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ABSTRACT
We propose how to calibrate long gamma-ray burst (GRB) correlations employing interme-
diate redshift data sets, instead of limiting to z ' 0 catalogs. To do so, we examine the
most updated observational Hubble data (OHD) and baryonic acoustic oscillations (BAO).
We exploit the model-independent technique of Bézier polynomial interpolation, alleviating
de facto the well-known circularity problem affecting GRB correlations. To get constraints on
cosmic parameters, using Markov chain Monte Carlo Metropolis algorithm, we distinguish
the influence on BAO scale, rs, Hubble constant H0, luminosity distance DL(z) and spatial
curvature Ωk. Inspired by the fact that a few 0.4% error on rs is got from Planck results,
utterly small compared with current BAO measurement errors, we discern two main cases,
namely (rs/r

fid
s ) = 1 and (rs/r

fid
s ) 6= 1. For each occurrence, we first fix and then leave free

the Universe’s spatial curvature. In all our treatments, we make use of the well-consolidated
Amati correlation, furnishing tighter constraints on the mass density than previous literature.
In particular, our findings turn out to be highly more compatible with those got, adopting the
ΛCDM paradigm, with standard candle indicators. Finally, we critically re-examine the recent
H0 tension in view of our outcomes.

Key words: gamma-ray bursts: general – cosmology: dark energy – cosmology: observations

1 INTRODUCTION

GRBs are often challenged as possible distance indicators and their
use in cosmology is currently debated (Luongo & Muccino 2021a).
Their possible use is essential to highlight possible departures from
the concordance ΛCDM paradigm, whose overall dynamics is de-
scribed by six free parameters (Perivolaropoulos & Skara 2021),
albeit at late times it can be well-approximated only by matter,
Ωm, accounting for about the 30% of the total energy budget (Ra-
tra & Peebles 1988). The cosmological constant density drives
the universe to accelerate and its experimentally and statistically
agreement is robust, albeit recent tensions have been raised (Di
Valentino et al. 2021), indicating mild discrepancies from the stan-
dard model predictions1 (Sotiriou & Faraoni 2010). Moreover, in
the concordance paradigm, one conventionally assumes a perfectly
spatially-flat universe, supported by several observations2. In this

? orlando.luongo@unicam.it
† marco.muccino@lnf.infn.it
1 For different perspectives about extensions of the standard model, see e.g.
(Luongo & Muccino 2018; D’Agostino et al. 2022; Belfiglio et al. 2022).
2 Cosmic microwave background observations, for instance, seem to favor
this fact, having Ωk = −0.001 ± 0.002 at 68% confidence level. Fur-
ther, inflationary paradigms also require severe limits on spatial curvature
(Tsujikawa 2013).

sense, bounding spatial curvature even remains as an additional
open caveat of cosmology (Ooba et al. 2018).

Intermediate and high redshifts data exceeding the redshift
limits of supernovae Ia (SNe Ia) detectability, placed at z ' 2.3
(Rodney et al. 2015), and of other cosmic indicators, in general at
z . 3, turn out to be essential in order to shed light into the nature
of those constituents pushing up the acceleration of the universe3

and to disclose whether the ΛCDM model may be seen as the fi-
nal scenario describing large-scale dynamics or a limiting case of a
more general landscape (Capozziello et al. 2019, 2020).

In this respect, GRBs could represent a plausible new class
of cosmological indicators. These explosions are detectable up to
z = 9.4 (Salvaterra et al. 2009; Tanvir et al. 2009; Cucchiara et al.
2011) and so attempts toward their use in cosmology as genuine
cosmic indicators are currently highly debated. Essentially a way
out to relate GRB photometric and spectroscopic properties is the
missing puzzle piece (Amati et al. 2002; Ghirlanda et al. 2004; Am-
ati et al. 2008; Schaefer 2007; Capozziello & Izzo 2008; Dainotti
et al. 2008; Bernardini et al. 2012; Amati & Della Valle 2013; Wei
et al. 2014; Izzo et al. 2015; Demianski et al. 2017a,b). Moreover,

3 Alleviating the severe difficulty to detect if the fluid responsible for the
cosmic speed up is under the form of a pure cosmological constant or is a
time-dependent dark energy one.
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the so-called circularity problem arises, i.e., the calibration issue
between radiated energy or luminosity and the spectral properties
that becomes plausible only if a background cosmology is a priori
imposed4. Consequently, in view of the great uncertainty surround-
ing a model-independent procedure to calibrate GRBs, finding out
new correlations that are background-independent becomes a cru-
cial step to heal circularity.

In this paper, we assume the widely-consolidate model-
independent technique of GRB calibration constructed by means
of Bézier polynomials (Luongo & Muccino 2021b) and we apply
it to the Ep–Eiso or Amati correlation (see e.g., Amati et al. 2008;
Amati & Della Valle 2013), in particular to one of the best data
set composed of 118 GRBs (Khadka et al. 2021). We propose a
calibration procedure involving intermediate redshift catalogs, in
lieu of z ' 0 data points, more often developed in the literature.
We employ cosmic chronometers or OHD (see Capozziello et al.
2018, and references therein), and the most recent measurements
of BAO (see Cao et al. 2021, and references therein). To do so, we
fit both OHD and BAO data in conjunction by means of two Bézier
parametric curves. These approximated curves are interconnected
since BAO measurements contain information on H(z), without
assuming an a priori hypothesis on the universe spatial curvature.
Through this calibration procedure, the above GRBs can be viewed
as standardized objects and can be used to test the standard spa-
tially flat ΛCDM model and its minimal extension adding a non-
zero spatial curvature parameter Ωk. We thus investigate the effects
of Ωk 6= 0 and fix constraints over the free parameters by means
of Markov chain – Monte Carlo (MCMC) analyses. The obtained
results are not perfectly compatible with the current expectations
since they roughly differ from Planck results on Ωk. We investi-
gate the corresponding systematics and show tighter bounds over
the mass density, quite more similar to those found using standard
candles. Further, we demonstrate that both spatial curvature andH0

tension cannot be easily fixed by GRBs, showing larger values of
Ωm with respect to Planck results. Last but not least, theH0 tension
cannot be avoided even if Ωk 6= 0.

The paper is divided into five main sections. In section 2, we
describe the main ingredients of our Bézier model-independent re-
constructions. In section 3, we work out our experimental results,
including both calibration and MCMC outcomes. In section 4, we
theoretically interpret our findings and finally in section 5 we de-
velop conclusions and perspectives of our work.

2 THEORETICAL WARM-UP

The mostly-adopted and investigated GRB correlation in the litera-
ture is built up through the rest-frame peak energy Ep of the γ-ray
time-integrated νFν energy spectrum and the isotropic energyEiso

radiated in γ-rays, i.e.,

Eiso ≡ 4πD2
LSb(1 + z)−1 , (1)

where the observed bolometric GRB fluence Sb is evaluated from
the integral of the νFν spectrum in the rest-frame 1 − 104 keV
energy band. Finally, a correction factor, namely (1 + z)−1, is in-
volved in order to take into account cosmological redshift effects,
i.e., to transform the inferred GRB overall duration into the source
cosmological rest-frame measurements.

4 The calibration procedure is also debated. For a different perspective, see
e.g. Khadka et al. (2021).

In this respect, it appears obvious that using GRBs with the
aim of fitting cosmic data may be strongly affected by a few uncer-
tainties, caused by selection and instrumental effects.

2.1 Building up the correlation

In view of the above considerations, the Amati correlation (Am-
ati et al. 2002, 2008; Amati & Della Valle 2013; Demianski et al.
2017a; Dainotti & Amati 2018), typically dubbed Ep − Eiso rela-
tion, easily writes

log

(
Ep

keV

)
= a0 + a1 log

(
Eiso

1052erg

)
, (2)

where the functional dependence requires an intercept a0 and a
slope a1. In addition, we need to fix the dispersion σex (D’Agostini
2005) and all the latter free terms require calibration.

We immediately see the caveat in Eq. (1), there Eiso depends
on the background, i.e., the Hubble rate might be known a priori
and so the corresponding dependence on the luminosity distance
DL is unavoidable.

2.2 GRB data set

To fulfill our fits, adopting the Amati relation, we here employ the
most recent and largest data set of 118 bursts fulfilling the Amati
correlation itself. For these data points, we underline they provide
the smallest intrinsic dispersion (Khadka et al. 2021).

Moreover, to get model-independent cosmological bounds, in
the following we now need to calibrate the relation by means of
model-independent techniques, as below reported. Before that, we
introduce the intermediate redshift data sets through which we in-
tend to calibrate our GRB data set.

2.3 Intermediate redshift data sets

To calibrate GRB data sets we employ

– OHD, consisting at present of 31 measurements of the Hub-
ble rateH(z). The corresponding measures are got at different red-
shifts (see, e.g., Capozziello et al. 2018).

– BAO, consisting of 15 measurements, split into 9 uncorrelated
and 6 correlated, see Table 1.

For the sake of clearness, we focus on BAO data. The latter are
often provided as volume-averaged distances Dobs

V = δ(rs/r
fid
s ),

where rs is the comoving sound horizon at the baryon-drag epoch
and rfid

s is the value of rs for the fiducial cosmological model used
to convert redshift to distances. For each measurement, δ and

r ≡ (rs/r
fid
s ) , (3)

are given in the third and fourth columns of Table 1, respectively.
The ratio r has been computed by using the fiducial values rfid

s

provided in the references listed in Table 1. In particular, the value
of rs is taken from Planck Collaboration (2020).
Hence, by construction, BAO measurements provide

DV(z) =

[
c z

(1 + z)2

D2
L(z)

H(z)

]1/3

, (4)

showing constraints on the cosmological parameters through their
influence on the combined action of rs, H(z) and DL(z).

MNRAS 000, 1–?? (2022)
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Survey z δ r Ref.
[Mpc]

6dFGS 0.097 372+115
−50 0.997+0.005

−0.004 [1]
SDSS MGS 0.150 664+25

−25 0.989+0.003
−0.003 [2]

SDSS DR7 0.275 1104+30
−30 0.958+0.002

−0.002 [3]
BOSS DR11 0.320 1264+25

−25 0.985+0.001
−0.001 [4]

SDSS DR7 LRG 0.350 1356+25
−25 0.963+0.005

−0.005 [5]
BOSS DR11 0.570 2056+20

−20 0.985+0.002
−0.002 [4]

eBOSS DR14 LRG 0.720 2377+61
−59 0.995+0.002

−0.002 [6]
eBOSS DR14 1.520 3843+147

−147 0.995+0.002
−0.002 [7]

eBOSS DR16 2.334 4549+96
−96 0.998+0.003

−0.003 [8]
WiggleZ 0.44 1716+83

83 0.990+0.002
−0.002 [9]

WiggleZ 0.60 2221+101
−101 0.990+0.002

−0.002 [9]
WiggleZ 0.73 2516+86

−86 0.990+0.002
−0.002 [9]

BOSS DR12 0.38 1477+16
−16 0.995+0.002

−0.002 [10]
BOSS DR12 0.51 1877+19

−19 0.995+0.002
−0.002 [10]

BOSS DR12 0.61 2140+22
−22 0.995+0.002

−0.002 [10]

Table 1. List of the redshift z, the δ measurement and the ratio r of the
BAO data considered in this work. The upper part of the Table consists of
9 uncorrelated measurements, whereas the lower part displays 6 correlated
ones. References: [1] Carter et al. (2018), [2] Aubourg et al. (2015), [3]
Percival et al. (2010), [4] Anderson et al. (2014), [5] Padmanabhan et al.
(2012), [6] Bautista et al. (2018), [7] Ata et al. (2018), [8] du Mas des
Bourboux et al. (2020), [9] Kazin et al. (2014), [10] Alam et al. (2017).

For the standard model5, the 0.4% error on rs from Planck
results (Planck Collaboration 2020) is small compared to current
BAO measurement errors, therefore the constraints come mainly
through H(z) and DL(z) (Aubourg et al. 2015).

To check the influence of r on the estimate of the cosmological
parameters, we consider both r = 1 and r 6= 1 cases.

2.4 Statistical errors

In principle, it is worth noticing that to reduce the statistical errors,
one could adopt since the beginning the larger and most recent SNe
Ia catalog. Such data points are prompted either under the form
of a catalog of distance moduli µSN(z) (related to DL, see, e.g.,
Scolnic et al. 2018) or as E(z) ≡ H(z)/H0 data set (Riess et al.
2018), where H0 is the Hubble constant, albeit in the case of null
spatial curvature. However, the inclusion of SN Ia data has two
main drawbacks, below summarized.

– As a first possibility, luminosity distance measurements from
the definition of µSN(z) could have been used instead of BAO data
and in conjunction with OHD. However, this joint analysis can be
done only if one assumes that the spatial curvature of the Universe
is zero (see, e.g., Amati et al. 2019, for details).

– As a second possibility, E(z) from SNe Ia could have been
employed together with OHD to constrainH(z) and extractDL(z)
from BAO, as shown in Eq. (4). However, again, E(z) from SNe
Ia have been established by assuming a flat spatial curvature.

Hence, as shown in Eq. (4), the only possibility to obtain constraints
on DL(z) without imposing a a priori spatial curvature consists
in using only BAO data points in conjunction with OHD. We will
follow this more reliable strategy in what follows.

5 For the sake of clearness, we can state for standard models, involving the
ΛCDM paradigm and the Chevallier-Polarski-Linder parametrization.

3 MODEL-INDEPENDENT CALIBRATIONS OF GRBS

Bearing in mind all the above ingredients, our prescription resides
in interpolating OHD and BAO data sets without acquiring any cos-
mological model, namely to involve a model-independent calibra-
tion technique6. The here-employed method is attained by work-
ing out the so-called Bézier parametric curves, obtained as a linear
combination of Bernstein basis polynomials and firstly proposed in
GRB contexts in Amati et al. (2019). The main steps to follow are
thus summarized below.

3.1 Bézier polynomials and GRB calibration

The most general Bézier curve with established order n, con-
structed by means of OHD data, can be written by

Hn(x) =

n∑
i=0

gααih
d
n(x) , hin(x) ≡ n!

xi

i!

(1− x)n−i

(n− i)! , (5)

where αi are the coefficients of the linear combination of the
polynomials hin(x), re-scaled by a conventional factor gα =
100 km/s/Mpc, being positive-defined for 0 6 x ≡ z/zmax

OHD 6 1,
with zmax

OHD representing the maximum redshift of the OHD cata-
log. As proved in Luongo & Muccino (2021b), the only possible
non-linear monotonic growing function over the redshift range of
OHD has order n = 2, i.e., H2(z). Moreover, by construction, it is
possible to identify α0 with h0 = H0/(100 km/s/Mpc).

BAO data δ can be fitted by using Eq. (4) and the function
H(z) can be approximated with H2(z), extrapolated up to the
BAO maximum redshift zmax

BAO. In so doing, it is therefore licit
to use BAO measurements in order to fit D2

L(z) in a cosmology-
independent way, again, by resorting a Bézier curve of order m

D2
m(y) =

m∑
j=0

gββjd
j
m(y) , djm(y) ≡ m!

yj

j!

(1− y)m−j

(m− j)! , (6)

where βj are the coefficients of the linear combination of the poly-
nomials djm(y) rescaled by a factor gβ = 1 Gpc2 and positive-
defined for 0 6 y ≡ z/zmax

BAO 6 1. Immediately, from the above
construction one argues how to extend the use of Bézier curves to
BAO data points and, so, one highlights that:

– by definition of cosmic distance, we need that D2
m(0) ≡ 0

and so we are forced to start our Bézier expansion with j = 1;
– the only non-linear monotonic growing function with the red-

shift has order m = 3, i.e., D2
13(z) since j runs from 1 to 3.

Last but not least, it is remarkable to stress that the above
determination of the luminosity distance is quite general. In other
words, it includes information on the Universe’s spatial curvature,
without introducing any theoretical bias, jeopardizing the overall
picture and leading to circularity.

We are now ready to calibrate our free coefficients and to in-
troduce the statical methods of numerical analyses, as we prompt
below.

3.2 Calibrating the coefficients with nested likelihoods

We now estimate the coefficients αi (0 6 i 6 2) and βj (1 6 j 6
3) through a nested likelihood approach. This method combines

6 The words model-independent typically rely on expansions and/or re-
constructions of cosmic quantities, i.e., without any need of postulating a
cosmological model, see e.g. (Aviles et al. 2012; Dunsby & Luongo 2016).

MNRAS 000, 1–?? (2022)
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1) a fit of the OHD data in the range 0 6 z 6 zmax
OHD, and

2) a fit of the BAO data in the range 0 6 z 6 zmax
BAO, using also

the extrapolation of H2(z) up to zmax
BAO by defining the function

∆V(z) =

[
c z

(1 + z)2

D2
13(z)

H2(z)

]1/3

. (7)

Assuming Gaussian distributed errors, the total log-likelihood func-
tion of the model-independent estimate of DL(z) is given by

lnLD = lnLO + lnLB , (8)

where each contribution is described in details below.

– For OHD the log-likelihood function reads as

lnLO = −1

2

NO∑
k=1

{[
Hk −H2(zk)

σHk

]2

+ ln(2π σH2
k)

}
, (9)

where NO is the size of the OHD catalog with values Hk and at-
tached errors σHk.

– For BAO the log-likelihood function is given by

lnLB = −1

2

NB∑
k=1

{[
δk −∆V(zk)

σδk

]2

+ ln(2π σδ2
k)

}
, (10)

where NB is the size of the BAO catalog with values δk and at-
tached errors σδk.

The best-fit curves approximating both OHD and BAO cata-
logs and the resulting trend of the luminosity distance are portrayed
in Fig. 1, where a comparison with the predictions of the ΛCDM
paradigm (Planck Collaboration 2020) are also shown. The best-fit
coefficients αi and βj , on which the plots in Fig. 1 are based, are
displayed in the contour plots of Fig. 2 and summarized in Table 2.

Next, to get numerical bounds on the cosmological parame-
ters, we employ the reconstructed luminosity distance portrayed in
Fig. 1 to calibrate the Amati correlation in a model-independent as

Ecal
iso (z) ≡ 4πD2

13(z)Sb(1 + z)−1 , (11)

σEcal
iso (z) ≡ Ecal

iso (z)

√[
2σD13(z)

D13(z)

]2

+

(
σSb

Sb

)2

, (12)

where the error σEcal
iso depends upon the errors on the GRB observ-

able Sb and the reconstructed luminosity distance D13(z).
To successfully calibrate all GRBs in each catalog, one needs

to extrapolate D13(z) at redshifts higher than those of OHD and
BAO catalogs. This, in principle may add further bias in the es-
timate of the cosmological parameters. To check this possibility,
we performed a nested likelihood approach (Luongo & Muccino
2021b) that combines two sub-models involving:

i) a calibrator sample composed of GRBs in the range 0 6 z 6
zmax

BAO (encompassing both OHD and BAO observations), employed
for estimating the GRB correlation parameters, and

ii) a cosmological sample, i.e., the whole GRB data set, used to
estimate the free model parameters.

Again, assuming Gaussian distributed errors, the total GRB
log-likelihood function is given by

lnLG = lnLcal
G + lnLcos

G . (13)

The calibration log-likelihood is given by

lnLcal
G = −1

2

Ncal∑
k=1

{[
Yk − Y (zk)

σYk

]2

+ ln(2π σY 2
k )

}
, (14)

where Ncal = 65 and

Yk ≡ logEp,k , (15a)

Y (zk) ≡ a0 + a1

[
Ecal

iso (zk)− 52
]
, (15b)

σY 2
k ≡ (σ logEp,k)2 + a2

1

[
σ logEcal

iso (zk)
]2

+ σ2
ex . (15c)

The cosmological log-likelihood is given by

lnLcos
G = −1

2

Ncos∑
k=1

{[
µk − µth(zk)

σµk

]2

+ ln(2π σµ2
k)

}
, (16)

where we have Ncos = 118 and

µk ≡
5

2a1

[
logEp,k − a0 − a1 log

(
4πSb,k

1 + zk

)]
, (17a)

σµ2
k ≡

25

4a2
1

[
(σ logEp,k)2 + a2

1(σ logSb,k)2 + σ2
ex

]
. (17b)

3.3 Cosmic background and bounds over Bézier fits

We are now in position to experimentally test the non-flat ΛCDM
paradigm by feeding it within µth(z) from Eq. (16). The corre-
sponding Hubble rate becomes

H(z) = H0

√
Ωm(1 + z)3 + Ωk(1 + z)2 + ΩΛ , (18)

where Ωm, Ωk and ΩΛ = 1− Ωm − Ωk are matter, curvature and
cosmological constant density parameters, respectively. The lumi-
nosity distance (see, e.g., Goobar & Perlmutter 1995) is

DL(z) =
c

H0

(1 + z)√
|Ωk|

Sk

[√
|Ωk|

∫ z

0

H0dz
′

H(z′)

]
, (19)

where Sk(x) = sinh(x) for Ωk > 0, Sk(x) = x for Ωk = 0, and
Sk(x) = sin(x) for Ωk < 0, and the distance modulus is

µth(z) = 25 + 5 log

[
DL(z)

Mpc

]
. (20)

Finally, we perform MCMC fittings by searching for the best-
fit parameters maximizing the log-likelihood defined in Eq. (13)
and the 1 and 2–σ contours. To do so, we modified the Wolfram
Mathematica code from Arjona et al. (2019).

Depending on r, we decided to fix h0 with the values of α0

obtained from the Bézier fitting, namely,

h0 = 0.691+0.057
−0.032, for r = 1, (21a)

h0 = 0.714+0.032
−0.044, for r 6= 1. (21b)

So, we finally explore both cases with free Ωk and Ωk ≡ 0
The results are summarized in Table 3.

4 THEORETICAL INTERPRETATION OF NUMERICAL
RESULTS

The above-developed strategy definitely shows that the GRB cal-
ibration can be performed adopting intermediate data points with
respect to previous efforts involving low-redshift catalogs. In other
words, we demonstrate that the need of more low-redshift GRBs
is not fully-motivated in order to get feasible strategies of GRB

MNRAS 000, 1–?? (2022)
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Figure 1. Plots of the best-fitting Bézier curves (blue thick lines) approximating H(z), DV(z), and DL(z) with the 1–σ confidence bands (gray shaded
areas): left for r = 1 and right for r 6= 1. A comparison with the ΛCDM paradigm (Planck Collaboration 2020) is also shown (see dashed red curves).

OHD BAO
α0 α1 α2 β1 β2 β3

r = 1 0.691+0.057
−0.032 0.979+0.082

−0.128 2.147+0.173
−0.127 −0.064+0.759

−0.594 42.071+5.511
−8.187 397.469+44.913

−32.815

r 6= 1 0.714+0.032
−0.044 0.899+0.124

−0.084 2.225+0.140
−0.169 0.083+0.610

−0.698 35.984+7.420
−5.432 416.395+31.966

−41.151

Table 2. Best-fit Bézier coefficients αi of H2(z) and βj of D2
13(z) for r = 1 and r 6= 1.

a0 a1 σex Ωm Ωk

r = 1 1.82
+0.05 (+0.10)
−0.06 (−0.11)

0.70
+0.03 (+0.07)
−0.03 (−0.06)

0.28
+0.02 (+0.04)
−0.01 (−0.03)

0.25
+0.09 (+0.21)
−0.09 (−0.22)

0.25
+0.64 (+1.57)
−0.31 (−0.52)

1.81
+0.05 (+0.10)
−0.05 (−0.11)

0.71
+0.03 (+0.07)
−0.03 (−0.06)

0.29
+0.02 (+0.04)
−0.02 (−0.04)

0.27
+0.09 (+0.20)
−0.06 (−0.12)

0

r 6= 1 1.82
+0.05 (+0.10)
−0.05 (−0.11)

0.70
+0.03 (+0.07)
−0.03 (−0.06)

0.28
+0.02 (+0.04)
−0.02 (−0.03)

0.21
+0.08 (+0.18)
−0.07 (−0.18)

0.34
+0.44 (+1.25)
−0.35 (−0.61)

1.82
+0.05 (+0.10)
−0.05 (−0.11)

0.71
+0.03 (+0.07)
−0.03 (−0.07)

0.29
+0.02 (+0.04)
−0.02 (−0.03)

0.26
+0.08 (+0.18)
−0.06 (−0.12)

0

Table 3. Nested log-likelihood best-fit results and 1–σ (2–σ) errors for flat and non-flat ΛCDM models and for r = 1 and r 6= 1.

calibration that would fix the circularity issue. In this respect, we
displayed in Figs. 1 suitable matching between theoretical and re-
constructed curves. The case r 6= 1 is slightly less predictive than
the one with r = 1, i.e., indicating that no particular deviations
may occur as outputs of our MCMC analyses. This may be seen
as a direct consequence of data reported in Table 1, where r is ef-

fectively close to unity. For both the cases, we highlight two nor-
malized Hubble constants got from Eqs. (21a). It is intriguing to
notice that the case r 6= 1 provides a weakly larger value of h0,
albeit both cannot solve, in view of 2σ confidence level the Hubble
tension today. Motivated by previous results toward this direction
(Khadka et al. 2021; Khadka & Ratra 2020), it seems evident that,

MNRAS 000, 1–?? (2022)



6

0.8

1.0

1.2

Α
1

2.0

2.4

Α
2

-1

0

1

Β
1

30

40

50

Β
2

0.6 0.7 0.8

Α0

360

420

480

Β
3

0.8 1.0 1.2

Α1

2.0 2.4

Α2

-1 0 1

Β1

30 40 50

Β2

360 420 480

Β3

0.8

1.0

1.2

Α
1

2.0

2.4

Α
2

-1

0

1

Β
1

30

40

50

Β
2

0.6 0.7 0.8

Α0

360

420

480

Β
3

0.8 1.0 1.2

Α1

2.0 2.4

Α2

-1 0 1

Β1

30 40 50

Β2

0.8

1.0

Α
1

2.0

2.4

Α
2

-1

0

1

Β
1

30

40

50

Β
2

0.7 0.8

Α0

360

420

480
Β

3

0.8 1.0

Α1

2.0 2.4

Α2

-1 0 1

Β1

30 40 50

Β2

360 420 480

Β3

0.8

1.0

Α
1

2.0

2.4

Α
2

-1

0

1

Β
1

30

40

50

Β
2

0.7 0.8

Α0

360

420

480
Β

3

0.8 1.0

Α1

2.0 2.4

Α2

-1 0 1

Β1

30 40 50

Β2

Figure 2. Contour plots of the best-fit Bézier coefficients αi of H2(z) and βj of D2
13(z): left for r = 1 and right for r 6= 1. Darker (lighter) regions mark

the 1–σ (2–σ) confidence regions.
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Figure 3. Contour plots of the best-fit correlation and cosmological parameters (for a ΛCDM model with Ωk 6= 0): left for r = 1 and right for r 6= 1. Darker
(lighter) regions mark the 1–σ (2–σ) confidence regions.

even including GRBs into the computations of cosmic quantities,
the tension remains unsolved. This conundrum could be therefore
healed by switching to minimal extensions of the standard cosmo-
logical model (Izzo et al. 2012; Muccino et al. 2021; Luongo et al.
2022) or by additional terms within the Hilbert-Einstein action.

Moving to our experimental findings, we notice from Figs. 3
and 4 the remarkable fact the mass density is well constrained at the
1σ confidence level with respect to previous efforts making use of

GRBs in the literature (Cao et al. 2022a,b). This certifies the good-
ness of intermediate calibrating techniques, demonstrating that our
treatment is promising in refining cosmic outcomes by adopting
GRBs. However, at 2σ confidence level the matter density appears
weakly constrained, indicating that systematics may afflict the cor-
responding measurements. In general, r = 1 measurements appear
surprisingly better bounded than free r parameters. In this case the
values of Ωm turn out to be closer to the Planck measurements in
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Figure 4. The same as in Figs. 3 but for a ΛCDM model with Ωk = 0.

the case of spatially flat cosmology. For the sake of completeness,
the same happens even for r 6= 1, despite the non-flat case provides
values of Ωm completely outside any theoretical expectations. It
is significant to stress that spatial curvature cannot be constrained
properly even at 1σ confidence level, leaving open the task to fix it
at intermediate and high redshifts. In particular, the values of spatial
curvature is only slightly compatible with zero, being just approx-
imately on the left error bar for both our measurements. All the
remaining free parameters appear to be well constrained at both the
1σ and 2σ confidence levels.

In view of our findings, we conclude the background cosmo-
logical model, namely the ΛCDM paradigm, is much more con-
strained by calibrating GRBs at intermediate redshifts. No signifi-
cant expected departures in terms of dark energy are thus expected,
but rather a plausible refinement of our fitting procedure, adding
more data, could be useful to increase the values of matter densi-
ties here measured. A non-flat ΛCDM model is however debated
and likely less probable than the flat case.

5 FINAL OUTLOOKS AND PERSPECTIVES

In this paper, we proposed how to calibrate GRBs in a model-
independent way, adopting since the very beginning intermediate-
redshift data sets, instead of low-redshift catalogs as commonly
performed in the literature. To do so, we employed the novel cali-
bration technique that makes use of Bézier polynomials, applying
its use to the Ep–Eiso or Amati correlation. In this respect, we
adopted one of the best data set composed of 118 GRBs and we
worked out OHD and BAO surveys of data in conjunction by means
of two Bézier parametric curves that allowed us to leave a priori
free the spatial curvature. Hence, standardizing GRBs through the
above technique, we tested the standard spatially flat ΛCDM model
and its minimal extension adding a non-zero spatial curvature pa-
rameter, Ωk.

Hence, MCMC analyses have been performed by means of the

Metropolis algorithm in two main cases: r = 1 and r 6= 1, showing
findings that were not perfectly compatible with the current expec-
tations since they roughly differ from Planck results on Ωk. Thus,
in our four cases, namely r = 1 and r 6= 1 with either zero or
non-zero curvature, we provided tight bounds over the mass den-
sity, quite more similar to those found using standard candles. Fur-
ther, we investigated the corresponding systematics plaguing the
approach and we underlined that, although our outcomes looked
more suitable than previous results got from the literature, the H0

tension was not addressed even with the use of GRBs. In analogy,
the values of Ωk were not bounded enough, but only slightly close
to the zero value got from Planck measurements. Future works will
focus on the use of refined Bézier model-independent curves and
their use adopting further intermediate-redshift data points. Since
including intermediate data points would refined Ωm, we will see
how the calibration can be made by both low and intermediate data
at the same time.
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