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Intermediate Phase of the One Dimensional Half-Filled Hubbard-Holstein Model

R. T. Clay and R. P. Hardikar
Department of Physics and Astronomy and ERC Center for Computational Sciences, Mississippi State University,

Mississippi State, Mississippi 39762, USA
(Received 7 May 2005; revised manuscript received 24 June 2005; published 26 August 2005)

We present a numerical study of the Hubbard-Holstein model in one dimension at half filling, including
finite-frequency quantum phonons. At half filling, the effects of the electron-phonon and electron-electron
interactions compete with the Holstein phonon coupling acting as an effective negative Hubbard on-site
interaction U that promotes on-site electron pairs and a Peierls charge-density wave state. Most previous
work on this model has assumed that only Peierls or Mott phases are possible at half filling. However,
there has been speculation that a third metallic phase exists between the Peierls and Mott phases. We
confirm the intermediate phase, and show that the Luttinger liquid correlation exponent K� > 1 in this
region, indicating dominant superconducting pair correlations. We explore the full phase diagram as a
function of Hubbard U, phonon coupling constant, and phonon frequency.

DOI: 10.1103/PhysRevLett.95.096401 PACS numbers: 71.10.Fd, 71.30.+h, 71.45.Lr

Electron-phonon (e-ph) interactions can give rise to a
number of interesting effects in low-dimensional materials,
including superconductivity as well as charge-density
wave and insulating phenomena. Frequently these materi-
als feature strong electron-electron (e-e) interactions as
well, leading to very rich phase diagrams that combine
lattice, charge, and spin (magnetic) orderings. We focus
specifically on materials where the electrons are coupled to
localized vibrational modes, which may be of relatively
high frequency. This type of e-ph interaction is most
studied in molecular crystal materials, including the
quasi-one- and quasi-two-dimensional organic supercon-
ductors [1] and fullerene superconductors [2]. In all of
these materials, a fundamental question is whether the
effects of e-e and e-ph interactions compete or cooperate
with each other. In this Letter, we examine this issue within
one of the most basic models. We find that, despite the two
interactions each separately favoring insulating states, to-
gether they can mediate an unexpected metallic phase with
superconducting (SC) pair correlations.

The model we consider is the one-dimensional (1D)
Hubbard-Holstein model (HHM), with Hamiltonian
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where cyj;
 (cj;
) are fermionic creation (annihilation) op-
erators for electrons on-site j with spin 
, byj (bj) are
bosonic creation (annihilation) operators for phonons at
site j, and nj;
 � cyj;
cj;
. The dispersionless phonons
have frequency ! and are coupled to the local electron
density with coupling strength g [3]. U is the Hubbard on-
site e-e interaction energy. All energies are given below in
units of the hopping integral t.

The properties of the 1D 1=2-filled HHM are well under-
stood in two limits: the static or ! ! 0 and the ! ! 1
limit [4]. First, in the static limit, the ground state is Peierls
distorted for any nonzero e-ph coupling g � 0�. As the
phonons couple to the electron density, the Peierls state is a
2kF charge-density wave (CDW) consisting of alternating
large and small site charges. In the ! ! 1 limit, the
retarded interaction between electrons mediated by the
phonons becomes instantaneous in imaginary time, and
the phonons may be integrated out. This leads to an effec-
tive renormalized Hubbard interaction Ueff � U� 2g2=!.
While strictly at ! ! 1 the Peierls state cannot occur, for
finite ! the Peierls state may again occur, although the
mapping to an effective negative U is no longer exact.
However, based on the ! ! 1 mapping, it has been
believed that the ground state phase of the HHM may be
determined through Ueff . Ueff should correspond to the
U > 0 Hubbard model, which in 1D at 1=2 filling has a
finite charge gap for any U > 0 and no spin gap. We shall
refer to this state as the Mott state. On the other hand, if
Ueff < 0, e-ph interactions dominate over e-e interactions,
and the ground state is Peierls CDW distorted.

Hence at ! � 0, the Peierls distortion occurs uncondi-
tionally, while at ! � 1 there is no Peierls state. Much
less is known in the intermediate ! region. In the U � 0
model, the Peierls state may be viewed as a traditional band
insulator for small !, and as a bipolaronic insulator com-
posed of tightly bound pairs in the large ! limit, with a
crossover between these pictures for !� t [5]. If !> 0,
the Peierls distortion occurs only for e-ph coupling g above
some critical value gc [6,7]. For g < gc, the ground state is
then metallic at 1=2 filling (at U � 0). For U � 0, gc has
been calculated using a functional integral method [6] and
also via the density matrix renormalization group (DMRG)
[7]. For intermediate U as well as !, far less is known.
However, it has been recently proposed that a metallic
ground state exists intermediate between the Mott and
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Peierls states at 1=2 filling, i.e., when Ueff is close to zero
[8]. This metallic phase occurs for intermediate ! and
hence cannot be predicted from the small and large !
limits. Our goal in this Letter is to confirm this metallic
state and investigate its properties. Its existence is perhaps
not surprising given the known existence of a metallic
phase for g < gc at U � 0; this region of the phase dia-
gram continues to exist for finite U. We further show that
this metallic region persists for a substantial range of
parameters provided ! is not too small.

Hamiltonian Eq. (1) is difficult to analyze in the inter-
mediate coupling region due to the presence of both elec-
trons and phonons. The numerical method we use is the
stochastic series expansion (SSE) quantum Monte Carlo
method with directed loops [9]. SSE is a powerful method
for nonfrustrated quantum spin systems or 1D electron lat-
tice models where no sign problem occurs. Importantly,
there are no approximations in the method besides finite
system size and temperature. Electron-phonon interactions
have been incorporated in SSE for both spin models [10]
and electron models [11]. As in these references, we treat
the phonons in the occupation-number basis. The number
of phonons per lattice site is unbounded in the thermody-
namic limit, but for a finite system at a finite temperature,
the number of phonons may be truncated. We choose this
truncation in a similar manner as the truncation of se-
quence length in the SSE method [9]: in the equilibration
phase of the calculation, the phonon truncation is increased
to exceed the current number of phonons on any given
lattice site whenever necessary. All results shown below
used periodic lattices of N sites, with inverse temperatures
of at least �=t � 2N and phonon cutoffs of up to 30 pho-
nons per lattice site. In this Letter we focus on results for
the HHM model, and details on the SSE implementation
will be published separately. Our code was checked exten-
sively against Lanczös exact diagonalization results for
several different observables. We also implemented the
quantum parallel tempering algorithm [12], where differ-
ent processors of a parallel computer are assigned different
model parameters (U, g, and !). A Metropolis probability
is then computed to switch configurations between pro-
cessors with adjacent parameters. As in Ref. [12], we found
this technique essential in obtaining smooth data across
quantum phase transition boundaries.

The low energy properties of any 1D gapless interacting
electron model may be mapped to an effective continuum
model, or Luttinger liquid (LL). The properties of the LL
and, in particular, the decay with distance of different
correlation functions are then described by two correlation
exponents, K� for charge properties and K
 for spin [13].
K� values greater than 1 indicate dominant attractive SC
correlations (no SC long-range order is possible in strictly
1D systems), while K� < 1 corresponds to repulsive
charge correlations. For models with spin-rotation symme-
try, K
 is always equal to 1. K
 � 0 then indicates the

presence of a spin gap. These exponents are most easily
computed via the SSE data from the static structure factors:

S�;
�q� �
1

N

X

j;k

eiq�j�k�h�nj"  nj#��nk"  nk#�i (2)

K� and K
 are then proportional to the slope of the
corresponding structure factor in the long-wavelength limit
q ! 0 [14]:

K�;
 �
1

�q
S�;
�q ! 0�: (3)

These values once finite-size scaled may then be used to
determine the quantum phase boundaries. A second ob-
servable we use are the charge and spin stiffnesses, �c and
�s, measured in the SSE method via the winding number
[12]. A zero stiffness indicates a gap in the corresponding
sector, while nonzero � indicates no gap. We also verified
directly that charge-charge (spin-spin) correlation func-
tions showed staggered order in the Peierls (Mott) phases.

We first present results for U � 0 and ! � 1. Figure 1
shows the slope of charge and spin structure factors
�S�;
�q1�=q1 evaluated at the smallest wave vector q1 �
2�=N, plotted versus e-ph coupling g. For g ! 0 both K�

and K
 tend to exactly 1, as required for free electrons.
Finite-size effects become very small in this limit, consis-
tent with the expected vanishing of logarithmic corrections
when K� � K
 � 1 [11,15]. At a critical coupling gc, K�

crosses 1 and tends to zero, marking the transition to the
Peierls state. From finite-size scaling of 16, 32, and 64 site
systems vs 1=N (see Fig. 1 inset), we find the critical
coupling gc � 0:66 0:01, with the uncertainty estimated
from the linear fit. A previous DMRG study, which did not
attempt finite-size scaling, found gc � 0:8 [7]. For g < gc,
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FIG. 1. U � 0, ! � 1 results for long-wavelength charge
(open symbols) and spin (filled symbols) structure factors versus
g for periodic systems of N � 16 (diamonds), N � 32 (circles),
and N � 64 (squares) sites. Statistical errors are smaller than the
symbols. The inset shows finite-size scaling of the critical
coupling gc (indicated by arrow) where K� � 1.
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the LL exponent K� > 1, and K
 scales to zero with
increasing N. Therefore, for U � 0 and g < gc, the ground
state is metallic, with dominant SC pair correlations and a
spin gap.

For any finite U at g � 0 and 1=2 filling, the dominant
ground state correlations of Eq. (1) are spin-density wave
(SDW). In this ground state K
 � 1, and K� � 0 indicat-
ing an insulating state with no spin gap. As this Mott state
is not equivalent to the metallic state found for g < gc in
Fig. 1, we may then expect the possibility of three different
phases for the HHM with U > 0 and g > 0: Mott, Peierls,
and metallic SC. Figure 2 shows the charge and spin
structure factors again versus g with U � 2. We first dis-
cuss results for small phonon frequency ! � 0:5 shown in
Fig. 2(a). We find that for small g, K
 tends toward 1 as the
system size increases. At a critical coupling gc, K
 be-
comes less than 1, indicating the opening of a spin gap and
the transition to the Peierls state. The charge exponent K�

scales towards zero on both sides of the transition, devel-
oping a peak at g � gc. Similar results are found for the
1=2-filled 1D extended Hubbard model (EHM), where K�

also peaks at the transition between CDW and bond-order
wave (BOW) phases [16]. The finite value of K� on the
boundary indicates that the transition is of continuous
nature [16]. Like the CDW-(BOW)-SDW transition in the
1=2-filled EHM, we find similar behavior for small ! in
the HHM as U increases: the value of K� at the transition

decreases with U, indicating that for large U the transition
is first order rather than continuous. The correspondence is
not surprising, as the effect of a nearest-neighbor interac-
tion V � U can be viewed as an effective negative U [14].

Charge and spin response typical for large ! are shown
in Fig. 2(b), here shown for U � 2 and ! � 5. Again, for
small g, we find K
 tends toward 1 as system size in-
creases, and K� tends toward 0, consistent with the Mott
state. However, at a critical coupling gc1 K� exceeds 1 and
K
 becomes less than one, indicating the dominant-SC
state found for U � 0, g < gc. The value of gc1 is very
close to the expected value where Ueff � 0. Increasing g
further, for g � gc2 K� becomes less than 1, indicating the
opening of a charge gap and the Peierls state. In the
intermediate region gc1 < g< gc2, the properties of the
model are identical to the U � 0 model for g < gc as seen
in Fig. 1, i.e., metallic with dominant SC correlations.
While the second transition point gc2 is finite-size depen-
dent, finite-size effects are very weak at the first transition
since K� � K
 � 1. It is then clear that due to the crossing
of K� and K
 curves at exactly 1 at g � gc1, a region of
K� > 1 must exist for g > gc1.

To confirm the structure factor results indicating two
transitions at gc1 and gc2, we present the charge (�c) and
spin (�s) stiffnesses in Fig. 3. As with the structure factors,
the presence of two transitions may be detected only from
�c and �s after finite-size scaling has been performed. For
clarity, we plot only two system sizes in Fig. 3. In Fig. 3(a)
we see that, for small g, �c decreases with system size,
indicating a charge gap. �s is nearly constant with system
size, indicating no spin gap. In the intermediate phase, this
is reversed, with �c remaining constant or increasing with
system size, and �s decreasing with system size. This again
indicates a spin gap but no charge gap in the SC region.

0.5 0.6 0.7 0.8
g

0.6

0.7

0.8

0.9

1

1.1

πS
(q

1)/
q 1

2 2.5 3
g

0.7

0.8

0.9

1

1.1

πS
(q

1)q
1

charge N=16
spin N=16
charge N=32
spin N=32

(a)

(b)

FIG. 2. Long-wavelength charge (open symbols) and spin
(filled symbols) structure factors versus g. (a) U � 2, ! �
0:5; arrow indicates finite-size scaled gc. (b) U � 2, ! � 5;
arrows indicate finite-size scaled transitions gc1 and gc2.
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FIG. 3. Charge (a) and spin (b) stiffnesses versus g for U � 2,
! � 5. Open (closed) symbols are for N � 32 (16) site lattices.
Arrows mark the transition points gc1 and gc2 determined from
Fig. 2(b).
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Finally, for g > gc2, both stiffnesses go to zero in the
Peierls state.

Figure 4 shows the evolution of the intermediate phase
as a function of !, with phase boundaries determined from
finite-size scaling of 16, 24, and 32 site structure factor
data. In all cases, the SC phase exists for g < gc exactly at
U � 0. As U is increased at fixed !, the SC region then
shrinks. For small enough !, we see two different sequen-
ces of phases, either Mott-SC-Peierls for small U [as in
Fig. 2(b)] or Mott-Peierls [as in Fig. 2(a)] for large U.
Numerically it is difficult to precisely determine the point
where all three phases meet, but we find that the SC phase
disappears at U � 1 for ! � 0:5, and at U � 2 for ! �
1:0. In Figs. 4(a) and 4(b), we have not plotted points for
the Mott-Peierls boundary for large U, as in this region the
transition becomes strongly first order, making exact de-
termination of the boundary difficult. However, the tran-
sition appears to remain close to g2=! � U=2. For ! � 5,
we were not able to access large enough U to determine the
upper cutoff U necessary to suppress the SC state, but the
intermediate phase appears to persist up to at least U � 7

for ! � 5. In all cases, we find the line Ueff � 0 to very
accurately predict either the Mott-SC or Mott-Peierls
boundary, but not the SC-Peierls boundary. Our phase
diagram is slightly different from Ref. [8], where the
metallic region was found to extend to either side of the
Ueff � 0 line.

In conclusion, we have shown that a metallic SC region
exists intermediate between Peierls and Mott phases in the
1D 1=2-filled HHM. While in the 1=2-filled model with
small phonon frequency !< t the intermediate phase
occupies a relatively small region of the phase diagram,
we expect that in the presence of doping (in fact, most of
the organic SC’s are 1=4-filled [1]), the size of this region
will be greatly enhanced. Furthermore, while the SC pair-
ing found here exactly at 1=2-filling consists of on-site
pairs or bipolarons, with doping both on-site and nearest-
neighbor pairing may be mediated by the Holstein phonons
[17]. We are currently exploring these possibilities in the
doped model.
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Universities. We thank A. Sandvik and P. Sengupta for
discussions regarding the SSE method. Numerical calcu-
lations were performed at the Mississippi State University
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