α are the flux and
field line labels, respectively, which are later used to define the equilibrium magnetic field
in Eq. (4). As the mode continues to grow, it enters the intermediate nonlinear regime, in
which |ξ| ∼ λΨ ∼ n−1/2; the plasma displacement across magnetic flux surface becomes
of the same order as the mode width in the same direction [10, 11]. In this regime, effects
due to convection and compression are no longer small. Nonlinearities due to convection
and compression, together with nonlinear line-bending forces, directly modify the “local”
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mode evolution along the magnetic field line. In the late nonlinear regime, the ballooning
filament growth may exceed the scale of the pedestal width and result in the collapse of
the pedestal. Eventually, these ballooning filaments could detach from edge plasma and
propagate into the scrape-off-layer region, as indicated from recent experiment [2]. In this
work, we consider the physics of the intermediate nonlinear phase and leave discussion of
the late nonlinear regime for subsequent work.

It is conceivable that the linear to early nonlinear regime of the ballooning instability
of the pedestal may correspond to the precursor phase of ELMs since the onset of the
ELMs have been consistently correlated to the breaching of the linear stability boundary
of the peeling-ballooning modes [17, 18]. Earlier theory attempted to explain the collapse
onset phase of ELMs by invoking a finite time-like singularity associated with the early
nonlinear ballooning instability of a marginally unstable configuration (“Cowley-Artun”
regime) [7, 15, 16]. Such a scenario, however, has yet to be confirmed by direct MHD
simulations, probably due to the rather limited range of validity for that regime. In
contrast, there is a good agreement between the solutions of the intermediate nonlinear
regime equations and results from direct MHD simulations for both the case of a line-tied
g-mode [11] and the ballooning instability of a tokamak [6] (Sec. 3). It is likely that the
intermediate nonlinear regime may better characterize the transition from the precursor
phase to the collapse onset of an ELM. This regime could become particularly relevant
for a transport barrier as the width of that barrier (or pedestal) region approaches the
mode width of the dominant ballooning mode.

In this work, an ideal MHD model is employed. However, the effects outside of ideal
MHD model could also play an important role in the nonlinear phase. In particular, it
is noted that FLR (finite Larmor radius) and two-fluid effects can significantly alter the
ELM filament dynamics, as indicated by the recent MHD simulations with the NIMROD
code [3, 4]. Whereas the FLR and two-fluid effects are well known to stabilize the linear
ballooning modes with sufficiently high-n mode numbers, their exact roles in the nonlin-
ear ballooning and ELM filament dynamics remain unclear. Earlier nonlinear theory of
the ballooning-like, line-tied g mode considered the linear contribution from the ion dia-
magnetic drift [8]. Their analysis suggests that the linear stabilization due to FLR effects
do not seem to alter the nonlinear growth rate. Similar findings were reported in recent
two-fluid MHD simulations of ELMs, where the FLR effects were found to alter nonlinear
filament and flow patterns, but did not significantly change the mode growth [19]. These
two-fluid MHD simulations of ballooning filament are reminiscent of previous two-fluid
simulations of magnetic Rayleigh-Taylor instability or g-mode, where the physics is ex-
pected to be similar [20, 21, 22]. Before embarking on a detailed nonlinear study of a more
sophisticated two-fluid model, a systematic study of the ideal MHD model is undertaken
in the present study.

In the rest of the paper, we first lay out the general equations of the intermediate
nonlinear regime for both the line-tied g mode and the ballooning instability. We then
review the comparisons between the theory and direct MHD simulations of the line-tied
g mode and the ballooning instability, respectively. Finally we conclude with a summary
and discussion.
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2 Theory

The nonlinear theory of ballooning mode can be conveniently developed in the Lagrangian
formulation of the ideal MHD model [23]

ρ0

J
∇0r ·

∂2ξ

∂t2
= −∇0

[
p0

Jγ
+

(B0 · ∇0r)
2

2J2

]
+∇0r ·

[
B0

J
· ∇0

(
B0

J
· ∇0r

)]
+

ρ0

J
∇0r · g (2)

where

r(r0, t) = r0 + ξ(r0, t), ∇0 =
∂

∂r0

, J(r0, t) = |∇0r|. (3)

Here, r0 denotes the initial location of each plasma element in the equilibrium, ξ is the
plasma displacement from the initial location, and J(r0, t) is the Jacobian for the La-
grangian transformation from r0 to r(r0, t); ρ0, p0, and B0 are the equilibrium mass
density, pressure, and magnetic field, respectively. We consider a general magnetic con-
figuration that can be described by

B0 = ∇0Ψ0 ×∇0α0 (4)

in a nonorthogonal Clebsch coordinate system (Ψ0, α0, l0), where Ψ0 is the magnetic flux
label, α0 the field line label, and l0 the measure of field line length. The corresponding
coordinate Jacobian is given by (∇0Ψ0 ×∇0α0 · ∇0l0)

−1 = |B0|−1.

The intermediate nonlinear regime is defined by the ordering ε ∼ O(n−1/2) [10, 11].
In this regime the plasma displacement ξ and the Lagrangian Jacobian J are expanded
as a single series in n−1/2

ξ(
√

nΨ0, nα0, l0, t) =
∞∑

j=1

n−
j
2

(
eΨξΨ

j
2

+
eα√
n

ξα
j+1
2

+ bξl
j
2

)
, (5)

J(
√

nΨ0, nα0, l0, t) = 1 + J0 +
∞∑

j=1

n−
j
2 J j

2
. (6)

where eΨ = B−1
0 ∇0α0 × ∇0l0, eα = B−1

0 ∇0l0 × ∇0Ψ0, el = B−1
0 B0 = b, and B0 = |B0|.

Here and subsequently we drop the subscript “0” in the equilibrium MHD fields ρ0, p0,
and B0 for convenience. The plasma displacement ξ and the Lagrangian Jacobian J are
functions of the normalized coordinates (Ψ, α, l), where Ψ =

√
nΨ0, α = nα0, l = l0.

For convenience, a new set of basis vectors are introduced [15]

e⊥ = eΨ · (I− bb) =
∇0α0 ×B

B2
, e∧ = eα · (I− bb) =

B×∇0Ψ0

B2
(7)

so that
ξ = e⊥ξΨ + e∧ξ

α + Bξ‖. (8)

At the third order of expansion, the governing equations for the intermediate nonlinear
regime (ε ∼ n−1/2) can be obtained in the following compact form [5][

Ψ + ξΨ
1
2
, ρ|e⊥|2∂2

t ξ
Ψ
1
2
− L⊥(ξΨ

1
2
, ξ
‖
1
2

)
]

= 0, (9)

ρB2∂2
t ξ
‖
1
2

− L‖(ξΨ
1
2
, ξ
‖
1
2

) = 0. (10)
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where ∂t = (∂/∂t)r0 , [A, B] ≡ ∂ΨA∂αB−∂αA∂ΨB, L⊥ (L‖) is the perpendicular (parallel)
component of the local linear ballooning and g mode operator [15, 5]. In general, equations
(9) and (10) require numerical solution. However, the structure of these two equations
indicates that the solution satisfies the following general form

ρ|e⊥|2∂2
t ξ

Ψ
1
2

= L⊥(ξΨ
1
2
, ξ
‖
1
2

) + N(Ψ + ξΨ
1
2
, l, t), (11)

ρB2∂2
t ξ
‖
1
2

= L‖(ξΨ
1
2
, ξ
‖
1
2

) (12)

where N(Ψ̃, l, t) is a function of the distorted flux function

Ψ̃ = Ψ + ξΨ
1
2
, (13)

in addition to the field line coordinate l and time. A particular choice is

N(Ψ̃, l, t) = 0, (14)

which implies that the solutions of the linear local ballooning mode equations will continue
to be the solution of the nonlinear ballooning equations (9) and (10). The nonlinearities
in equations (9) and (10) would vanish for any nonlinear solution that assumes the linear
ballooning mode structure in the Lagrangian coordinates. As a consequence, globally
the mode will grow exponentially at the growth rate of the corresponding linear phase
even in the intermediate nonlinear stage. As shown in next section, recent direct MHD
simulations have confirmed this theory prediction.

3 Comparisons with Direct MHD Simulations

Direct ideal MHD simulations of the line-tied g mode have been performed for a shearless
slab configuration (Fig. 1) using the BIC code [9]. A Cartesian coordinate system is
adopted, with x̂, ŷ, and ẑ being the basis vectors. The equilibrium field B0 is tied to two
ends in the z-direction; the gradients of the equilibrium density ρ0 and pressure p0 are in
the direction of x̂ perpendicular to field lines, and the gravity g is in the direction of −x̂.
The intermediate nonlinear equations (9) and (10) are solved numerically for the line-tied
g mode with the same initial and boundary conditions as those used in the corresponding
direct MHD simulation [11]. The growth of the maximum of the x-component of the
flow (ux = ∂tξx) obtained from both the numerical solution and the MHD simulation
are plotted in Fig. 1. The prediction from the asymptotic theory agrees well with the
result from the simulation throughout the linear and the intermediate nonlinear phases.
In particular, both the numerical solution and the simulation result demonstrate a nearly
exponential mode growth in the intermediate nonlinear phase, consistent with our analytic
theory.

The analytic solution of the nonlinear ballooning equations has also been verified in
recent simulations of nonlinear ballooning instability in a tokamak [6] using the NIRMOD
code [24]. The simulation starts with a small perturbation to a simple tokamak equilibrium
generated with the ESC solver [25] (Fig. 2). The initial perturbation is dominated by a
n = 15 component (where n is the toroidal mode number). In the NIMROD simulation,
we advance the plasma displacement as an extra field in Eulerian coordinates using

∂tξ(r, t) + u(r, t) · ∇ξ(r, t) = u(r, t) (15)
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Figure 1: Left: A shearless slab configuration of line-tied flux tubes; Right: Growth of the
maximum of flow in the x direction obtained from theory (solid red line) and simulation
(broken black line). The maximum of the initial flow is ux0 = 10−3. The two horizontal
(vertical) broken lines represent the Cowley-Artun (“CA”) regime and the intermediate
regime (denoted as “Int”) in mode magnitude (in time) respectively.

where u(r, t) is the velocity field, ∂t = (∂/∂t)r, and ∇ = ∂/∂r. We then calculate the
Lagrangian divergence ∇0 · ξ from the Eulerian tensor ∇ξ using the identity

∇0 · ξ = Tr(∇0ξ) = Tr[(I−∇ξ)−1 · ∇ξ]. (16)

Both the maximum plasma displacement |ξ|max and the maximum Lagrangian divergence
(∇0 · ξ)max of the entire simulation domain evolve at the same linear growth rate during
the phase 5 <∼ t <<∼ 20. As the Lagrangian divergence (∇0 · ξ)max becomes of order unity,
its growth starts to deviate from the linear exponential growth. This is the indication that
the perturbation has evolved into the intermediate nonlinear phase, which is characterized
by the ordering

ξ · ∇0 ∼ ∇0 · ξ ∼ λ−1
Ψ ξΨ + λ−1

α ξα ∼ 1. (17)

However, the maximum plasma displacement itself continues to grow exponentially well
into the intermediate nonlinear phase, as demonstrated in Fig. 2, and as predicted by the
special solution of the analytic theory (Sec. 2) [5]. The sudden enhanced growth of the
Lagrangian divergence ∇0 ·ξ above the intermediate nonlinear regime may reflect the fact
that the matrix (I−∇ξ) could become nearly singular during the nonlinear phase, even
though the Eulerian divergence ∇ · ξ remains regular. For the case shown in Fig. 2, the
tokamak minor radius is a = 1, and the pressure pedestal width is Lp ∼ 0.1. As the mode
transverses the intermediate nonlinear phase, the maximum plasma displacement |ξ|max

approaches the pedestal scale length Lp.

4 Summary and Discussion

An ideal MHD theory for the line-tied g mode and the ballooning instability in the inter-
mediate nonlinear regime has been developed in general toroidal magnetic configurations.
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Figure 2: Left: The finite element mesh based on a tokamak equilibrium generated using
the ESC solver; Right: Growth of the maximum amplitude of plasma displacement |ξ|max

(black solid line) and growth of the maximum Lagrangian divergence (∇0 · ξ)max (red
broken line) calculated from a NIMROD simulation. The unit of the plasma displacement
ξ is meter. The horizontal and vertical broken lines mark the intermediate nonlinear
regime as determined by ∇0 · ξ ∼ 1 (denoted as “Int”).

In this nonlinear regime, there are three major nonlinear effects that are involved in the
development of a ballooning filament due to radial convection, line bending, and magne-
tosonic coupling.

A remarkable property of the intermediate nonlinear regime is that, solutions of the
associated linear local ballooning mode equations continue to be solutions of the interme-
diate nonlinear ballooning equations [Eqs. (9) and (10)]. This implies that a perturba-
tion that evolves from a linear line-tied g mode or ballooning instability will continue to
grow exponentially at the same growth rate globally, and maintain its filamentary mode
structure of the corresponding linear phase in the intermediate nonlinear stage in the La-
grangian coordinates. This may explain why in experiments the nonlinear ELM filament
strongly resembles the structure of a linear ballooning filament, and linear analyses have
often been able to match and predict the observations in ELM experiments [18, 26]. The
theory prediction is consistent with numerical analysis and simulations of the line-tied
g mode [9, 11], and is also verified in recent direct MHD simulations of tokamak bal-
looning instability [6]. This agreement between theory and simulations is a step toward
understanding the precursor and onset phases of ELMs.

Our analytical model focuses on the nonlinear growth of the ballooning filament in
the ideal MHD regime. The adoption of the ideal MHD model by no means implies
the insignificance of other nonideal MHD effects (two-fluid physics, resistivity, FLR, etc.)
on ballooning filament dynamics. Rather, this approach allows the systematic isolation,
identification, and inclusion of the dominant nonlinear mechanisms in each relevant MHD
regime. Our study in this work is only the first necessary step towards the construction
of a more relevant two-fluid MHD model for the dynamics of nonlinear ballooning and
ELM filaments. It is our plan to introduce the FLR and two-fluid effects to our model for
nonlinear ballooning filament in the near future.
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