
University of Vermont University of Vermont 

UVM ScholarWorks UVM ScholarWorks 

Rubenstein School of Environment and Natural 
Resources Faculty Publications 

Rubenstein School of Environment and Natural 
Resources 

4-1-2018 

Intermediate-severity wind disturbance in mature temperate Intermediate-severity wind disturbance in mature temperate 

forests: legacy structure, carbon storage, and stand dynamics forests: legacy structure, carbon storage, and stand dynamics 

Garrett W. Meigs 
University of Vermont 

William S. Keeton 
University of Vermont 

Follow this and additional works at: https://scholarworks.uvm.edu/rsfac 

 Part of the Climate Commons 

Recommended Citation Recommended Citation 

Meigs GW, Keeton WS. Intermediate‐severity wind disturbance in mature temperate forests: legacy 

structure, carbon storage, and stand dynamics. Ecological Applications. 2018 Apr;28(3):798-815. 

This Article is brought to you for free and open access by the Rubenstein School of Environment and Natural 
Resources at UVM ScholarWorks. It has been accepted for inclusion in Rubenstein School of Environment and 
Natural Resources Faculty Publications by an authorized administrator of UVM ScholarWorks. For more 
information, please contact scholarworks@uvm.edu. 

https://scholarworks.uvm.edu/
https://scholarworks.uvm.edu/rsfac
https://scholarworks.uvm.edu/rsfac
https://scholarworks.uvm.edu/rs
https://scholarworks.uvm.edu/rs
https://scholarworks.uvm.edu/rsfac?utm_source=scholarworks.uvm.edu%2Frsfac%2F117&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/188?utm_source=scholarworks.uvm.edu%2Frsfac%2F117&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uvm.edu


Intermediate-severity wind disturbance in mature temperate forests:
legacy structure, carbon storage, and stand dynamics

GARRETT W. MEIGS
1,2,3,4

AND WILLIAM S. KEETON
1,2

1Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, Vermont 05405 USA
2Gund Institute for Environment, University of Vermont, Burlington, Vermont 05405 USA

Abstract. Wind is one of the most important natural disturbances influencing forest structure,
ecosystem function, and successional processes worldwide. This study quantifies the stand-scale effects
of intermediate-severity windstorms (i.e., blowdowns) on (1) live and dead legacy structure, (2) above-
ground carbon storage, and (3) tree regeneration and associated stand dynamics at four mature, mixed
hardwood–conifer forest sites in the northeastern United States. We compare wind-affected forests to
adjacent reference conditions (i.e., undisturbed portions of the same stands) 0–8 yr post-blowdown
using parametric (ANOVA) and nonparametric (NMS ordination) analyses. We supplement inventory
plots and downed coarse woody detritus (DCWD) transects with hemispherical photography to cap-
ture spatial variation in the light environment. Although recent blowdowns transferred a substantial
proportion of live overstory trees to DCWD, residual live tree basal area was high (19–59% of refer-
ence areas). On average, the initial post-blowdown ratio of DCWD carbon to standing live tree carbon
was 2.72 in blowdown stands and 0.18 in reference stands, indicating a large carbon transfer from live
to dead pools. Despite these dramatic changes, structural complexity remained high in blowdown
areas, as indicated by the size and species distributions of overstory trees, abundance of sound and
rotten downed wood, spatial patterns of light availability, and variability of understory vegetation.
Furthermore, tree species composition was similar between blowdown and reference areas at each site,
with generally shade-tolerant species dominating across multiple canopy strata. Community response
to intermediate-severity blowdown at these sites suggests a dynamic in which disturbance maintains
late-successional species composition rather than providing a regeneration opportunity for shade-
intolerant, pioneer species. Our findings suggest that intermediate-severity wind disturbances can con-
tribute to stand-scale structural complexity as well as development toward late-successional species
composition, at least when shade-tolerant regeneration is present pre-blowdown. Advance regenera-
tion thus enhances structural and compositional resilience to this type of disturbance. This study pro-
vides a baseline for multi-cohort silvicultural systems designed to restore heterogeneity associated with
natural disturbance dynamics.

Key words: biological legacies; blowdown; carbon storage; intermediate disturbance; northern hardwood–conifer
forest; resilience; stand dynamics; structural complexity; windthrow.

INTRODUCTION

Forests play a fundamental role in the Earth system, but

they are inherently dynamic, shaped by multiple natural and

anthropogenic disturbances (Dale et al. 2001, Running 2008).

In temperate forests, windstorms (i.e., blowdown events) are

one of the most important natural disturbances worldwide

(Everham and Brokaw 1996, Thom and Seidl 2016). Wind-

storms are also key indicators of global change, and blow-

down frequency or severity may increase with changing

climate, storm patterns, and land use (Foster and Boose 1992,

Peterson 2000, Dale et al. 2001, Frelich and Reich 2010, Diff-

enbaugh et al. 2013, Kulakowski et al. 2016), contributing to

positive feedbacks between intensifying disturbance regimes

and the carbon cycle (Woodall et al. 2013, Seidl et al. 2014).

In mature forests, blowdowns also may redirect or alter suc-

cessional pathways, thereby acting as a strong control on late

successional forest structure, composition (Foster 1988, Rich

et al. 2007), and associated ecosystem services including

carbon storage (Keeton et al. 2011, Gunn et al. 2014,

Williams et al. 2016) and riparian function (Keeton et al.

2007, Bechtold et al. 2016). Although windstorms are wide-

spread, key uncertainties remain regarding forest responses to

blowdown events at the forest stand scale.

Wind disturbances impart a large range of stand-scale

severity (i.e., tree mortality) while spanning multiple spa-

tiotemporal scales, from frequent, small, gap-forming events

(e.g., Frelich and Lorimer 1991, Lorimer and White 2003,

Nagel et al. 2017) to infrequent, regional hurricane events

with large extent but variable severity (e.g., Foster and

Boose 1992, Sano et al. 2010, D’Amato et al. 2017). Previ-

ous studies typically have classified wind and other distur-

bances into two distinct groups at the endpoints of this

spectrum (Seymour and White 2002). More recent studies

suggest that such characterizations may have under-repre-

sented the importance of intermediate-severity blowdowns

(Hanson and Lorimer 2007, North and Keeton 2008), which

can strongly influence stand- and landscape-scale distribu-

tions of tree age, size, and species (Woods 2004, Martin and

Ogden 2006, Stueve et al. 2011, Cowden et al. 2014, Janda

et al. 2017). However, given the relatively small number of

field-based studies that have assessed intermediate-severity

wind disturbances, our understanding of their consequences
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for ecosystem dynamics, ecosystem services, and sustainable

forest management remains incomplete. In this study, we

investigate intermediate blowdown effects on legacy forest

structure, carbon storage, and stand dynamics in mature

temperate forests in the northeastern United States.

Blowdown severity stems from the interaction of multiple

factors, including local storm meteorology, landscape char-

acteristics, and forest structure and composition (Foster and

Boose 1992, Mladenoff et al. 1993), and the interplay

between these factors may be particularly important during

intermediate-scale events. Here, we define intermediate-

severity blowdowns as partial canopy disturbances that

result from strong winds associated with thunderstorms,

microbursts, macrobursts, derechos, and low-grade torna-

does (Hjelmfelt 2007, Cowden et al. 2014). At the forest

stand scale, only a portion of the overstory tree canopy is

killed or damaged (usually through uprooting or stem

breakage), leaving biological legacies in the form of standing

and downed, live and dead trees (e.g., Franklin et al. 2000,

Christensen et al. 2005, Nagel et al. 2006, Svoboda et al.

2014). The variability of disturbance severity within a given

stand sets the stage for multiple pathways of post-distur-

bance structural development, which depend on the abun-

dance and composition of residual canopy trees, plant

propagule availability, release effects, interspecific competi-

tion, climate variation during subsequent growing seasons,

sub-canopy vegetation response, and interactions with other

stressors and disturbance agents (Runkle 1982, Carlton and

Bazzaz 1998, Beaudet et al. 2007, Donato et al. 2012, Lori-

mer and Halpin 2014, Stuart-Ha€entjens et al. 2015, Janda

et al. 2017, Meigs et al. 2017). By altering the distribution

of standing and downed trees, intermediate-severity wind

events also increase light availability and the spatial hetero-

geneity of residual dead and live structures, which are key

components of ecological memory (i.e., material and infor-

mation legacies; Johnstone et al. 2016). As disturbance

regimes continue to change due to anthropogenic drivers

from local to global scales (Seidl et al. 2011, Kulakowski

et al. 2016), the biological legacies and ecological memory

associated with windstorms may become increasingly impor-

tant, especially their effects on forest structure, ecosystem

services, and successional dynamics.

Forest structure is an integral attribute of within-stand

heterogeneity (Fahey et al. 2015), structural resilience (Hal-

pin and Lorimer 2016), and sustainable forest management

(D’Amato et al. 2011, Lindenmayer et al. 2012). Due in part

to increasing interest in forest management practices that fos-

ter rather than reduce complexity (Keeton 2006, Smith et al.

2008, Bauhus et al. 2009, Gustafsson et al. 2012, Puettmann

et al. 2012), multiple structural complexity metrics have been

developed (see review by McElhinny et al. 2005) and applied

(e.g., Littlefield and Keeton 2012). These stand-scale com-

plexity metrics, typically based on standing tree distributions,

provide a way to quantify the biological legacies generated by

disturbances like blowdown, particularly in combination with

observations of downed wood, tree regeneration, and non-

tree vegetation response (Franklin et al. 2000). Taken

together, these building blocks of forest structure describe the

overall architecture of a given stand, serving as a natural ana-

log for stand-scale silvicultural prescriptions and directly

influencing ecosystem services and functions.

Although disturbance-induced structural changes influ-

ence ecosystem services, these relationships are not necessar-

ily direct (Thom and Seidl 2016). For example, blowdowns

transfer live and dead trees to the forest floor, catalyzing

biogenic carbon emissions, but they also open the canopy,

creating opportunities for increased vegetation growth and

associated carbon uptake (Stuart-Ha€entjens et al. 2015,

Gough et al. 2016). Thus, as with fire (Meigs et al. 2009),

stand-scale carbon storage is dependent on the amount of

live and dead biomass before and after wind disturbances.

Unlike fire, however, there have been relatively few studies

on the effects of wind disturbance on carbon pools and

fluxes (Mayer et al. 2014, Williams et al. 2016). Given the

importance of forests and forest management in the global

carbon budget (McKinley et al. 2011, Pan et al. 2011), as

well as the potential pervasiveness of partial canopy distur-

bances like intermediate blowdown (Stueve et al. 2011), a

clearer understanding of disturbance effects on carbon stor-

age at all points along the severity gradient is essential for

forest policy and management (Running 2008).

As with ecosystem services, changes in stand structure may

have differential effects on species composition and associated

successional dynamics (Webb and Scanga 2001). In general,

post-disturbance tree composition depends on pre-distur-

bance composition, species-specific mortality effects (Rich

et al. 2007), pre- and post-disturbance regeneration (Macek

et al. 2017), and environmental changes that confer a compet-

itive advantage to particular species and/or tree strata (e.g.,

overstory vs. sapling vs. seedling). If blowdown-induced gaps

are large enough to increase the availability of light, germina-

tion microsites (e.g., tip-up mounds), and other limiting

factors in mature forests, then composition may shift toward

locally present shade-intolerant species, as would be expected

following large, stand-replacing disturbance (Romme et al.

1998). Alternatively, disturbances that disproportionately

affect shade-intolerant overstory trees can accelerate succes-

sion toward shade-tolerant species if such species are locally

abundant in the understory (Abrams and Scott 1989). Second-

ary northern hardwood and mixed hardwood–conifer forests

in the northeastern United States include a variety of shade-

tolerant, intermediate-tolerant, and intolerant species that

mostly established following 19th-century agricultural aban-

donment, with subsequent stand development profoundly

influenced by land-use history, introduced insects and patho-

gens (e.g., beech bark disease [Neonectria faginata]), and a

range of timber harvest practices (Lorimer and White 2003,

Keeton 2006, Giencke et al. 2014, Urbano and Keeton 2017).

The phenomenon of dense American beech (Fagus grandifo-

lia) understory thickets is an important management concern

in the region (Wagner et al. 2010), highlighting the challenge

of assessing successional dynamics in terms of both func-

tional types (i.e., shade tolerance) and individual species.

Indeed, empirical observations of blowdown effects on the

composition of residual and regenerating trees in these forests

will help inform management efforts intended to restore nat-

ural forest dynamics (Hanson and Lorimer 2007, Kern et al.

2017).

Despite increasing focus on intermediate disturbances in the

context of forest management (North and Keeton 2008, Cow-

den et al. 2014) and the recognition that wind is an important

disturbance agent worldwide (Thom and Seidl 2016), critical
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knowledge gaps remain regarding the biological legacies asso-

ciated with blowdown events. The primary objective of this

study is to quantify the stand-scale effects of intermediate-

severity blowdown on (1) live and dead legacy structure, (2)

aboveground carbon storage, and (3) tree regeneration and

associated stand dynamics. We hypothesize that (H1) blow-

downs transform forest structure and generate abundant bio-

logical legacies (live and dead trees) by transferring overstory

trees to the forest floor; (H2) blowdowns alter the distribution

and abundance of live and dead carbon by reallocating bio-

mass among aboveground pools; and (H3) blowdowns rein-

force late-successional, shade-tolerant species composition by

providing resources and growth opportunities for advance

regeneration in the understory. To test these hypotheses, we

analyze field observations of wind disturbance effects in

mature, mixed hardwood-conifer forests in the northeastern

United States.

METHODS

Study area and design

We surveyed intermediate-severity wind impacts at four

recent blowdown areas in the states of New York and Ver-

mont (Table 1, Fig. 1). These sites are representative of a

range of conditions found more broadly throughout the

northern forest region, including species composition, site

productivity, and land use/management history. The four

specific sites are (1) primary old growth (i.e., never cleared),

mixed hardwood-conifer forest near Saranac Lake, New York

(Melonberry, MB; Curzon and Keeton 2010); (2) naturally

regenerated white pine (Pinus strobus) with codominant east-

ern hemlock (Tsuga canadensis) and northern hardwoods in

Charlotte, Vermont (Williams Woods, WW); (3) naturally

regenerated secondary northern hardwoods with codominant

balsam fir (Abies balsamea) in Weston, Vermont (Weston,

WS); (4) mature white pine plantation with sub-canopy

northern hardwoods in Jericho, Vermont (University of Ver-

mont Jericho Research Forest, JF).

Although species composition varies by site, dominant

overstory tree species are generally shade-tolerant hard-

woods (red maple [Acer rubrum], sugar maple [Acer saccha-

rum], American beech) and conifers (balsam fir, eastern

hemlock), with the exception of white pine, which exhibits

intermediate shade tolerance (Appendix S1: Tables S1 and

S2). Site elevations range from 48 to 609 m above sea level,

and the climate is humid and continental, with mean annual

temperature of 6.2°C and mean annual precipitation of

1,112 mm (Table 1). Land ownership varies among sites,

but all four sites are managed primarily for conservation

objectives and are publicly accessible (Table 1). The four

blowdowns span a range of patch sizes from 0.22 to 13.0 ha

(delineated using digital ortho-photos; Table 1).

All four blowdowns resulted from microbursts associated

with low-pressure storm systems in late summer to early fall.

The phenomena of microbursts are related to strong down-

drafts, straight-line winds, and outflows <4 km long and can

arise during hurricanes, convective storms, winter storms, and

topographically induced downslope winds (Hjelmfelt 2007).

Because these events occurred in different years and locations,

we sampled them at different times since blowdown based on T
A
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available resources. The two oldest blowdown events occurred

in 2006 (MB) and 2007 (WW). At these sites, we sampled

overstory trees and downed coarse woody detritus (DCWD)

in 2007 (0–1 yr post-blowdown) and again in 2013/2014 (6–

8 yr post blowdown; Table 1). During the second visit, we

sampled overstory trees and DCWD at a different random-

ized set of plots and transects, and we also sampled saplings,

seedlings, and understory vegetation cover. Because we ran-

domized plot locations independently at the second observa-

tion rather than repeating observations at the original plot

locations, we focus our analyses on stand-scale mean and vari-

ability (i.e., standard deviation). The two more recent blow-

down events occurred in 2010 (JF) and 2014 (WS). Whereas

we sampled JF twice (overstory and DCWD in 2010, 1 yr

post-blowdown; all strata in 2014, 4 yr post-blowdown), our

time since blowdown at WS was limited to one survey of all

vegetation strata in 2015 (1 yr post-blowdown; Table 1).

We used a hierarchical, stratified random sampling design

to compare variability within and among sites. At each site,

we established inventory plots at random locations within

the blowdown area (total n = 43) and the adjacent undis-

turbed area (total n = 42), which served as a reference con-

dition. The sample size varied among sites and visits based

on blowdown size, complexity, and available resources

(Table 1). Blowdowns exhibited relatively distinct edges, and

we located sample plots within a given blowdown or refer-

ence area rather than in edge areas. The paired design

assumes that the blowdown and reference areas are part of

the same general forest stand (i.e., that pre-disturbance

structure and composition were equivalent). We evaluated

the comparability of reference and blowdown areas using

historical digital ortho-photos, documentary records, and

field-based scouting to ensure similar species composition,

tree age and size, and topographic position. The generally

similar species composition between reference and blow-

down stands also supports this assumption See subsection

“Blowdown effects on tree regeneration and associated

stand dynamics”).

Forest measurements and calculations

We inventoried stand-scale forest structure, aboveground

carbon pools, and tree species composition using randomly

placed variable radius prism plots for overstory trees and

nested fixed-area plots for sub-canopy vegetation. We re-

corded species, diameter at breast height (DBH; 1.37 m),

height (measured with an Impulse 200 laser rangefinder

[Laser Technology, Inc., Centennial, Colorado, USA]), and

FIG. 1. Study site locations in the northern forest region of New York (NY) and Vermont (VT). Study site abbreviations are identified
in Table 1. Generally forested land cover indicated by ESRI World Imagery basemap.
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vigor class/decay stage (1–9; Maser et al. 1979) for all live

and dead overstory trees within a variable radius plot (2.3

metric basal area prism) centered on the same point as the

nested fixed area plots. We sampled saplings (height ≥1 m,

DBH ≤5 cm) within 7.98-m fixed radius circular plots

(0.2 ha) and assumed that these trees were present prior to

blowdown events. We sampled seedlings (height <1 m) within

two transects per plot (15.96 9 1 m; 0.0032 ha) and assumed

that these trees established post-blowdown. Because our pri-

mary focus was forest structure, we did not destructively sam-

ple understory trees, which would bolster these assumptions

and clarify which, if any, saplings established post-blowdown,

particularly at the less recently disturbed sites. Additionally,

we recognize that our sample intensity may not have captured

all rare species and that additional insight into regeneration

dynamics would be possible with measurements of substrate

microsites and relative differences in height and growth rates

among shade tolerance classes. We sampled percent cover of

woody plant (i.e., shrubs), herbaceous, moss, total vegetation,

and DCWD ground cover in four quadrats (1 m2 each)

located at the ends of each seedling transect. Sampling inten-

sity was consistent between sites, with the number of plots

approximately proportionate to the size of each blowdown

area. We connected inventory plots with line-intercept

transects of random length and azimuth to sample DCWD

volume and biomass for logs at least 10 cm and 1 m length at

point of intercept, recording decay class (1–5) after Sollins

et al. (1987). At the WW, MB, and WS sites, we also collected

hemispherical photos along transects at 25 to 50 m intervals

across the blowdowns and into adjacent reference areas to

capture spatial variation in the light environment. We

collected these photos separately from survey plots to provide

supplemental data on overstory canopy conditions, placing a

digital camera on a self-leveling tripod above understory

vegetation. We processed photos using HemiView software

(Version 2.1; Delta-T Devices 2012, Burwell, Cambridgeshire,

UK) after Gottesman and Keeton (2017) to estimate

proportion of visible sky (i.e., gap fraction) and leaf area

index.

We summarized all field measurements at the plot scale and

averaged plot estimates within blowdown and reference areas

(i.e., stands) at each site. To explore multiple dimensions of

structural complexity, we calculated a variety of structure met-

rics for overstory trees, understory trees, and DCWD

(Table 2, Table 3), and we also computed overstory structural

complexity indices. Although there are a variety of structural

complexity indices, including some combining tree size and

species (McElhinny et al. 2005, Littlefield and Keeton 2012),

we calculated Shannon diversity among tree size classes and

species (HDBH and Hspp; D’Amato et al. 2011) to distinguish

blowdown effects on structure vs. composition in two, readily

interpretable indices. For understory trees, we calculated sap-

ling and seedling abundance in terms of density (stems/ha)

and species composition. We classified low, moderate, and

high shade tolerance of all tree species with the USDA Forest

Service Fire Effects Information System (Appendix S1: Tables

S1 and S2; available online).5 We estimated DCWD volume

(m3/ha) following Warren and Olsen (1964) and Harmon and

Sexton (1996), converting volume to biomass (Mg/ha) using

species-group- and decay class-specific density and carbon

content values following Harmon et al. (2008). We defined

sound DCWD as decay classes 1–3 and rotten DCWD as

decay classes 4–5.

We quantified aboveground carbon pools by computing

biomass and carbon for live trees, dead trees, and DCWD.

In so doing, we focus on the largest and most dynamic

aboveground pools that we expect wind to alter most sub-

stantially (D’Amato et al. 2011), recognizing (1) that non-

tree and subcanopy vegetation can store small amounts of

carbon yet contribute a large proportion of post-disturbance

productivity (Meigs et al. 2009, Stuart-Ha€entjens et al.

2015) and (2) that the forest floor and belowground soil

pools contain substantial carbon (Fahey et al. 2010). We

estimated live tree biomass with species-group-specific allo-

metric equations from Jenkins et al. (2003) embedded in the

Northeast Decision Model (NED-3; Twery and Thomasma

2014). Although different allometric equations can derive

differing biomass estimates, especially for large trees of some

species (Hoover and Smith 2016), our primary focus was on

the relative difference between blowdown and reference

areas rather than absolute values. We used a volumetric,

component-ratio approach to estimate standing dead tree

volume and biomass following the California Air Resources

Board carbon inventory protocol (Climate Action Reserve

2014; Ford and Keeton 2017). Briefly, we calculated the pro-

portion remaining of estimated full tree biomass based on

live tree diameter-height regression equations specific to

each site and tree type (conifer, hardwood; R2 range:

0.53–0.87). We applied density reduction factors after Har-

mon et al. (2011) and assumed that carbon accounted for

50% of standing biomass.

Statistical analysis

We assessed components of residual (post-wind) struc-

ture, aboveground carbon storage, and shade tolerance

with two-way ANOVAs based on site and condition, where

site refers to the four field sites and condition refers to

blowdown vs. reference areas. We assured that we met the

assumptions of equal variance with Levene’s test (Levene

1960), which indicated that data transformations were not

necessary, and conducted ANOVAs in the R statistical

environment (R Core Team 2017). Because our objective

was to quantify the effect of blowdown and the sites exhib-

ited key differences in composition and structure, we

focused primarily on the interaction of site and condition.

This interactive effect indicates site-specific pairwise differ-

ences between blowdown and reference conditions. For the

shade tolerance analysis, we focused on the percentage of

species with high shade tolerance and determined that arc-

sine square root transformations did not yield different

results. We calculated 95% confidence intervals, interpret-

ing P < 0.05 as strong evidence of differences and P < 0.1

as moderate evidence of differences after Meigs et al. (2015)

to reduce potential Type II errors due to modest sample

sizes and high natural variability. We also report standard

deviations as a direct measure of variability within blow-

down and reference areas.

We assessed blowdown effects on tree species composi-

tion and potential successional dynamics with multivariate,5 http://www.feis-crs.org/feis/faces/index.xhtml
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nonparametric community analyses. Specifically, we quanti-

fied the similarity of tree species composition among condi-

tions, sites, and strata (overstory, sapling, seedling) using

nonmetric multidimensional scaling (NMS ordination) and

multi-response permutation procedures (MRPP). For this

analysis, we focused on tree density values (stems/ha) because

it was not practical to survey or estimate basal area for very

small saplings and seedlings. We based both NMS andMRPP

on Sørensen distance and implemented them in PC-ORD ver-

sion 6.22 (McCune and Mefford 2011). NMS ordination

arranges sites and strata in a similarity matrix, condensing an

n-dimensional space based on the number of species into a

reduced set of axes that minimizes stress (i.e., departure from

monotonicity in the association between distances in the orig-

inal species space and reduced ordination space; McCune and

Grace 2002, D’Amato et al. 2011). We prepared the NMS

TABLE 2. Overstory tree structural attributes in reference (Ref) and blowdown (Blow) conditions across four sites.

Forest structure variable (units)

Site (yr since blowdown)

JF (1) WW (0) MB (1) WS (1) JF (4) WW (6) MB (8/7)

Ref Blow Ref Blow Ref Blow Ref Blow Ref Blow Ref Blow Ref Blow

Live tree density (stems/ha)

Mean 934.8 92.2 959.2 425.6 792.3 457.9 553.5 626.1 908.2 123.2 1096.7 1232.0 539.6 614.5

SD 222.5 29.4 436.3 363.5 480.1 398.7 400.6 728.8 999.7 66.6 839.1 698.6 235.3 633.0

Dead tree density (stems/ha)

Mean 170.1 22.7 97.3 118.0 51.7 186.2 156.4 82.1 230.7 92.5 27.8 23.0 125.2 178.0

SD 65.6 25.0 85.0 208.5 37.1 171.9 79.4 76.2 297.1 128.2 36.5 22.8 130.8 192.8

Total tree density (stems/ha)

Mean 1104.8 114.9 1056.5 543.6 844.0 644.1 709.8 708.2 1138.9 215.7 1124.5 1255.0 664.8 792.5

SD 288.1 22.9 393.8 379.0 503.3 523.1 470.9 731.1 903.4 67.7 824.5 712.8 237.7 811.6

Live basal area (m2/ha)

Mean 62.0 12.1 33.4 19.7 33.5 17.2 23.7 6.9 30.6 11.5 30.8 18.1 36.2 18.8

SD 19.5 4.3 15.4 7.1 10.6 6.4 20.8 6.5 17.8 8.3 11.8 7.2 15.4 9.9

Dead basal area (m2/ha)

Mean 6.9 2.3 8.4 6.9 7.1 12.1 6.9 5.5 9.2 3.8 3.9 4.0 6.0 10.6

SD 0.0 1.9 3.4 5.3 3.7 5.2 2.3 4.5 8.0 2.7 4.9 4.0 4.2 3.5

Total basal area (m2/ha)

Mean 68.9 14.3 41.8 26.6 40.6 29.3 30.6 12.4 39.8 15.3 34.8 22.1 42.2 29.4

SD 19.5 2.9 16.6 8.0 11.5 9.3 18.6 8.1 13.5 6.6 12.0 8.3 12.6 9.9

Canopy closure† (%)

Mean 93.6 18.0 75.7 41.5 80.9 43.3 61.8 23.7 59.6 21.1 66.4 40.5 81.5 51.3

SD 9.1 6.4 22.3 17.7 17.2 10.8 41.9 21.1 25.9 9.4 22.6 14.4 21.5 21.4

Large tree density
(stems >50 cm DBH/ha)

Mean 42.4 5.4 27.5 20.6 47.3 23.6 6.1 0.0 14.6 6.7 34.7 7.5 57.7 29.8

SD 0.4 6.2 26.0 15.5 20.4 15.8 5.6 0.0 12.7 11.7 26.8 8.4 39.8 27.2

Relative density‡ (%)

Mean 100.0 18.0 77.3 41.5 84.6 43.3 70.5 23.7 59.6 21.1 71.3 40.5 93.6 51.3

SD 22.2 6.4 24.5 17.7 22.7 10.8 54.5 21.1 25.9 9.4 32.6 14.4 34.7 21.4

Quadratic mean diameter (cm)

Mean 28.7 40.0 22.8 29.4 27.9 28.0 24.6 14.0 23.6 30.9 23.3 17.1 29.2 26.7

SD 7.8 2.7 3.6 10.4 9.1 8.7 8.4 9.5 5.9 11.0 8.8 6.9 6.0 10.4

Structural complexity (HDBH)

Mean 1.6 1.3 1.5 1.5 1.4 1.4 1.4 0.8 1.5 1.3 1.3 0.9 1.6 1.1

SD 0.0 0.2 0.3 0.4 0.2 0.4 0.5 0.6 0.1 0.4 0.3 0.4 0.2 0.5

Compositional complexity (Hspp)

Mean 0.3 0.0 1.3 1.0 0.8 0.7 1.4 1.0 0.7 0.3 1.1 0.8 0.8 0.9

SD 0.2 0.0 0.3 0.3 0.4 0.2 0.4 0.6 0.0 0.3 0.2 0.4 0.4 0.2

Species richness

Mean 2.5 1.0 5.2 3.3 3.7 3.4 5.3 3.0 3.7 1.7 4.3 3.0 3.3 3.6

SD 0.7 0.0 1.6 1.1 0.9 0.5 2.5 1.7 0.6 0.6 1.1 1.1 0.9 0.5

Notes: Tree values refer to overstory trees. Sites are arranged by increasing blowdown patch size (Table 1) and time since blowdown.
Mean and SD of plots within blowdown (Blow) and adjacent reference (Ref) areas at four sites sampled at different times post-blowdown.
Boldface type indicates pairwise P < 0.05; italic type indicates pairwise P < 0.1 from two-way ANOVA based on site and blowdown condi-
tion. MB site was sampled seven years post-blowdown in the blowdown area and eight years post-blowdown in the reference area.
†Canopy closure based on live tree basal area calculations in Northeast Ecosystem Management Decision Model (NED-3; Twery and

Thomasma 2014).
‡Relative density is based on tree-area ratios (Sollins et al. 1987). See Appendix S1: Table S3 for statistical details.
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species matrix by removing species with fewer than four

occurrences and relativizing density values by row (parame-

ter = 1). To aid interpretation of the primary axes, we over-

laid the percent hardwood, conifer, and low, intermediate, and

high shade tolerance. MRPP is a complementary comparison

test that provides statistical evidence of significant differences

among pre-determined groups using random permutations of

the original data (McCune and Grace 2002).

TABLE 3. Live and dead aboveground biomass/carbon pools in reference and blowdown conditions across four sites.

Biomass/carbon variable (units)

Site (yr since blowdown)

JF (1) WW (0) MB (1) WS (1) JF (4) WW (6) MB (8/7)

Ref Blow Ref Blow Ref Blow Ref Blow Ref Blow Ref Blow Ref Blow

Live aboveground tree biomass (Mg/ha)

Mean 311.5 61.9 191.6 121.0 217.5 107.4 153.8 31.4 154.5 60.2 182.4 94.9 256.7 119.3

SD 89.8 22.8 82.5 48.0 65.4 42.4 125.5 26.7 77.8 42.3 69.0 48.3 111.0 67.5

Dead aboveground tree biomass (Mg/ha)

Mean 27.9 10.7 38.9 29.8 35.7 67.0 20.5 12.4 32.3 7.5 9.9 14.0 13.5 36.2

SD 0.9 8.7 18.3 26.5 21.7 32.0 9.6 8.6 28.0 1.6 12.1 14.6 12.1 15.6

Total aboveground tree biomass (Mg/ha)

Mean 339.4 72.7 230.5 150.8 253.2 174.4 174.3 43.8 186.8 67.7 192.3 108.8 270.3 155.5

SD 88.8 15.6 84.4 51.8 65.1 57.9 118.5 31.0 61.9 41.0 65.3 50.5 100.7 62.5

Live aboveground tree carbon (Mg C/ha)

Mean 155.7 31.0 95.8 60.5 108.7 53.7 76.9 15.7 77.2 30.1 91.2 47.4 128.4 59.6

SD 44.9 11.4 41.3 24.0 32.7 21.2 62.8 13.3 38.9 21.1 34.5 24.1 55.5 33.8

Dead aboveground tree carbon (Mg C/ha)

Mean 14.0 5.4 19.4 14.9 17.9 33.5 10.3 6.2 16.2 3.8 5.0 7.0 6.8 18.1

SD 0.5 4.3 9.1 13.3 10.8 16.0 4.8 4.3 14.0 0.8 6.0 7.3 6.0 7.8

Total aboveground tree carbon (Mg C/ha)

Mean 169.7 36.3 115.2 75.4 126.6 87.2 87.1 21.9 93.4 33.8 96.1 54.4 135.1 77.7

SD 44.4 7.8 42.2 25.9 32.6 28.9 59.3 15.5 30.9 20.5 32.6 25.3 50.4 31.3

Sound DCWD volume (m3/ha)

Mean 104.9 453.7 38.9 941.0 153.5 353.6 64.2 284.2 69.7 413.9 166.1 329.8 91.6 261.2

SD 123.6 49.2 25.9 288.2 136.0 83.1 31.8 176.8 54.9 257.3 72.4 115.1 57.5 50.1

Rotten DCWD volume (m3/ha)

Mean 2.1 25.4 53.5 21.9 78.5 87.6 59.1 23.2 26.4 57.4 22.6 104.0 91.7 86.3

SD 2.9 23.0 37.4 28.0 54.3 59.5 42.5 46.1 27.3 53.2 12.4 117.9 58.4 64.4

Total DCWD volume (m3/ha)

Mean 106.9 479.2 92.4 962.9 232.0 441.2 123.3 307.4 96.0 471.2 188.8 433.7 183.3 347.5

SD 126.5 63.1 62.4 311.7 154.4 111.0 71.6 164.3 82.2 310.5 69.4 132.0 81.7 99.0

Sound DCWD biomass (Mg/ha)

Mean 36.9 160.3 13.5 389.9 50.4 148.5 20.1 107.0 19.6 121.2 51.6 102.3 29.2 83.3

SD 44.5 20.0 10.1 112.9 43.1 45.0 9.6 57.9 14.9 81.5 21.5 38.7 20.8 16.9

Rotten DCWD biomass (Mg/ha)

Mean 0.3 4.3 9.5 4.0 13.2 14.5 9.8 3.8 4.5 9.7 3.9 18.0 14.7 14.1

SD 0.5 3.9 6.6 5.1 9.7 9.7 6.9 7.4 4.6 9.0 2.1 20.4 9.1 10.8

Total DCWD biomass (Mg/ha)

Mean 37.3 164.6 23.1 393.9 63.7 163.0 30.0 110.8 24.0 130.9 55.5 120.3 43.9 97.4

SD 45.0 22.1 16.2 117.5 46.1 48.3 15.6 55.0 19.6 90.5 21.1 35.3 22.7 25.2

Sound DCWD carbon (Mg C/ha)

Mean 18.4 79.5 6.6 193.1 24.6 73.7 9.8 52.8 9.5 59.0 25.1 49.8 14.2 40.6

SD 22.2 10.0 5.0 55.6 21.0 22.7 4.7 28.5 7.3 39.8 10.5 18.9 10.1 8.3

Rotten DCWD carbon (Mg C/ha)

Mean 0.2 2.2 4.9 2.1 6.8 7.4 5.0 1.9 2.3 5.0 2.0 9.2 7.5 7.2

SD 0.3 2.0 3.4 2.7 5.0 5.0 3.5 3.7 2.4 4.7 1.1 10.5 4.6 5.5

Total DCWD carbon (Mg C/ha)

Mean 18.5 81.7 11.5 195.2 31.4 81.1 14.9 54.8 11.8 64.0 27.1 59.0 21.7 47.8

SD 22.4 11.1 8.1 58.0 22.6 24.4 7.8 27.0 9.7 44.4 10.2 17.3 11.2 12.5

Dead: live tree carbon 0.09 0.17 0.20 0.25 0.16 0.62 0.13 0.40 0.21 0.12 0.05 0.15 0.05 0.30

DCWD:live tree carbon 0.12 2.64 0.12 3.23 0.29 1.51 0.19 3.49 0.15 2.13 0.30 1.24 0.17 0.80

Notes: Tree values refer to overstory trees. DCWD refers to downed coarse woody detritus. Sites are arranged by increasing blowdown
patch size (Table 1) and time since blowdown. Mean and SD of plots within blowdown (Blow) and adjacent reference (Ref) areas at four
sites sampled at different times post-blowdown. Boldface type indicates pairwise P < 0.05; italic type indicates pairwise P < 0.1 from two-
way ANOVA based on site and blowdown condition. MB site was sampled seven years post-blowdown in the blowdown area and eight years
post-blowdown in the reference area. See Appendix S1: Table S4 for statistical details.
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RESULTS

Blowdown effects on residual live and dead forest structure

Blowdown effects on stand structure were highly variable

within and among sites, generally leaving a complex pattern

of residual standing live and dead trees, both dispersed and

clustered in small patches (Appendix S2: Fig. S1). Within

the first year following intermediate-severity wind events,

live tree basal area in blowdowns ranged from 19% to 59%

of adjacent reference areas, indicating substantial residual

live structure (Table 2, Fig. 2). Standing dead tree basal area

was not significantly higher or lower in blowdown areas at

JF, WW, and WS (P > 0.1), but it did increase at MB

(P < 0.05), potentially reflecting delayed mortality effects.

Thus, declines in total overstory basal area, and density at

some sites, were due primarily to changes in live trees

(Table 2). In addition, although blowdowns lowered the

ratio of live to dead tree density and basal area, these ratios

remained above one in all cases (i.e., live trees were more

prevalent than dead trees following each of these blowdown

events; Table 2, Fig. 2).

Blowdowns also induced significant changes in other

overstory tree attributes (P < 0.1; Table 2). Canopy closure

and relative density were lower in blowdown areas at all

sites. Whereas large live tree density was lower following

blowdown at most sites, changes in quadratic mean diameter

were site-specific, exhibiting decreases, increases, and no sig-

nificant differences. Each site also exhibited distinct changes

in tree size distributions at the initial observation following

blowdown (Fig. 3). Although the stand structural complex-

ity index based on overstory tree size distributions (HDBH)

was lower in blowdown areas at the WW (time 1) and MB

(time 2) sites, blowdown events did not alter HDBH in most

cases (Fig. 4, Table 2). Similarly, the complexity index based

on overstory tree species composition (Hspp) was lower at

the WW blowdown site only; Hspp was not significantly dif-

ferent between reference and blowdown areas in all other

combinations of site and timing (Fig. 4). The variability in

these plot-based estimates of forest structure also was evi-

dent in the gap fraction and leaf area index estimates derived

from hemispherical photos, which showed high fluctuations

across space within and among sites (Appendix S2: Fig. S1).

Gap fraction (canopy openness) ranged from 8% to 64%,

and LAI ranged from zero to 3.1 (Appendix S2: Fig. S1).

Concurrent with the changes in overstory tree structure,

initial mean DCWD volume and biomass were significantly

higher in blowdown areas (P < 0.05), but differences varied

substantially among sites (Table 3, Fig. 5). For example, ini-

tial total DCWD volume was 4.5, 10.4, 1.9, and 2.5 times

higher in blowdown vs. reference areas at the JF, WW, MB,

and WS sites, respectively. Blowdown effects were particu-

larly pronounced for sound (fresh or poorly decayed)

DCWD (Fig. 5), and there were no significant differences

for rotten DCWD (Table 3), reflecting relatively low levels

of old DCWD in the pre-blowdown stand.

Blowdown effects on aboveground carbon storage

The blowdown-induced structural changes described above

translate to important changes in aboveground carbon pools.

Total aboveground tree biomass and carbon were signifi-

cantly lower in blowdowns than in reference areas (P < 0.1),

reflecting large reductions in overstory live tree biomass

(Table 3). As with basal area, however, retention of live tree

carbon was substantial following blowdowns (blowdown

range: 15.7–60.5 Mg C/ha; reference range 76.9–155.7 Mg C/

ha), and standing dead tree carbon was similar between blow-

down and reference areas (Tables 2 and 3).

Because standing live tree carbon declined but dead tree

carbon did not change significantly, the initial mean ratio of

dead to live tree carbon was higher in blowdown areas

(0.36) than in reference areas (0.15; Table 3). This initial

ratio was generally well less than one but varied substan-

tially among blowdown areas (0. 17, 0.25, 0.62, and 0.40 at

JF, WW, MB, and WS, respectively) and to a lesser degree in

FIG. 2. Initial overstory live and dead tree basal area at each site (mean and 95% confidence intervals). Asterisks (*P < 0.05) indicate
significant pairwise differences (interaction of site and condition from two-way ANOVA). See Table 2 for summary of all structural vari-
ables and Appendix S1: Table S3 for statistical details.

April 2018 WIND DISTURBANCE IN TEMPERATE FORESTS 805



FIG. 4. Stand complexity indices comparing reference and blowdown conditions at each site over time (mean and 95% confidence
intervals). Symbols (*P < 0.05; †P < 0.1) above means indicate significant pairwise differences in HDBH; symbols below means indicate dif-
ferences in Hspp (interaction of site and condition from two-way ANOVA). H0

DBH is based on distribution of tree density across size classes,
and H0

spp is based on distribution of tree species across size classes (see Methods). See Table 2 for summary of all structural variables and
Appendix S1: Table S3 for statistical details.

FIG. 3. Mean initial overstory tree size distributions for reference (dark green) and blowdown (light brown) conditions at each site.
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the reference areas (0.09, 0.20, 0.16, and 0.13 at JF, WW,

MB, and WS, respectively; Table 3). Reflecting the domi-

nant wind-induced structural changes, the initial post-blow-

down ratio of DCWD carbon to standing live tree carbon

exhibited more pronounced blowdown effects (blowdown:

2.72; reference: 0.18; Table 3). Like the standing tree carbon

ratio, this DCWD:standing live tree ratio varied among

sites, especially in blowdown areas (2.64, 3.23, 1.51, and

3.49 at JF, WW, MB, and WS, respectively; Table 3).

Blowdown effects on tree regeneration

and associated stand dynamics

Tree regeneration and sub-canopy tree density in the sap-

ling and seedling canopy strata were generally abundant in

both blowdown and reference areas. Due to high within-

stand variability, there were no significant pairwise differ-

ences in total abundance (stems/ha) between blowdown and

reference areas for either saplings (i.e., advance regeneration

present before blowdowns) or seedlings (P > 0.1; Table 4,

Fig. 6). Although there were no consistent differences for

specific understory non-tree vegetation groups (shrub,

herbaceous, moss), total understory vegetation cover was

significantly higher in blowdown areas (P < 0.1; Table 4).

In nearly all combinations of site and canopy stratum, the

majority of tree stems exhibited high shade tolerance; tree

species with low shade tolerance accounted for <5% of tree

density in all but two cases (Fig. 6, Appendix S1: Table S2).

At the WW, MB, and WS sites, overstory species composition

was dominated by generally late-successional, shade-tolerant

species in both blowdown and reference areas (Fig. 6,

Appendix S1: Table S2). At JF, the overstory was primarily

eastern white pine, a species with intermediate shade toler-

ance (Fig. 6, Appendix S1: Tables S1 and S2). In contrast to

the overstory, the sapling and seedling strata exhibited a

somewhat higher proportion of species with intermediate

shade tolerance, particularly at MB, where yellow birch

(Betula alleghaniensis) competed with American beech

TABLE 4. Understory tree and non-tree vegetation in reference and blowdown conditions across four sites.

Understory vegetation variable (units)

Site (yr since blowdown)

JF (4) WW (6) MB (8/7) WS (1)

Ref Blow Ref Blow Ref Blow Ref Blow

Sapling density (stems/ha)

Mean 2,200 467 1,579 1,894 1,825 2,700 2,900 1,330

SD 1,659 301 739 659 2,428 2,110 1,213 562

Seedling density (stems/ha)

Mean 28,229 2,396 7,991 10,508 47,411 46,938 44,479 28,750

SD 11,076 361 4578 12,652 31,669 29,617 29,139 15,368

Shrub cover (%)

Mean 8 7 0 6 0 11 na na

SD 9 5 1 12 1 11 na na

Herbaceous cover (%)

Mean 8 53 9 16 8 6 21 10

SD 4 22 6 11 4 5 19 7

Moss cover (%)

Mean 0 4 8 16 9 20 6 1

SD 1 5 6 16 6 6 3 1

Total understory cover (%)

Mean 17 64 17 39 17 37 27 11

SD 6 23 7 18 4 12 19 7

Notes: Sites are arranged by increasing spatial extent. Mean (SD) of plots within blowdown (Blow) and adjacent reference (Ref) areas at
four sites sampled at different times post-blowdown. Total understory cover is the sum of shrub, herbaceous, and moss cover. Boldface type
indicates pairwise P < 0.05; italic type indicates pairwise P < 0.1 from two-way ANOVA based on site and blowdown condition; na, not
applicable. MB site was sampled seven years post-blowdown in the blowdown area and eight years post-blowdown in the reference area. See
Appendix S1: Table S5 for statistical details.

FIG. 5. Initial downed coarse woody detritus (DCWD) biomass
for reference and blowdown conditions at each site (mean and 95%
confidence intervals for total biomass). Black sections of bars corre-
spond to rotten DCWD; colored sections correspond to sound
DCWD. Asterisks (*P < 0.05) indicate significant pairwise differ-
ences (interaction of site and condition from two-way ANOVA). See
Table 3 for summary of biomass variables and Appendix S1:
Table S4 for statistical details.
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(Fig. 6, Appendix S1: Table S2). Yellow birch also was an

important component of the understory at JF and WW

(Appendix S1: Table S2). Despite the prevalence of species

with high shade tolerance, the percentage of sapling and seed-

lings with high shade tolerance was lower in blowdown than

in reference areas in some cases (Fig. 6, Appendix S1: Tables

S2 and S6).

Overall, species composition was similar between blow-

down and reference areas within a given site and stratum,

indicating that wind disturbance did not have a pronounced

effect on tree species composition (Fig. 6, Appendix S1:

Table S2). NMS ordination (three-dimensional solution with

minimum stress of 11.403, final instability <0.00001) indicated

that species composition was more similar between reference

and blowdown stands within a given combination of site and

stratum than among strata and sites (Fig. 7). In addition, spe-

cies composition was not significantly different between refer-

ence and blowdown conditions within a given site at three of

four sites (MRPP pairwise A < 0.06; P > 0.13; Table 5; WS

was the exception likely because it was sampled only one year

post-blowdown). In contrast, all sites were significantly differ-

ent from each other in the multivariate species space (MRPP

pairwise A > 0.09; P < 0.009; Table 5; strata and condition

combined at site level). Collectively, the relative dominance of

shade-tolerant species in multiple strata and similarity

between reference and blowdown areas demonstrate that

FIG. 6. Mean tree density by shade tolerance classes in three canopy strata (overstory, saplings, seedlings) at each site. Asterisks
(*P < 0.05) indicate significant pairwise differences (interaction of site and condition [ref, reference; blow, blowdown] from two-way
ANOVA) of total density in each stratum. Initial post-blowdown overstory total tree density was lower at the JF and WW sites, but there
were no significant pairwise differences for the sapling and seedling strata. See Appendix S1: Table S2 for species composition, Table 2 for
overstory structural variables, Table 4 for sapling and seedling abundance, Appendix S1: Table S1 for shade tolerance of all tree species, and
Appendix S1: Table S5 for assessment of shade tolerance.
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blowdown events released advance regeneration that was pre-

sent prior to disturbance.

Although American beech was an important part of the

species mix at all four sites, beech sapling and seedling densi-

ties were generally lower in blowdowns than in adjacent

reference areas. Specifically, beech accounted for 0–31% of

sapling density in blowdowns and 7–55% in reference areas

(Appendix S1: Table S2). Beech was less prevalent in the

seedling stratum, with all sites exhibiting <10% relative

abundance (Appendix S1: Table S2).

DISCUSSION

Influence of wind disturbance on forest structure,

carbon storage, and stand dynamics

Whereas previous studies typically have documented wind

and other disturbance effects at the two ends of the distur-

bance frequency/severity gradient (e.g., Romme et al. 1998,

Seymour and White 2002, Sano et al. 2010), recent research

has highlighted the role of intermediate disturbances like

blowdowns, ice storms, insect outbreaks, pathogens, and

mixed-severity fire (Martin and Ogden 2006, North and

Keeton 2008, Cowden et al. 2014, Dunn and Bailey 2016,

Reilly and Spies 2016, Janda et al. 2017, Nagel et al. 2017).

Our study adds to a growing body of literature showing that

intermediate-severity disturbances contribute to stand- and

FIG. 7. Nonmetric multidimensional scaling (NMS) ordination indicating similarity among reference and blowdown areas, tree strata,
and sites in multivariate species space. Colors indicate sites. R indicates reference, B indicates blowdown, Over indicates overstory stratum,
Sapl indicates sapling stratum, and Seed indicates seedling stratum. Gray lines in biplot indicate species attributes. The values in parentheses
correspond to the variance represented by the two axes (based on comparison between points in the ordination space and distances in the
original space; McCune and Grace 2002). Note that each site occupies a relatively distinct species space and that the reference and blow-
down conditions are more similar within a given stratum and site than among strata and sites. See associated multi-response permutation
procedures (MRPP) statistics in Table 5.

TABLE 5. Multi-response permutation procedure (MRPP)
comparison of tree species composition among sites and
conditions (blowdown vs. reference).

Grouping variable

MRPP statistics

T A P

Site overall �7.00858 0.16604 3.99 10�7

Site pairwise

JF vs. WW �2.7117 0.092043 0.009786

JF vs. MB �3.6158 0.12657 0.001501

JF vs. WS �3.0472 0.10018 0.003786

WW vs. MB �4.9564 0.14535 0.000591

WW vs. WS �4.0297 0.12333 0.002541

MB vs. WS �4.2278 0.14624 0.002552

Site 9 Condition overall �4.6192 0.18690 0.00011

Site 9 Condition pairwise

JF Ref vs. JF Blow 0.8377 �0.11079 0.79466

WWRef vs. WW Blow �0.4566 0.031377 0.34760

MB Ref vs. MB Blow �1.0033 0.058169 0.13908

WS Ref vs. WS Blow �2.1698 0.14995 0.02860

Notes: MRPP comparisons correspond to distances among
groups in nonmetric multidimensional scaling (NMS) ordination of
based on species composition of overstory, sapling, and seedling
trees (Fig. 7). T statistic is the primary test statistic. A is the chance-
corrected within-group agreement; A = 0 when heterogeneity within
groups equals expectation by change, and A = 1 when all items are
identical within groups. P < 0.05 indicates significant difference
among groups based on permutation of the original data matrix
(McCune and Grace 2002).
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landscape-scale heterogeneity and associated values priori-

tized by many contemporary forest policies (e.g., wildlife

habitat, ecosystem services; Turner et al. 2013). By opening

otherwise closed-canopy conditions, intermediate distur-

bances are particularly important in forested landscapes like

the northeastern United States, which are dominated by

young to mature secondary forests that grew following 19th-

century agricultural abandonment (Lorimer and White 2003,

Urbano and Keeton 2017). These secondary forests are rela-

tively homogeneous over large, contiguous expanses, having

less patch complexity compared to historic, pre-European

settlement landscapes (Mladenoff et al. 1993, Rhemtulla

et al. 2009). In this context, intermediate-severity distur-

bances represent a subsidy to the system, enhancing the avail-

ability of otherwise under-represented spatial patterns and

habitat features, such as gaps and canopy openings of irregu-

lar shape, size, and within-patch residual structure (Kneeshaw

and Prevost 2007, Kern et al. 2013, 2017).

In the present study, recent blowdown events altered or

enhanced important aspects of stand-scale forest structure

and carbon storage but did not appear to redirect or alter

late successional development substantially. Our empirical

observations support the first hypothesis that intermediate-

severity blowdowns generate abundant live and dead biolog-

ical legacies, both standing and downed, despite substantial

structural changes (H1). However, because these forests were

generally mature or old-growth with a history of no (MB,

WW) or only light (JF, WS) recent silvicultural manage-

ment, stand-level structural complexity was relatively high

already, as indicated by reference values of the overstory live

and dead tree attributes, overstory tree structural complexity

indices (Table 2), DCWD (Table 3), and understory tree

and non-tree vegetation (Table 4). Nevertheless, blowdown

events induced substantial within-stand variability in canopy

openness (Appendix S2: Fig. S1) and other structural attri-

butes, including residual live and dead overstory structure

and large volumes of downed CWD, a fundamental compo-

nent of habitat complexity in late successional forests

(Franklin et al. 2002, Burrascano et al. 2013). These results

highlight the variable structural conditions that intermedi-

ate- or moderate-severity disturbances can create at the for-

est stand scale, which, in turn, have direct implications for

ecosystem processes such as primary production and struc-

tural development (Stuart-Ha€entjens et al. 2015, Meigs

et al. 2017). Our study also provides field-based evidence of

the structural resilience demonstrated recently with simula-

tion modeling by Halpin and Lorimer (2016), wherein par-

tial canopy disturbances accelerated the development of

complex forest structure.

Our findings support the second hypothesis that intermedi-

ate-severity blowdowns alter the distribution and abundance

of aboveground carbon pools (H2), but the relatively high

levels of residual live and dead structure and stand complexity

dampen these effects. By inducing numerous structural

changes (Table 2), recent blowdowns have changed the short-

term balance between live and dead carbon, as indicated by

the two ratio metrics (Table 3). We characterize these changes

as carbon transfers rather than losses, given that the total

amount of standing and downed tree carbon on site is similar

in reference and blowdown areas. We recognize that long-term

carbon storage and emissions will depend on the balance

between lagged dead wood decomposition, post-disturbance

vegetation growth, and interactions with ungulate browsing

and forest management (Meigs et al. 2009, Mayer et al. 2014,

Williams et al. 2016, D’Amato et al. 2017). Specifically, dead

carbon in DCWD generated by recent blowdowns will be

released over one to several decades, depending on the degree

of dead wood incorporation into soil organic matter pools

(Johnson and Curtis 2001, Buchholz et al. 2014) and differen-

tial decay rates associated with local climate variability, spe-

cies, and log size (Woodall et al. 2015, Dunn and Bailey

2016). Carbon in large standing trees (live and dead), espe-

cially the old conifers present at all four sites, is likely to be a

relatively persistent and stable pool for multiple decades

(Woodall et al. 2015). In addition to the lagged decomposi-

tion and emissions from dead carbon pools, net ecosystem

carbon balance will depend on post-disturbance vegetation

growth (Chapin et al. 2006, McKinley et al. 2011, Gough

et al. 2016), which may be enhanced by the release of advance

regeneration at our sites.

In addition, our parametric (ANOVA; Fig. 6, Appendix S1:

Table S2) and nonparametric analyses (NMS ordination,

MRPP; Table 5; Fig. 7) generally support the third hypothesis

that intermediate-severity blowdowns reinforce late-succes-

sional, shade-tolerant species composition (H3). Indeed, these

blowdown events provided an opportunity for shade-tolerant

regeneration present prior to the disturbances (Foster 1988,

Foster and Boose 1992). Rather than affecting tree species

differentially (Woods 2004, Rich et al. 2007, Frelich and Reich

2010), blowdown at our sites reinforced or maintained pre-

disturbance hierarchies of species dominance, consistent

with prior studies (Abrams and Scott 1989, Webb and

Scanga 2001, Nagel et al. 2006, 2014, Beaudet et al. 2007).

In this way, the regeneration response to intermediate blow-

down in these generally mature, shade-tolerant forests is

more analogous to fine-scale canopy gap dynamics, high-

lighting the importance for stand dynamics of live tree lega-

cies associated with partial disturbances (Woods 2004,

Lorimer and Halpin 2014). At the same time, the relative

reduction of species with high shade tolerance in some cases,

particularly in the sapling stratum, indicates a moderate

response of less shade-tolerant species (e.g., yellow birch) to

the post-blowdown environment. If this pattern of a more

even distribution among shade tolerance classes persists,

then blowdowns could increase the diversity of species

composition and stand development trajectories over time.

Further studies that are able to sample understory trees

destructively to determine the precise timing of pre- and

post-disturbance establishment, as well as those covering

a longer time since blowdown (e.g., Nagel et al. 2014,

D’Amato et al. 2017), would further elucidate the interac-

tions among species with varying shade tolerance and life

history strategies.

Taken together, our results indicate that intermediate-sever-

ity disturbance events can enhance structural complexity

without substantially altering or redirecting successional

trajectories occurring pre-disturbance. This dynamic likely

reflects the generally shade-tolerant overstory composition as

well as the abundance of shade-tolerant advance regeneration

(Fig. 6), which rapidly exploited available growing space

across the full range of residual canopy closure we investi-

gated. From this perspective, we suggest that advance
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regeneration of shade-tolerant species contribute to both

structural resilience (Halpin and Lorimer 2016) and composi-

tional resilience to this particular type and severity of distur-

bance. There are important site-specific nuances to consider

with less shade-tolerant species, especially yellow birch,

whose capacity to survive in the understory and attain over-

story codominance over longer time scales likely depends on

light from partial canopy disturbances (e.g., Beaudet and

Messier 1998). Nevertheless, intermediate-severity blowdown

at our sites generally released advance regeneration without

recruiting a cohort of early-successional, pioneer species,

although such effects depend on the pre-disturbance struc-

ture, composition, and successional condition (e.g., Gough

et al. 2016).

Due to widespread forest health and management concerns

related to beech bark disease and associated thickets (Nyland

et al. 2006, Wagner et al. 2010, Giencke et al. 2014), the

advance shade-tolerant regeneration at these sites could be

problematic if beech root-suckers are dominating post-blow-

down species composition. However, our findings indicate that

the relative abundance of beech saplings and seedlings gener-

ally is lower in blowdowns areas (Appendix S1: Table S2).

Other common tree species, such as sugar maple, red maple,

yellow birch, and balsam fir, exhibited robust regeneration at

the different sites, contributing to the high site-to-site variabil-

ity in species composition (Fig. 7, Appendix S1: Table S2).

Moreover, because total sapling and seedling abundance did

not differ significantly between reference and blowdown areas

at a given site (Table 4), successional trajectories do not

appear to have changed despite dramatic structural changes,

consistent with Beaudet et al. (2007). Our findings differ from

observations of beech release following ice storms (Covey

et al. 2015), although the generally shade-tolerant overstory at

three of our four sites represents a different pre-disturbance

condition than the less tolerant Quercus in that study. Given

that one disturbance event may not induce enough change to

alter beech development patterns (Beaudet et al. 2007), the

issue of beech competition and health remains an important

management concern.

Management implications of intermediate wind disturbance

Our findings have key implications for stand-scale silvicul-

tural approaches intended to emulate natural disturbance

processes (Franklin et al. 2002, Seymour and White 2002,

Seymour 2005, Keeton 2006, North and Keeton 2008, Smith

et al. 2008) and/or retain ecologically important elements of

stand structure (Gustafsson et al. 2012, Puettmann et al.

2012). Two of our central findings were the relatively robust

density and abundance of standing live tree legacies within

blowdown areas and the spatial variability in residual

canopy cover evident in the hemispherical photos

(Appendix S2: Fig. S1), both of which have direct applica-

tions to sustainable forestry. First, they are consistent with

other recent studies (e.g., Woods 2004, Hanson and Lorimer

2007, Lorimer and Halpin 2014, Svoboda et al. 2014) in

suggesting that multi-cohort silvicultural systems, such as

irregular shelterwood (Raymond et al. 2009), as well as

other retention harvesting systems (Lindenmayer et al.

2012, Mori and Kitagawa 2014), are analogous in some

respects to intermediate wind disturbance. In the irregular

shelterwood system, for instance, legacy trees may be

retained at each entry, with some portion of these main-

tained over two or three rotations or even permanently

(Seymour 2005), producing a discontinuous or multi-aged

structure. In addition, the horizontal pattern evident in the

hemispherical photos, residual live overstory cover persist-

ing over a sub-canopy of intermediate trees, saplings, and

seedlings, was notably similar to stands managed for multi-

cohort structure.

Second, our findings suggest that intermediate-severity

disturbances could contribute to patch diversity at larger

spatial scales, particularly in landscapes mostly dominated by

closed-canopy secondary forests, such as the U.S. Northeast

(Kern et al. 2013). However, intermediate blowdowns differ

from harvesting systems, such as patch cuts, commonly used

to produce early-successional habitats (King et al. 2001,

DeGraaf and Yamasaki 2003) in that substantial live basal

area (19–59%) remained standing at our wind-disturbed sites,

and very high levels of DCWD (mean initial post-blowdown

volume = 548 m3/ha; Table 3) constituted a significant incre-

ase in habitat complexity on the forest floor. In this sense,

intermediate blowdowns produce distinct stand structures that

add to the complexity of patch mosaics at landscape scales.

Management activities that emulate intermediate disturbances

at stand and landscape scales might facilitate forest adapta-

tion and resilience under ongoing climate and land use change

(Seidl et al. 2011, Turner et al. 2013, Thom and Seidl 2016).

Future studies could explore spatial patterning further by

comparing stand- and landscape-scale complexity across land-

scapes with differing amounts and configurations of recent

wind disturbance and management activities, especially over

longer time scales. In addition, because blowdown events can

increase forest structural complexity without altering late suc-

cessional dynamics, they may be compatible with multi-func-

tional management approaches specifically promoting late

successional forest structure and function (Abrams and Scott

1989, Smith et al. 2008 Bauhus et al. 2009, Ford and Keeton

2017).

Our results also have direct applications to carbon forestry.

Forest carbon management under existing carbon market

protocols emphasize retention harvesting and extended rota-

tions to maintain high levels of stocking in managed forests

(Nunery and Keeton 2010, McKinley et al. 2011, Kerchner

and Keeton 2015). For this reason, multi-cohort silvicultural

systems that are analogous to intermediate-severity wind

effects have great potential for carbon management in north-

ern hardwood–conifer forests. We found a relatively high level

of initial carbon storage in residual live (mean = 40.2 Mg C/

ha) and dead (mean = 15.0 Mg C/ha) standing trees as well

as DCWD pools (mean = 103.2 Mg C/ha) in blowdown

areas. If timber harvests incorporated similar post-harvest

carbon stocking across multiple pools, they would be incen-

tivized under many current market-based “improved forest

management” protocols (e.g., Climate Action Reserve 2014;

Verified Carbon Standard, available online).6 Therefore,

disturbance-based forestry approaches emulating intermedi-

ate blowdown events may offer further opportunities for inte-

grated management of carbon, timber, and wildlife habitat

(Schwenk et al. 2012).

6 http://www.v-c-s.org/project/vcs-program/
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CONCLUSION

This study of recent wind disturbance in the northeast-

ern United States documents important biological legacies

following intermediate-severity blowdown events, including

relatively high residual live and dead overstory tree abun-

dance, moderate structural complexity in both reference and

blowdown areas, abundant sound and rotten downed wood,

and abundant yet variable tree regeneration density up to

eight years post blowdown. Our findings suggest that inter-

mediate wind disturbances can contribute to structural com-

plexity and carbon storage without substantially altering

late-successional stand dynamics. Specifically, recent blow-

downs contributed to within-stand structural variability and

dead wood biomass, critical elements of late successional

forest structure that contemporary forest management activ-

ities aim to restore. In addition, although windstorms

altered the balance between live and dead aboveground car-

bon pools, long-term carbon storage will depend on lagged

dead wood decomposition and post-disturbance vegetation

growth. Moreover, intermediate-severity blowdown at our

sites released advance regeneration of shade-tolerant trees

but did not recruit a new cohort of shade-intolerant trees,

suggesting a dynamic in which disturbance initially sustains

or advances late-successional species composition rather

than providing a regeneration opportunity for pioneer spe-

cies. Advance regeneration thus enhances structural and

compositional resilience to this type of disturbance. Finally,

this study underscores how partial canopy disturbances like

wind can create heterogeneity that forest managers can inte-

grate into adaptive management plans addressing current

and projected global change.
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