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Intermediate spaces and interpolation, the complex method
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Introduction. In this paper we discuss in detail the so called comples
method of interpolation which was originally introduced by the author
ir [1], and later, independently, by J. L. Lions in [5].

The paper consists mainly of two parts. The first one comprises
varagraphs 1 to 12 and is devoted to those propertiés of the intermediate
spaces which are consequences of properties of the interpolating spaces.
In the study of duality we are let to a second, complex method.of inter-
polation yielding intermediate spaces [B,, B,]" (see paragraph 3). This
method, which is closely related to but not identical with the first, is
also discussed in some detail in the first part. The rest is dévoted to the
determination of the spaces intermediate between given ones. We study
extensively the spaces between Banach lattices of funetions, these fane-
tions being allowed to take values in a Banach space. We also consider
the problem of integpolating between various classes of Holder conti-
nuous functions, eontinuously differentiable functions ete. This we ac-
complish by considering a general class A(B, X} and obtaining a suitable
representation for functions in this class (see paragraph 14).

The presentation of the material is arranged as follows: paragraphs
1 to 14 contain the most important definitions and the statement of
results. The remaining paragraphs contain the proofs. Thus the statements
of paragraph @, 1 < r < 14, are proved in paragraph z--20.

Throughout this paper we make systematic use of functions with
values in a Banach space. We refer the reader to [2] for the general
analytical facts about such functions.

The reader interested in other methods of interpolation can consulb
the work of N. Aronszajn, B. Gagliardo, C. Foias, S, Krein, J. .. Lions
and J. Peetre. The method of 5. G. Krein (see [3] and [11} 15 closely
related to the one diseussed in this paper.
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The spaces introduced in 13.4 generalize a class originally introduced
by G. G. Lorentz (see [6]).

The spaces A in paragraph 14 include those studied by M. L. Taibleson
in hiy dissertation, where, among other things, he solves the problem
of interpolation between his spaces.

The reader may also be interested in the paper of B. M. Stein [7],
where he generalized the elagsical convexity theorem of M. Riesz to
operators depending on a complex parameter, and the paper of B. M,
Stein and G. Weiss [8] concerning interpolation between I? spaces with
respect to different measures.

1. An interpolation pair (B°, B') is a pair of complex Banach spaces
B", B, continnously embedded in 2 eomplex topological vector space V.
It o ig an element of B, i = 0,1, we denote its norm by flell or o]y
If in B° ~ B' we introdnce the norm

el gt = max (lizlo, ll2]) s

then B® ~ B' becomes a Banach space.
Similarly, if we consider the space B°-+B' and introduce in it the norm

lellpo.. g1 = n Cliglo + 21

where the infimum is taken over all pairs y,z,yeB’, z¢B’, such that
y-+# =z, then B"+B' also becomes a Banach space.

Since B' and B' are continuously embedded in V, it is evident that
B' ~ B' and B'+B' are also continuously embedded in V.

9, Given an interpolation pair we consider funchions f(¢), &=
= § -4t defined in the sirip 0 <s <1 of the &-plane, with values in
B'+-B* eontinuous and bounded with respect to the norm of B+ B
in 0 < s <1 and analytic in 0 << s < 1, and such that f(st)eB° is B'-con-
tinuous and tends to zero as |t} — oo, f(1-4+it)eB* iz Bl-continuous and
tends to zero as |§| — co. In this linear space of functions which we denote
by F(B°, BY) we introduce the norm.

Iflls = max [sup |f (3t)lo, sup (1F (L4 it ].

Then & becomes a Banach space.
3. Given a real number s, 0 < s <1, we consider the subspace
B, = [B', B'], of B°+ B defined by B, = {w |z = f(s), feF (B’, B")} and
introduce in it the norm
llells = llolls, = infi|flle, fls) =@.

Then B, is a Banach space continuously embedded in B°+B'. Further-
more, if ./, denotes the subspace of & (B, B') consisting of all functions
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F(& Uwhifzh vaﬂ?is]? at & = s, then 4 is closed and the quotient space
F (B, B")|A#, is isomorphic and isometric with B,. This isometry is
effected byothe fnapping F(B', B'} - B, defined by f— f(s).

If weB” ~ B, then ||, < Hm][BoJrBI. This is seen at once by taking
(& =

.4. Later we will state a more general theorem but this one is an jm-
?nechate consequence of the definitions. Let (B°, BY) and (€7, ¢*) be two
interpolation couples. Tet L be a linear mapping from B+ B to ¢'+(C*
such that @eB' implies L{z)eC* and

ML (@)ier < ALy, &= 0,1,

[ Bir

Then weB, = [B°, B']; implies L(a)eC, — [C°, ("], and
| T, < My~ |-
5. Now we introduce a new space F of analytic funetions. It con-

sists of funetions f(£) defined in 0 < ¢ <1, with valnes in B°+B' with
the following properties:

) g, < e(XA1£D,
i) f(&) iz continuous in 0 s <1,
iif) f(£) is aralytic in 0 < 5 < 1,
iv) f(it:)—f(it;) has values in B® and f(1-+dt)—f(l-+4,)} In B
for any —oo << 3, < §, << oo and
flit) —f(it) | |

FU+ it —f(L+ity) |
ta—ty | B

|
| —
; t—t |

max |sup |
Iy, 2y

, Sup
B0 hig

| | < o
1Bl

With the norm introduced in iv) # redueed modulo constant fune-
tions beeomes a Banach space.

6. Given a real number s, 0 <{s <1, we consider the subspace
B = [B%, B'f of B'+ B defined by

(Z J—
B~ (o2 = 2L, 15, 2y
with the norm

, df
ol ps = intfifllz, A (8) = =.
Then B® is o Banach space continuously embedded in B°4-B. If
4418 the subspace of F consisting of all functions f «% such that % (8) =0,

then 4% is a closed subspace of & and B* is isometric with @is
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The isometry is effected by the mapping F > B+ B defined by

7, It I is a linear mapping from B'-}B' to (°+C* which maps B’
continuonsly into ¢* (i = 0, 1), then it also maps B continnously into ¢*.
More precigely, if M, is the norm of I as a linear mapping from B' to
¢, then its norm as a linear mapping from B to ¢ does not exceed
Myl

8. The interpolation methods yielding B* and B, although clo-
sely related, are not identical ag will be seen in 13.6.

Nevertheless we have the following relations between these spaces
and their norms (see 9.5):

By c B°, lalls, > llell,  for xeB,.

9.4. Let (B, B') be an interpolation pair and let 7 be a topological
veetor space in which B® and B' are continuously embedded. Let f(¢)
be a function with values in V defined in ¢ < s < 1 such that for every
continuous linear functional ¥ in a separating family of such funetionals
If(&)] is continuous in 0 < 5 < 1, analytic in 0 <s < 1 and repregentable
as the Poisson integral of its values on the houndary of the strip 0 <{s < 1.
(For this it is sufficient that I[f(£)] be O[e™1'~97 for some e > 0 as [¢
- co.) Suppose in addition that

1) if f(i£) e B is continnous and tends to zerc as |{] — oo and (L -+ it) e B’
is continuous and tends to zero as || — oo, then feF(B", B");

iy it [flity) —F(8t,)1/(t,—1t,) Dbelongs to B® and has bounded norm,
[f(L--ity) - f(1 4 4t,) 1/(t; —1,) belongs to B' and has bounded norm, then
feF (B*, BY.

9.2. Congider the functions in (B9, B) of the form

N
HOETSp NS
sl

where ,eB’ ~ B', 4, is real and 8> 0. The set of such functions and
the set of their linear combinations which we will denote by #(B°, B')
is demse in #(B°, BY).

9.3. An immediate consequence of the preceding statement iy the
following: B’ ~ B' is dense in B, = [B’, B'],, 0 < s < 1. Furthermore,
B, = [B', B"], is a closed subspace of B’ and its norm coincides with
that of B’. We also have #(B°, B') = #(B,, B)), [B', B'], = [By, Bl
0<s <1, and #(B, B') =%(B,, B,), [B°, B'F = [B,, B,T.
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?.4. Funetions in & satisfy certain inequalities which have various
applications in this theory. Let us denote by mo(&,8), u (£, 1) the Pois-
son kernels for the strip 0 <s <1. They can be obtained readily from
the Poisson kernel for the halfplane by mapping conformally the half-
plane onto the strip. HWxplicitly these kernels are

—m(r—4) qiyy
¢ SN 7§
to(E,y7) =

- e - e g
sin*ns + [eosms— e "I F T

e ™ Dginog

T o E=sit,

(£, 1) = -~ ,— T
fals, T sin"ms 4 [cosns 4 e~ H

Then for every function f in #(B°, B') we have the following inequal-
ities:
eg

I Doglf(5t))olu(s, t)at+

—oa

i) log i f(s)lp, <

+ f oglif(L+ i)l (s, Ddl, 0 <s<1;

. ) 1 teo ] 1-8
i) 470, < [ [ it
17 . g
<[5 [ s, al;
i) ()i, < [ U0 e me(s, Odtd [ IFL+ i) s, Dt
The following is a eonsequence of i).
Let f,eF(B', BY) be such that
| Uog 1 f.u(it)| o+ log ™ if (1 + it ]e =“ats

is bounded and suppose that f,(it) tends to zero in B® for all £ in a sef of
positive measure; then ||f,(s)l, - 0 for 0 < s < 1.

95. Let f e;;(BO, BY) have the property that for all ¢ in set of po-
sitive measure

T .
- LGt ih)— f(it)]
vonverges in B" as h tends to zero. Then

J(8)eB, =B, B'),, 0<s-<1,
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TIn particular, if B° is reflexive this limit exigts for almost all ¢ and
any fe# (B, B') and consequently [B°, B'ly = [B°, B'Y. Furthermore,
the norms of these spaces coincide. In the general case we have
[B", B'], = [B', B'T and if @e[B’, B'l;, then [oils, > lizllgs-

9.6, The following property of interpolation pairs is useful in establish-
ing complete eontinuity of certain operators. Suppose there exists & directed
sot of operators m; on B'+B' such that =;(B') < B! and the norms of
m, a8 operators on B are bounded, i = 0,1; m (B% is finite dimensional
and, for every @eB’, |lm®— g —+ 0.

Tet K be a compact subset of BY, ¢ & constant and X a set of positive
meagure of the line. Then for each s, 0 < ¢ <1, there exists a compact
subset K, of B, such that feF (B, B), |[|fil| <e and f(i)eK for tel
imply that f(s)eX,.

101, Tet (44, By, 4 =1,2,...,n, and (4,B) be interpolation
pairs. Let L(@q,..., #u), #;¢d; ~ By, be a multilinear operation defined

"

in the divect sum @ (4; ~ B;) with values in. 4 ~ B and such. that
=1

3 n
NE {0y s ooy @lls < M [ [l WEl00s 3y ooy @)l < M [ [ il
1

13

Then if ¢ = [4,B] and €, = [4;, B;], we bave
Iy, @2y oy @l < MM [ [l 0 <5<,

and thus I can be extended continuously fto a multilinear mapping of

&0, into 0. ’

l 10.2. The preceding result can be extended in the tollowing fashion.

Let # be the space of multilinear mappings L of 5—) A; ~ B; into A+-B

with the norm ’
Bl = supiL(a,, ...y Zalllasin,

and «#; and .#,, the spaces of multilinear mappings of (%(Agr‘\ By)

“wi”./l,;r\ﬂ,; < 17

into A and B respectively with the norms

MEllo = sup |L(@yy ..oy @allle,  lodls, <1,
and

VTl = Sup [T @0y ooy wadllsy i, < 1.

Then 4, #, and .#, are Banach spaces and we have 4, — .4
and Il > (L], that is, the 4#; are embedded continuously in .#. Con-
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sider now the mulfilinear mapping L{L, &y, ...,%,), Lk, m;edi~n By,
into 4-+B, defined by

F(Ly @1y eeny @n) = L@y, -0y ).

Then if Led = [y, #1]sy, Wwe have L(wy,...,a.)eC =T[4, B]
and

|Z (@3, -y @l < 1l [ ] el

and L ean be extended to a bounded multilinear mapping of @ C; into C.
F 1
In other words, [#,, #,], is contained in the space of bounded multi-
”
linear mappings of P[4, B, into [4, B], and by the preceding inequal-
1

ity the embedding is eontinuous.

10.3. Sometimes it is desirable to egtablish the boundedness of
a multilinear mapping under less restrictive assumptions than those of
the preceding paragraph. Suppose I is & multilinear mapping defined

n
on @ (4; ~ B;) with values in a locally convex topological vector space V'
1

in which 4 and B are continueusly embedded. Suppose there exists a se-
quence of functions {Fy}, Fre# (#,, .#,), with the following properties:
i) for a given s, 0 << 8 < 1, every continucus linear funetional ¢ on
V and ®;<A; ~ B;, we have,
l}imi"[Fk(s)(mlr s B) =L@y, oy Be)] = 0.

Jo0 +o0

i) [ log*|Fu(it)lagtals, i+ [ log* | Fi(ltit)lla,pls, 0 <o

—00

where u, and p, are defined as in 9.4.
ili) for ¢ in a set of positive measure Fy(it) converges in .#,. Then
L(®y,...,%,)eC = [A, B], and

n
IZ@y, s mallie < 6 [ [llodleyy € = [4s, Bile
1

10.4. Let I be # bounded multilinear mapping of @ A; into 4. We
1

will say that I is completely continuous if the image of the set |lwilly, <1

is a totally bounded subset of A. As in the case of completely continnous

linear operations, the set of completely continuous multilinear operations
n

from @ 4; to 4 is & closed subspace of the space of all bounded multi-
1 n
linear operations from @ 4, to A.
1
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Referring to 10.2, let F(§)e.

2 completely eontinuous multilinear mapping of Q;)Ai into A for all ¢

F (Mo, #y) be such that F(i) is
n

in a set B of positive measure of the line. Suppose in addition th‘(‘xt th.o._
pair (4, B) has the property 9.6. Then for each s, 0 <8< 1, F(s) is
[

a completely continuous muitilinear map from C—? [4i, B;], into [4, Bl

105. Let (4, B) be an interpolation pair and.su.ppo_se th_snt A and B
are Banach algebras with the property that multiplications in 4 and B
coincide ih A ~ B. Then 4 ~ B is a subalgebra of both A and B and
for each ¢, 0 < s < 1, and z,ye4 ~ B we have

leylle < lellclylle, € = [4, Bl

" so that miultiplication can be extended continuously to €, which then
becomes a Banach algebra. This statement is a special case of 10.1.

111, Let L(z,, ..., ) be a multilinear mapping defined for z, ~
A 4B, & = A; ~ By (£ =2,3,...,n) with values in A4 B. SBuppose
that for &,<4,, rreB, we have L(zy, ..., o) ed, D{xy, ..., 2,)eB and

u, H [T

n

s e < My [ [ ledts,
1

1) ”L(‘I’lr o1 Ta. ”_1

2) JL{xy, ...

respectively. Then for a<C, = [4,, B,T, 0 <5 < I, we bave L(z, ...
sy #a)el =[4, B]s and

Mooy, oo @l <

My ’J["” f2des

4y, B, and C; = [4y, Bilsy, 1 =2, ..., “'.]‘llus L

can be extended continuously to a multilinear mapping of @ ¢ into
1

where again C; =

¢ =4, BT with norm not exceeding M *MJ.

- 11.2. Given -the interpolation pairs (4, B) and (4, By, J =1,

2,...,mn let .4 be the space of bounded multilinear mappings L of
*®

@(A ~ By) info A+B and #, and 4, the subspances of J# congisting
of the multilinear mappings in .4 which map @(Ai ~ B;) boundedly into

4 and B respectively with the correspondmg norms. Evidently ., and
<, are continuously embedded in .# and are an interpolation pair,
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Then the space 4 = [#,, &, consists of multilinear mappings L map-
L3

ping @(4: ~ B;) inte € = [4, B and such that
1

"
< L H ]l

= [4;, B;];. Evidently each such L can be extended uniguely

@y s e

where (;
T

to a multilinear bounded mapping of B[4, B, into [4, BT
1

12.1. In this paragraph we discuss the dual of [4, B],. Without
loss of generality we may assume that 4 ~ B is dense in both 4 and B.
We denote by 4%, B*, ... the duals of 4, B, ... If y is an element of Ax,
its value at #,xed, will be denoted by <r, > By regtricting hounded
linear functmnals on 4 and B to 4 ~ B we obtain continuous embedding
of A*and B*in (4 ~ BY*. Let ¢ = [4, Bl,and €' = [4*, B*] < (4 ~ B)*.
Then for y«C" and xed ~ B we have

2,90 < ooy

that is, ¥ is continuouns with respect to the norm of ¢ on (A ~ BY*. Since
4 ~ B is denge in C, this linear functional can be extended uniquely
to & continuous linear functional I, on C, with ¥, e <|yllc. Conversely
every continuous linear functional ¥ on O is of this form, that is ¥(w) —
= I, (#} for some y<C" with fiylie < |fles- This y is uniquely determined
by ¥ and thus (" = [4*, B*]® is isomorphic and isometric with O

Given y<(” and &<C the value of {, () can be calculated as follows:
let feF (A, B), f(s) =« and ge# (4%, BY), ¢'(s) = y; then

Ao =
L) = —i [ <f(it)uy(s, 1), dg(it)y —i f Gt (s, 1) dg (1 +it))
—mo
where p,(s, t) and g, (s, ) are the Poisson kernels in 9.4 and the integrals
are to be interpreted as explained in 32.1.

12.2. If one of the two spaces A, B is reflexive, the same is true for
C=1[4,B], 0<s<1.

123. Let A, =[4,Bl, B, =[4, Bl;, 0a<p<1, and let
(1—6let+of =3, 0 <o <1. Then [4,B], and [4,, B, ] and their
norms coincide provided that (4 ~ B)* is dense in 4, ~ B, with respect
te the norm of 4, ~ B,. This condition ig automatically safisfied if 4 > B
or B> A.

In the following paragraphs we discuss interpolation in spaces con-
structed by means of lattices of measurable functions. These spaces in-
clude the complex Koethe-Banach spaces and in particular the Lebes-
gue, Orlicz and TLorentz spaces and many of their generalizations. We
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will first develop that part of the theory of Banach lattices which ig
necessary for the formulation and derivation of our results,

13.4. Consider a totally o-finite measure space .# and the class of
real valued measurable functions on .. Two functions coineiding almost
everywhere will be identified, and relationships between functions will
mesan relationships between the values of the funetions which are valid
almost everywhere. A subclass X of measurable functions is a Banach
lottice on 4 if it has the following properbies:

i) X iy linear;

ii) there is a norm defined in X with respect to which it is complete;

iif) feX and |gj <|f| imply that geX and [gllx <|lfle. Evidently
ifilx = 0 implies that f equals the zero functions or f = 0, where 0 denotes
the zero funetion.

13.2. Let u(%) be @ positive integrable funetion on 4 and for any
two meagurable functions f and g on & let

[f—ygl
d(fy 9) = ﬂ(m)dw
J 14if—gl

Then, if we introduce the distance function d(f, g), the space of all
measurable functions en .# becomes a complete metric vector space V,
in which X is continuously embedded; in other words, [[fa—flx—0
implies d(f,, f) - 0.

Lot foeX be such that Y ||fullx < co. Then there exists an element f
of X such that

N
I [ St =0,

the series }7,(») is absolutely convergent and its sum is f(») for al-
most all wed.

13.3. Given a Banach lattice X, others can be constructed by various
methods.

Lot ¢(x, ) be a function which for each wes# is a concave increasing
function of £ in 0 <t < oo vanishing at ¢ == 0 (no measurability assump-
tions on ¢(w,?) are necessary here), and consider the class, which we
will denote by ¢(X), consisting of all measurable functions ¢(») on 4
such that |g(e)| < ipla, f()] for some f(z)eX, [flx <1 and 4> 0. De-
fine the norm |gll,.x) of g as the greatest lower bound of the values of 1
for which an inequality like the preceding holds. Then ¢(X) becomes
a Banach latbice.
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Por example if X is L*(A4) and o(z,t) = (u(e)""#) ("), where
#() is a positive measurable function of », then, as readily verified (X)
is the IP(.#) with respect to the weight function u(z).

Suppose on the other hand that ¢(m,t) = @(f) where @(t) iz the in-
verse of the convex increasing function @(f). Then, if again X = I'(.4),
@(X) is the Orlicz space L, (see the definition of L, in [10], (I}, p. 173).

13.4. Given s measurable function f on .# which is integrable on

sets of finite measure, we associate with it the funetion f** (1), 0 < ¢ < oo,
defined by

1
() = Ef \ida,

where the supremum is taken over all measurable sets B in # of measure
< {. Then we have
1) if 1 is a congtant, then (A)™ = |A|f*;

) (f+o™ <f*+g™5

Hi) if >0, g0 and 0 <s<1, then (f@")™ <™ (g™

iv) i f > 0, and g is a concave non-negative funetion in 0 <t < co,
#(0} = 0, then p{fi* < p(f™).

Let now X be a Banach lattice on the halfline 0 < # < oo; we denote
by X* the class of measurable functions f on .# such that f* X and in-
troduce in X* the norm ||fijz. = |f**|x- Then X* becomes & Banach lattice.
For example, if X is the space of functions g(t), 0 < < oo, such that

o0

ol = [ [ lg)1%# @] < oo,

L]

1<p<oo,1<q< o0,

then X* iy the Lorentsz space Ly,.

135, Let now X, and X, be two Banach lattices on .4 ; they are
both continuocusly embedded in the space of all measurable functions
on 4 with the metric introduced in 13.2, and consequently X,+X,
and X; ~ X, with the norms intreduced in section 1 are also Banach
spaces. Furthermore, they are Banach lattices on .

Let 0 <& <1 and consider the class X of funetions f such that
1f(2)] < 2g(@)]"~"|h(2)|° for some constant 1> 0 and some geX,, heX,
with |lgllx, <1 and jkllx, <1, and let ||f|x be the greatest lower bound
of the values of A for which such an inequality holds. Then X, which we
will denote also by X, °X3, is » Banach lattice on .. This construction
ariges naturally in interpolation and for this reason it may be of interest
to obtain more direct descriptions of X1~°X3. This can be done for exam-
ple in the following ecases.
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Tet X be a Banach lattice, ¢, (z, %) and gu{x,t) two concave fmw;»
tions as deseribed in 13.3. Then g () e (X is1 es‘quivale;nt to ¢ (X)
where ¢(z,?) is the concave function ¢{w,?) =0 '(m,.t)(p‘z(x, 1), Here
equivalence means that the two Banach lattices consist of the same
elements but have merely equivalent norms. ‘ _

Tn what follows we shall assume for simplicity that 4 1s non-atomie,
Let X, and X, be two Banach lattices on the halflin? 0 <§ i < oo, ‘and
let X7 and X7 be the latbices associated with X, ffmcl Jx » 88 in 1.5}.4. CLhe.n
(F3°(X2) is contained in (X7 °X3)* and the mclumgn map s conti-
muons. Under some additional conditions the two latiices coincide 'an‘(l
their norms are equivalent. One such condition ig the :Eollowing:'cnnmdm-
the group of operators HYf(t) = €¥f(te"), —oo < 8 < oo thiy gromp
should be strongly continuous in both X, and X, and satisfy the in-
equality | Hl < ce", a < 4 o

A second condition, which is a consequence of the preceding, is Ghis:
functions () in X, or X, should be integrable on finite intervals and
the operators

~

s [0

e (g
§
o

&
'
i Sof == | fis)as,

should be bounded in both X; and X,. .
Tor example, consider the lattice X of functions fla) i @ < a <
gueh that

(=%

| [ !ﬂm)]umajﬂ———ldm]”'l = |flg << oo, 1<p<ov,l=qxoo.
.

Then if @(z, 1) = 4177 according to 13.3 we have X =g¢(L))
where L' is the space of functions integrable in (0, o). We also have
W llx = PP f ) that is X satisfies the first coundition above. Let
now X, and X, be two such spaces with indices py, g, and Dg, ¢z, I:QS-
pectively. Then if 0 < s <1, XX iz also a space of the same kind
with indices

1—s §
i R
1 N
1espectively. ‘

Consequently (X7)'"*(X3) and (X}°X3)* coincide and have equi-
valent norms. The lattices X7, X3 and (X3 °X5)* are regpectively the
Loventz spaces Ip g, Lp,g, 804 Lyg. Thus (Ly, o) (Ly,e,) and Lug
coineide and have equivalent norms.

43.6. Let now B be a complex Banach space. A function on. 4 with
values in B ig said to be measurable if it is the limit almost everywhere
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of a sequence of simple B-valued functions. A funetion with values in B
is said to be simple if it takes finitely many values, sach on a measurable
subget of .#. Evidently, if f(z) is B-valued measurable function then
if (®)» is a real valued measurable fumction. ’

Given a Banach lattice ¥ on .# we denote by X(B) the class of
B-valued meagurable functions f(z) such that |f(@)zeX and define
Iflxe = (1 (@) 5)]x. With this norm X(B) is a Banach space,

Let now (B, By) be an interpolation pair and X, and X, two Banach
lattices on 4. Then X,(B,) and X,(B)) are continuously embedded in
(Xo+X,)(Bo+B;) and thus they also are an Interpolation pair. Setting
X =X;°X] and B =[B,,B],, 0<s< 1, we have the following
results:

§) [Xo(By), X,(By)]s = X(B) and the inclusion is norm deereasing.
These spaces and. their norms coincide if ¥ has the property that fe.\,
Il <Ifl and f, — 0 almost everywhere imply [[fullx — 0.

fi) X(B) = [X,(By), X (B,))T and the inelusion is norm decreasing.
If the unit sphere of X (B) is elosed in X,(B,)+ X 1(B;), these spaces and
their norms coinecide.

Combining 1) and ii) with 9.5, we obiain the tollowing result: if X,(B,)
iy reflexive, then [X,(B,), X;(B,)], = X(B) = [Xo(Bo), X1(B)T and the
norms of these spaces coincide,

With ii) we can construct an example showing that in general [4, B],
#[4,BT. Let B, = B = B, he the complex numbers, X, the bounded
functions in (0, co) and X, the <lass of functions flm), 8 < 2 < oo, such

that «*f(»); is bounded, and let flx, = esssupa®[f(x)]. Then one verifies
readily that

X578 = X,

and that the unit sphere of X,(B) is elosed in X, (B)+X,(B). Conse-
quently by ii) we have

Xo(B) == [X,(B), X,(B)T".

But, as easily seen, X, (B) ~ Y,(B) is not dense in X (B) and by
9.3 this implies that

Yo (B) = [Xo(B), X, (B)],.

14. This paragraph is devoted to interpolation of function spaces
related to the spaces of Lipschitz funetions in Euclidean gpace. For this
Purpese we study the spaees A(B, X) below and establish séme general
resultz on them by which the interpolation problem is reduced to that
of interpolation between the spaces discussed in 13,


GUEST


126 A.P. Calderén

14.1. Tet B be a complex Baunach space and =, @{eR", a Strong.ly
continuous representation of R” into a group of isometries of 3, that is,
such that for every weB, 7 % 8 a B-valued continunous function of y.

Let X denote a Banach lattice of measurable functions on the half-
line (0, oo} such that ) . .

(i) ’functions in X are infegrable on closed intervals contained in the
open half-line (0, oo}, ) _ - .
ii) there is aj positive integer & agsociated with X sueh that the in-

tegrals
y ds 3 ¢ "d{\‘_
90, ifg(s) ) =
[

are a,bsolutely; convergent for geX and represont bounded operators
on X. : . . ‘
Tet now ¢(y) be an infinitely differentiable, gpherically symmetric
function in K™ with moments of orders less than k equal to 4eTO. For
weB let F(f) = Tu be the B-valued function of t, 0 < ¢ < oo, defined by

1
Tu = t‘"f (v 2)p (t y)dy.

The integral here is to be interpreted as Riemann vector valued
integral, and Tw is then a continuous B-valued function of . Now we
introduce the space A(B,X) as follows:

A(B, X) = {u | weB, [Tu|lp = | F@)zeX};
and define a norm in A(B, X) by

s = lullz+ WUILu]2) | x-

Then we have the following result: the space A{B, X) is complete
and its embedding in B iy continuous. Furthermore, up to equivalence
of norm A(B, X) is independent of the choice of the function ¢.

These spaces inclade several “classical” spaces as shown by the fol-
lowing result and examples,

iii) Suppose that X, in addition to i) and ii), has the property that

the integral ,
- ds
£ [ 96) 2
§
[1)
where r is-an integer 0 < r <<k, is absolutely econvergent for geX and

represents. a bounded operator on X, Then A(B,X) consists precisely
of those elements w of B which have the following properties:

icm
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Tyl is a bounded B-valued funetion of y with bourded continnous
derivatives up to order ry if m>k—r and

Ay = 2 (T) (”'l)irfvu:
0

then |4,z e X, where w is any derivative of r,u of order r at y = 0.
Furthermore, the norm of A(R, X) is equivalent to the smaliest upper
bound for the norms in B of tyu and its derivatives up to order r, and
fcl)ﬁr i z(l}iswjh;”x, where |¢] =1 and w is a derivative of order r of 7,u
at y = 0.

For example, let B = I*(R", 1< p K oo, go that the elements
of B are functions u(x) on R™ Let 7,4 = u(z—y). Let 521 be an
integer and X the class of functions ¢(¢) such that %% (1) is bounded,
where o is fixed and 0 << ¢ << 1, and let ||jgjlx = ess sup|(t~**"g{t)|. Then X
satisfies the conditions of iil) with » = k—1. Consequently by setling
m =1 in iil) we find that A(B, X) consists of funetions in L?(R™) with
derivatives up to order k—1 in IP(R™, and with derivatives w of
order k—1 satisfying the condition that

U7 o (- t2) — 0 (@)l

is uniformly bounded in ¢ and 2z, 2| = 1.

If ¢ =1 in the preceding example, then the conditions of iii) are
sabisfied with 5 > 2, r = %—2, m > 2, and

e (8 —2¢2) — 2 (m— te) +w ()|

is uniformly bounded in ¢ and z, |z} == 1.

Further examples can be constructed by replacing IF(R™) by the
clagg of continuous bounded functions in R™ This yields clagses of Lip-
schitzian functions or functions with Lipschifzian derivatives. Or one
may uge different spaces X'; for example, the spaces studied by Taibleson
in his dissertation [9] can be obtained by suitable choice of B and X.

14.2. Ag we have seen above, A(B, X) is defined as the inverse image
of X (B) under the mapping 7. Now we construct a mapping of the direct
sum X (B)DB of X(B) and B into A{B, X) as follows.

Let y,(y) and w,(y) be two infinitely differentiable spherically sym-
metrically functions in E* with compact support. Given FeX(B) and
#eB leb

Do = [ o ommare [ o] [[or(3) wom]aa
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Then the integral on the right is abgolutely convergent in B and &
mapsy X(B)@X comtinuously into A(B, X). Furthermors, glven the
funetion ¢ in 14.1, it 1s possible to select w, and ya in guch a way that

& (Tu, u) = u,

that is, if for ueA(B, X) we define SFu = (Tu,w), then # maps A(B, X)
isometrically into X{(B)®B, & maps X (BYPB onto A(B, X) and &
is o left inverse of .#. The existence of such an operator & will permit
0 reduce interpolation between spaces A (B, X) to interpolation between
spaces X(B).

An additional consequence of the existence of & is this. Congider
the operator #.%; since is onto, it maps ¥ (B)DB onto the range
of #, since (FF) =S (FIT = I, £ is a projection and thus the
range of #%, which coincides with the range of #, is a complemented
subspace of X(B)®B. Consequently A(B,X) is isometric with a com-
plemented subspace of X (B)®B.

14.5. Tet now (B,, B.) be an interpolation pair and T, 2 repregenta-
tion of R" in a group of linear transformations of B,+B;, such that 7,
restricted to B; is a strongly continuous group of isometries of By, i = (¢, 1.
Let X,, X, be two lattices of measurable functions on the halfline (0, co)
satisfying conditions i) and ii) of 14.1. Then, since A(By, Xo) and A(By, X;)
are continuously embedded in B, and B, regpectively, and these are in
turn continuously embedded in B,+ B, the pair A(By, Xy, A(By, Xy)
is an interpolation pair and we have the following result:

The linear transformation v, restricted to B = [By, Byl is a strongly
continuous representation of B" inte a group of isometries of B; the space
X = XM°XS, satisfies conditions 1) end i) of 14.1. If X(B) = [X,(By),
X,(B)],, then A(B,X) = [A(By, X,), A(By, X))l up o equivalence
of norms. If [Be, B;T = [Bg, By} and X(B) = [Xo(By), X (BT, then
A(B, X) = [A(By X,), A(By, X)T up do equivalence of nornes.

24, One merely has to verify completeness of B° B' under the
norm deseribed, all other required properties being evident. Supposc
that {#,} is sueh that |[lwp~—znlgm— 0 28 7, M — 0. Then |[@, — Twlle
— 0 and |j@,— @l = 0, i, e. 3, is a Canchy sequence in both B° and B'
and therefore converges to a limit in each of these spaces. Buf B® and B'
are continuously embedded in ¥ and therefore these limits are algo limits
of the sequence in V. Since limits in V' are unique, it follows that these
limits coineide. If # denotes this limit we have zeB’ and xeB' and con-
sequently ¢<B® ~ B'. Furthermeore, |, — #lls — 0 and |jz,— ol =0 and
congequently «, converges to » with respect to the norm of B'~ B.

Concerning B°+RB', the homogeneity of the norm introduced and
the triangle properby are readily verifiable. Let us show thab [j#]] o, = i

icm
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implies & = 0 and completeness of B'4-B' with respect to its norm
If fizfgo, ;1 = O there exists two sequences YneB® 2,¢B" such that |ly ]3'
=0, el + 0, ypt2, =2 Now we have also Y1-+2, =2 and congef
guen}:ly In—Yit2—2 =0, OF Yn—y =2,—2;. NOW yp—¥y, > -,
in B" and thus algo in ¥, and y,—y, = 2,— 2, —» 2, in B* ‘and thus alsé
in V. Consequently —y, = lim(y,— ;) = 2, whence z = g, -2, = 0. To

show completeness it i i i 5
' ;t 1s enough to show that if =, is such that _;’;[mn]i ey
< oo, then sy = TSJm,. converges in B"4-B' to a limit. Let o, = 4,42,

Q-1

Then

V:Oith Yn ¢ B anB::) Myalle < ?Wn”yugl‘[r‘:z_n; [nlly < [}
;‘Hyﬂnu < oo and %’”zn{[ < co, and thig implies the desired conclusion.

2 }[1)»0+B§+ -

22, 'Evidently the quantity introduced has all required properties,
and' again we merely have to verify that & is complete. Suppose that
Ju is such that |f,—fulls —0. Then for each £ = s it (0<s 1)
we have b

1fa(&) —fulé)lipoyp < max LS [F (#)lgo., 51> SUR T (L)l p0 30 ]
< fa—fuls > 0

f}nd consequently f,(£) converges in B'+ B’ to a limit function f(£) which
is econtinuous and bounded iIn 0 <# <1 and analytic in 0 < s < 1.
Fux.*thermore, we have [|f,(it)— (i) o < | fa—Julls and consequently
Ja(it) converges to a limit in B® which must coincide with itg limit in BB
.Consequently flit)eB® and |if,(iH— S| — 0 uniformly in ¢ Whicﬁ
implies that f(if) is continuously B'-valued and tends fo zero as & — oo.
The corresponding conclusion also holds for f(1-4f) which shows that
18 «# (B') B'). Since |[£, (i) —f(it)l|,0 = 0 and |fu(d -+t — f(24it)[ 5 — 0
uniformly in ¢ it follows that ||f, — fls — 0 and our assertion is esta,bﬁshed.
23. Evidently B, is the image of # (B", B") under the linear mappi
#F(B', B') = B"+B' defined by f->f(s). ’That this mapping is ffxﬁf
nuous follows from

17 gopm < Max sup ”f('it)[[BLLBIS‘ElP P+ g, g < Ufllss

A5 is then the kernel of the mapping and B, is simply gi .
of F(B°, BY N, s s ply given the norm

, 241 In the first place it is clear that I is a continuous map from
B'+-B' to ("+C". Given z¢B, and e > 0, there exists fe# (B', B) such
th%.mt J(s) = = and ||fll¢ < |#lp,+ ¢ The function g{&) = Mﬁ“lﬂif*&L[f(E)]
evidently belongs to #(C°,C") and lg(Oll= < li@llp,+ & Thus

zle,+e = ligle = 19 @le, = My M Lf8)e, = M7 My Lallq,,

Studia Mathematica XXIV, 2
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whence

1Ealle, < M3 233 (=, + =)

Since ¢ is arbitrary, the desired conclusion follows.

25. Tt is clear that & is a linear space. Fur‘ﬁhermore, Ifllg =0,
then f({t) and f(14-it) are constant, which implies that f(£) is constant.
Let now f, be such that ||f,—fullF = 0. Then from the inequality

if(E-Hh)—f(E);

liBo+n8t
ity ) — f (32, 1+ dte)—f{1 44t
< max [sup fiih) —fCh) Y RASS L e A S ]<|\f\|?
ity b=t BBl B ty—1 504 gl
we obtain
i <l
and congequently
IF(—F(ON g0, m < ] Ifl7.

Thus f.(£}—f(0) converges uniformly on every compact subseb
of 0 <s<1 The limit funection f(&) obviously satisfies conditions
i), ii), iif). Furthermore, for every pair ¥, %, fa(#.)—fn(it;) converges
in B® consequently f(it,)—f{it,) belongs to B and

f(”a flt)  fu(ity) —ful(ih) |
—t t—1

BO

A similar conclusion holds for f(14+<i).
[f—fallz — 0.
26. From the inequality

Consequently f e# and

< fllF

BO+R

Hw (s)

it follows that the mapping & — B'4 B® defined bj

1+ L

is continuous. The kernel 4% of the mapping is closed and the range

is B’. The norm we have introduced in B’ is precisély the norm of #, /./;; R
and B’ is therefore complete.
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28, Let (B°; B') and (¢°, C") be two interpolation pairs. Let I be
a linear mapping from B°+B' to €'+(¢" which maps B' into ¢ with
norm M;, i = 0, 1. Let ¢ B° and f % such that% (8) =2, [[filz < lfeligs—+ e
Consider the funetion

E
(log My—log M) M3 " M7 LI f{5)1dy,

D

9(8) = MM L{f(mIf—
where the integral is taken along any path joining the points 0 and &
and contained in 0 < s <<1. If the path has all its points except ¢ and

. . d
perhaps £in ¢ << s < 1, since E-L(f) L— a and —J; is continuous and

s
has bounded norm in B*+B" in the sizip 0 < ¢ < 1, and L is a bounded
linear mapping from B’--B' into €°+C', we find that :%L( f) is con-

tinnous and has bounded nerm in °+(¢". Consequently we may inte-
grate by parts the mtegral in the preceding expression obtaining
(&) = f My ML (n)]

where the integral is to he interprefted as a vector valued Stieltjes in-
tegral. From this it follows that [|g(£)llpo, e < ¢[£]. Furthermore, since
L[f(it)] has values in C° and is a G*Lipschitz function, it follows that
g(its)— g(it;) C° and. [|g{#,) — ¢(i%)l| 0 does not exeeed M;' times the
total C*-variation of L[f(if)] in the interval (t,, f,). Now as readily seen
this in turn does not exceed M, times the total B’-variation of f(it) in
(1, 3;) which is less than or equal to [t—#l(|flls < {ta—tf (o] g+ 2).
Hence

fta— i (il ge+€) -
In a similar fashion one obtains
g (14 dte) — g (L +di) |0 < oSyl (llell gsot-€)

Thus we have proved that ge#(C°, ¢") and that g <
Now

d 8. —8
g'(s) = ﬂfﬁ‘lMl‘sEL(f)],sss = My7' M *L[f(s)] = My~ 'M; "L(w)

flg{ita) — glit)lle <

flell o+ 2.

which shows that L{m) = M;"Mig'{s) belongs to ¢° and that
(@)l e < M5 M {fitl| o+ £).

Since £ is arbitrary, the desired conclusion follows,
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291, Tet po(&,1) and p;(&,7) e the Poigson kernels associated
with the strip 0 <Cs < 1. Consider the function

o0

g(&) = [ fEmlE ndid [ F4inm(E, Hit;
then g(%) has values in B94-B! and is continunous there. Furthermore,
if 1 is a continuous linear functional in the family we have

(e fz[fvtm.,e tydi-+ [ LA i) (&, it = TLF(E)]

and ginee the linear functionals ! form a separating family, it follows that
F(E) =g(&). Now, from the definition of g(£), it follows that (&) is bounded
in the case i} and that lg{#)lz ., ;m <¢(L414]) in the case ii). Finally, since
F(E) is eontinuous in B--BL, may form the expression

pio— = [ g

‘)m, n—& &,

where the integral is taken over a circle contained in 0 < s < 1, and £
is a point interior to this circle. Then

[f(&)#fA ff—< zs] = Uf(8) ]#—LJ

278 2ai

: .
el _
- &

whence the expression above is zero which shows that f(&) is analytic.

29.2. Since ]le"sﬂf(f)~f(§)ﬂy—> 0 as 6 — +0 for every fe# (B, B'),.
it will be enough to show that every g(&) of the form g(é) = e”’tzf(f),
f<F, can be approximated by funchions in the class described above.
Tet such a g(&) be given and let

miE) = > glé+2min), nz 1.
i5 oo

Then clearly g,(£) has values in B+ B, is analytic in 0 < R{&) < 1
and continuous in ¢ < B(£) <1, and is periodic with period 2win. Fur-
thermore, gy, (it) e B, g (1 + i) e BY, ||gy, (i) — g (i0)|o—>= 0, lign (14 48} — g (1 -+ it)|;

— 0 a8 1 —> oo, uniformly on every bounded set of values of ¢, and ||g,, (4t)|l
and |jg,(1+4)|l, are bounded, uniformly in #. Now it iy easy to see that
these properties imply that e“ggn(f) «F for every s > 0, and that given
£>>0, a proper choice of § and »n will yield

1e%° g, (5) - g (&)s < /2.
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Now ¢,(&) has a Fourier series representation

0o
Rk} .
& g8 = N @ dt f =5t
k=—ru
where
1 TR
W, = = Yo (s - 12) ¢+ Min gy =1,2
icn Frmin Un ) s mo=1l,2,...
— TR

Because of periodicity, the value of the right-hand side is indepen-
dent of m, and on account of the analyticity and boundedness of the in-
tegrand, its dependence on s is arbitrarily small for sufficiently large m.
Consequently a, is independent of s and

n

1

. f gulit)e™ "t = -
A _

2 = l gﬁ(l—i—'lt _l(l+1l)mdt

Now g,(it)eB® and is B’-continuous, which implies that the value
of the first integral is in B" that is ay,<B’. Similarly, the second expres-
sion of ay, shows that a,<B' and we conclude that ay,eB’ ~ B'. Consider
now the (€, 1) means of the series (1). We have

\ %] o t)
Um(gny f) — \ (1_‘ .',,,,i,) (g € }‘ — ( gu(f m (7)77

ki3

— - '""

where K, {s) is the Tejér kernel, From the B°-continuity of o {it) it
follows that !o,.(gu, 18)— g, ()], = 0 as m — oo, uniformly in ¢ for each
#. Similarly, we find that {j6,(ga, 1+ ) —ga(1--i)]; — 0 a3 m — oo,
unifolmly in ¢ for each . Consequently for each s> 0, n, we have

™ [0 (g, &) — ga(E)]lg >0 a5 m — co. Thus for suitable ¢, m and n
we have

16 0,0 (gs 5)— g (E)ls < €.

Now e‘*zam (gn, &) is & function of the desired form and 9.2 is established.

29.3. Let zeB; be given and let £ > 0. Then there exists fe#(B°, BY)
such that f(s) =2 By 9.2 we can find a function g(&) with values in
B’ ~ B' such that |f—glls < & Consequently, we have [|f(s)—g 8, =
le--g(sWs, <If—glls < e, since g(s}eB” ~ B our first assertion is
established. That B, = B’ is evident. Let us show that the norm of an
element xeB, coineides with ity norm ag an element of B%. Given &> 0
wecanfind #, ¢ B' ~ B' such that [lz — @,z < e. Consider fu(£) = @, M,
Then clearly f(0) =z, and ||flls < |@dlze +6"lasllz. Consequently |lz|z,
< oyl 4+ 6"zt and letting # = oo we find [kesils, << [l2g]lge. Now
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from the definition of the norm of B, we have |z|z < Hmllgo, Jlz— 2|50 <
Slle—aillg, < e Thus [ofs, < loallsy+ & < [@allao 4~ & < llllo 4- 2. Since
¢ is arbitrary we obtain [j#]p, < lollz which ecombined with the reverse
inequality above gives {afz, = |ellzc. To prove the last statement we
observe that if f(&)eF (B°, Bl), then f(#)eB, and f(14i#)eB,, and the-
refore f(&)e#F (By, B;). Thus # (B, B') «¢ #(B,, B,). Now the revemse
inclusion is evident whence # (B%, B') = # (B, B,}. That the norms of
these spaces coineide follows from the equality of the norms of B and
B, i =0,1.

204, Let @,{f) and p;(f) be bounded infinitely differentiable and
such that ¢q(f) = log||f(it)|me, p.(t) = loglif(L44i)|m. Let P(&) be an
analytic function whose real part is bounded and eontinuous in 0 < ¢ <1
and such that R[D(if)] = ¢4 (t), R[DP(1+ )] = ¢, (¢). This function exists
and

+ 0

o0
BIPE] = [ qolt)u(&, Ddt+ [ gy(t)palt, .

Furthermore, the differentiability of ¢, and ¢, implies that ®(2)
iz continuous in 0 < ¢ <1, Consequently ¢ *¥)f(£)e# and since

lle™ 0 (i) g0 < e~ @ f (i) <1,
le 0O (L4 i) | < e YL+ it)|pn < 1,
it follows that lle~*®f(£)s < 1. Consequently

e~ (sHls, <1
and

+00 +e
log|lf (s)lz, < BLO()T = [ polthzoe(s, Db+ [ pu(t)pals, 1)t

Takis.ng now a decreasing sequence of functions @, and ¢, converging
to log||f(it)]ls0 and log |[f(1-+#)lim respectively and passing to the limit,
we obtain i}, To obtain ii) we observe that

+oo +
[ #o(s,)dt =1—3 and [ wis, tyat =s
and from this from Jensen’s inequality it follows that
. Fo0 +oo
1 ) 1 :
e FE e ey

—bo

ey

S

T . 1
‘ exp [?f log Hf (L4 at)iizt e, (s, t)dt] £ " f (14 48)| gt ey (s, 2} L.

Intermediale spaces and imterpolation 135

Multiplying and dividing the first and second terms of the right-
hand side of i) by 1—s and s respectively, taking exponentials and using
the preceding inequalities, ii) follows.

To obtain iii) we use the inequality

0 < (L—5)e I L g, 051,

which is a consequence of the convexity of the exponential function.
Replacing a and b by the first and second terms of the right-hand side
of i) and applying (1) again we obtain iii).

To prove the last assertion in 9.4, we merely have to observe that
for 0 << s <1 we have

Ho(s, ) o™, py(s, 1) < cem™,
where ¢ depends on s. Thus if F is the set where |Lf,,(it)ﬂgo tends to zero
1) yields
log||fu(#)lls, < ¢ }:[lﬂgJ’ I fa() Iz, +1og 1 fu (L -+ i0)]p, T i+
+ Jlogfalilguale, D

and the right-hand side tends o' --co as » — co. Thus [[fu(s)fz, — 0.
29.5. Let

o) = [r{e 5) —ri] 2.

Then ||fo(@t)—fm(it)]z0 -~ 0 as » and m tend to infinity for icE.
Further, we have o (E)eF for every &> 0. From inequality 9.4, i)
Wwe obtain

+o0
Tog 6™ [fu(8) ~ fu(8) s, < [ Tomlle™™ Lfulit— fon (i) g0 oo (s, 1)+

“+00
+ [ logle™ " [f (Lt i) F (1+ i)Wt (5, D)l

Sinee ||f, (i) —fm (Ef)l|50 < 2|fll= and
([fa (L4 i8) — fr (L it)m2 < 2]|f1l
and since ||f, (4t) — fr (5)||ge — 0 for te B, and u,(s,t) > 0, it follows that
the right-hand side of the inequality above tends to —oo ag n, m —» oo.

Consequently log[le™ [f, (8)— fn(5)lz, > ~o0 and [fals)—Fn(8)lls, — 0
which means that f,(s), which belongs to B,, eonverges in B, as n — oo.
But f,(s) also converges to f'(s) in B®-+B', whence f(s)eB, = [B°, B'];.
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Suppose now that B is reflexive. Then f(5t) is a continuous B°-valued
function and therefore its range lies in a separable subspace M of B
For each %, let 8,(f) = M be the weak closure in B° of the set {fi(4t)]},
k=m, and S() = ﬂS (t). Since the 8,(f) are bounded and weakly

¢losed and the unit sphere of BYig weakly compact, the §,(¢) are weakly
compact and S(1) is non-void. Let g(#) be a function such that g(t)8(1)
for all t. Since S(t) = M, g(2) is separably valued. Furthermore, if ¥ is
a continuous linear functional in BY we infer that t[f(it)] = 4p(t) is
a Lipschitz funection of ¢, and

1
U ulit)] = 2 [v' (H— f) '--f/‘(t)}

Now, the image of 8,(¢) under ! is the closure of the set

b [q\‘ (t+ ]17) '*-fif(t)]}, B,

and the image of §(f) is contained in the intersection of all these sets.
If ¢ is & point where p(f) is differentiable, then this intergection reduces
to a single number namely ¢’(¢) and consequently the image of S(f) un-
der ¢ is precisely ¢'(f), and in particular ¥[g(f)] = ¢'(t) wherever ¢'(f)
exists, that is, almost everywhere. Since this is valid for every I, we
eonclude that g(7) is weakly measurable, and since it is separably valned,
it i3 also a strongly measurable B°valued function. Furthermore, since
the sets §(t) are uniformly bounded, g(t) is bounded and

’bJ(p

t

Uf(it)] = g (1) 7)dr = Hf(0 J—Hj ty(x

whence

= q,(f ]d'[,

L
Flit) = f0)-+i [ g(z)dz,
[}
which means that f(4) has & strong derivative in B for almost all ¢, and
the first statement in 9.5 asserts that f'(s)e[B°, B'],. Since this holds
for every fe&, it follows that [BY, B')® « [BY, B'],. Let us consider
now the norms of these spaces. It w <[ B°, B}, there exists an f(£) «F [B°, B']
such that f'(s) = x, |fll7 < |wllgs+e. Consider as before the function

ha£) = *"[f('w ) f(f)]ifi.

(]

This functiod belongs to & (B, BY) and its norm as an element of F does
not exceed ¢%ifllz, which implies that [ntsdls, < effllz < e [llo] g+ ]
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But, as we saw previously, {%,.(s) »efs“WHE — 0 as n-> co, and thus we
obtain lolls, < ¢'[llwllps -] Since e is a.rbltrary, it follows that [ju)ip,
<= 05|l s Tt we now drop the agsumplion on the reflexivity of B?, given
2e[B%; B'], and feF (B, BY) such that f(5) =2 and |ffis < Hm]igs—]»s,

we set g(£) = ff(n)doy, Then it is readily seen that ge#, gl = |fl#
2

and ¢'(s) = #. Consequently, #¢[B°, BT, and |z <lglz = |Ifls <
< ||tllp,+¢, and since ¢ i3 arbitrary, we find that ol < ll#llp,. This,
combmed with the opposite inequality obtained above, yields the de-
gired result.

29.6. First, let us observe that if K is a eompaet subset of BY, given
o> 0, there exists x such that for 2> u the image of K under 71—=,
{where I ig the identity operator)is consained in a sphere of radius ¢ of
Bo. For let I be a bound for the norms of ar, a5 an operator on B, ¢ =10, 1.
Let (@, ..., #,) be a finite subset of K such that every point of K is at
distance less then ¢/2(N 1) from it. Let 2 be such that [imy— mms0
<62, §=1,2,...,n Then, if 2¢K and # iz such that {lz—alp <
< ¢[2(N41), we have

ket — smamllpo < il — 2y} — ora i 2y) -+ =z

o VU a
BVEL) CeNanyy Te T

Thus if we set
S{A) = suple—mxlm,
xeR

we have 8(1) > 0. Sinee =, is & bounded operator on B, i = 0,1, with
norm not exceeding XN, x; is also a bounded operator on B° B! with
norm not exceeding N. Let D, be the range of x; restricted to B® and
D; = D, ~ B® ~ B; then, if feF (B, BY), mf(£)eD,. In fact, since f(&)
is a B'4-B'-valued funetion which is continuous in 0 < s < 1, the same
holds for =;f; now if ¢ iz a confinnous linear functional on BB which
vanishes on D, since f(4)eB° we have mf(it)eD, and ¥[m;f(if)] = 0,
which implies that the analytic funetion #[=,f(£)] vanishes identically.
Since this is trone for every I which vanishes on D, it follows that m,f(&)
eD; (1), On the other hand, since f(1--4#)eB', a;f{1-+#)eB' and con-
sequently w,f(1-+it)eB* ~ D;, but D, = B* which implies B!~ D,
= BY ~ Bl ~ D; = D;. Hence m,f(1-+dt)eD;. Let I be a continuous
linear functional on B+ B! which vanishes on Dj; then ¥[n,f(1-+4)] = 0,

(}) Obrerve that sinee D; is finite dimensional, it iz closed.
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and therefore &[o,f(£)] vanishes identieally, which implies that =,f(£)eD;.
Now suppose that fe«#F (B9, B?) satisfies the hypothesis of 9.6. Then

If (i)~ mf (it < o1+ H), |f14i)—mfl+it)lp < c(1+N).
Furthermore, since f(it)eK for ¢ in F,
W) —mflit)llme < 6(4)  for tek.
Applying inequality i) of 9.4, and assuming ¢(1-+4+XN)
log | f(s)— maf ()1, < [og8(A)] [ o(s, t)dt+logo(1+1),
&

> 1 we obtain

whence
a>0.

¢N and m,f(s)eD; consequently
e(14+N) 8(Ay"}+
Hz | lells, <

1f(s)— mif (8)lls, < o(1+D)8(2)",

On the other hand, [mf(s)ls, <

J(8) = [f(s)—mif () ]+ maf (s) e {m | lizll, <

e¢N} ~ D;
and since thiz holds for all i, we obtain

F6re () o | lols, < o(1-+N) ) 8(A%+ {w | llalla,

Now the set {z| o]z, < ¢N} ~ D; is a closed bounded subset of
the finite dimensional space .D; and hence, a compact set. Sinee 4(4) — 0,
the spheres {z | |2z, <e(14+N }8()% have arbitrarily small radii and
this implies that the set in the expression displayed above is totally boun-
ded. Thus 9.6 iz established.

304, Let D, (j=1,2,...
subspace of D;. Let L(wy, ..

€N}~ DI

;#) be Banach spaces and M; a dense
.y T)y Bye My, be a multilinear function de-

fined in @ M;, with values in & Banach space D and such that
4=1

n
<o [ [lizilln, -
1

Then L ean be extended uniquely to a multilinear function L defined

L@y, By vney @)D

on @D; with values in D and satisfying the preceding inequality. In
1
fact, this inequality mmplies’ uniform continuity of L on any bounded

subset of @My IE 2,y e My, limjllp, < ex, lylln; < 01 We have

1) [Ty, 2, s ) =L (Y1, Y2, .-y Yallp
{2, |iL(y1: 7{”7: Lig1y oney Tp)—L(yy, Yoy oory Ysy Wi ay eeny @)l
= |

<02 oM — ¥ello,
= :

icm°®
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so that L can be extended continuougly in only one way. That thig ex-
tension is multilinear and sabisfies the required inequality is immediate.

Consider now the spaces F; = % (4;, B;) and their dense subspaces
% {4y, B;) consisting of funetions in #(4;, B;) with finite dimensional
range contained in A; ~ B Let Z(fy,...,fa), fie%(4:, B;), be the

multilinear mapping from @(ﬁ (4;, B;) into #{4, B) defined by
=1

f= Z(f1, ---:fn)’ f& = ]lj[g'IJII_EL[fl(E),fg(E), s Jal8)1.
Then
1 (F1, - Tl < [ Uil

and consequently % can be extended to a multilinear mapping from
(%,?j into # satisfying the preceding inequality. We will denote this
elxtension also by #. Let 0 < s << 1 and seb

Zolfis fas oo Jn) = F(5)eC

%
where f = Z(fy, ..., fu)- This gives 5 multilinear mapping of @F; into
¢ =T[4, B. ‘ b
We will prove that Z(fi,fs,--.sfa) depends only on the values
of f; at s. First let us observe that if ¢(&) is an analytic bounded conti-
nuous function in 0 < s <1, then F(gfy, fa, ..., fo) = 0L (1, fay -1 fu)-
This is certainly wvalid for f;e#(4;, B;) and, by continuity, it iz valid
also for f;e#;. Suppose now that fi(s) = 0. Then

in;_eim}
Hs = F—WG__—E g1(§) where geF.
Thus if f = Z(f1,fs, ..., n), We have
f ‘Pgl:- J.fzy""vfn)z‘f'g(gia--wfz:--'yfn)
where ¢ = (6™ — ™) /(€™ —e ™), and consequently f(s) =0, i.e.

Pe(fry -, fa) = F(8) = 0. More generally, we have that Z,(fy,...,fa) =0
if one of the functions f; vanishes at s. Let now f;, g;«#; be such that
Ji(s) = g;(s}. Then

n
Zi(f1s - fa) —Zslgn, - )grb):Z{'?s(gl)"‘hfjlfi—i»ll"'}fn)—
=1
n
_gs(gla sy g}':f:'+l: -‘-;fn)] = ng(gla "':fi_gi!.f:‘/+l) -~-:fn) =0
iz
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sinee f;(s)

Ly, ..oy

~— ¢;{8) = 0. Consider now @0; and the multilinear function
1
#,), ®;eCy, defined by

Ly(2y,y .- Le(f1s .-

where f;<%; and f;(s) = #;. According to what we have just shown I,
is well defined. If z;e4; ~ B; and we sel f; = constant = z; wo obtain,
as easily seen,

o F) My S O,

Ly(dyy ooy 2n) = L@y, 00y )

kl
Thus I, is an extension of I to @ C;. As was seen above L, maps
1

n

@®¢; into €. Let us estimate the norm of L(z,..., %,

1
can find f;e#; such that f;(s) = z;, l]f,-Hy]. < HJ;‘;]E(}?. 4.

According to one of the preceding inequalities setting f = 2(f,,
..y fa), We have

). Given e > 0 we

n

T
ifle < [T, < [ Gl + o)
1 1

s Sllle = My HENF() e

<M MSIfls < M3 [ | (e + 2.
I

and thus

”Ls('lf'u cony Znllle = ”ﬂjclbhsi][el’-g}s(fl!

Since ¢ is arbitrary, we obtain

@

IZg(@yy - allle < 3205 | | il
1

Now I, is an extension of L and consequently the same inequality
holds for L.

30.2. Suppose we first vestriet & (XL, &y, ..., @) 0 Ledty ~
stead of Le#. Then by the preceding 10.1 we have

n

ol < B [ ] sl
1 .

My -

(L@, .-

Now if LeA” = [#,, HA,],, since A&, ~ A, 18 dense In A4, there exists

a sequence Ly ey ~ ) such that |[[L,—I, — 0. Now | Ln—Lllugin,

< |ln—Lll+ and since .#,+.#, it continuously embedded in ., it fol-

lows™ that [[Ln(®1, ..., @) —L(@., ..., @n)app = 0. On the other hand,
Ly —Lgller = 0 a8 n and m — oo, which implies that

”L‘n(wu - 1m1l Lm (‘I;h reeye u

<L Tlla- ]‘ [, — 0.

icm
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Consequently L,(®, ..., #,) converges in ¢ and 4+B, since limits
are unique, we find that L(z,,...,2,)eC and

;iL,[]](u.

30.3. Let my,(f) = sup |[F; (@) — By (i), § =k, 2k, then if Fy(if)
converges in .#, as k — oo for ¢t on a set of positive measure &, it follows
that m;({) converges uniformly to zero as k — oo for { in a subset B,
of B, of positive measure. Tf supmﬂt) = g, applying 9.4, i), we obtain

WLy, oo

Pl <

tely
+e
log |F;(s) ~Fy(s) - = YogiLy—Lylly < | Tog ' Fy(it) - Fi(it)]. g polst) 1 4

[ 10glF, (14 i) —Fy (1 + b)) g g (5, )0,

= [y, #, ]s-
From the inequality log(a+b) < log*e-tlogtb-+log2 replacing
logiFy(it)—F;(it)la bY log™[[Fyle+log | File+log2, and {{F,—Fille, by
g for tel, above, we obtain

2e+log2+loger [ pols, t)dt

#

log 11— Iyl <

and since g — 0 a8 k — oo, it follows that |L,— L, — 0 as j and t — co.
Consequently I, converges in .4 to a limit L, and IL;(z,, ..., x,) eon-
verges to Ly(xy,...,®,) In € =[4, B),-

On account of i) we have

HL(xy, - o #)} = Emi[Dp(@y, - 303 = Loy, ...y 2]
k00

for every continuous linear functional on V. Therefore L(z,, ...

Lz, ..

[T APES
By oo )l = [La(@yy ooy @alle < ol H ey < € H e,

50.4. Let 4 be a Banach space and let S be a subset of 4 with the
following property: for each &> 0 there exists a fotally bounded set
T, such that every point of 8 is at distanee less than ¢ from T',. Then X
is totally bounded. In fact, given &> 0 let {m} be a finite set of
points such that each weTs. is at diztance less than 6/2 from {a};
then sinee each point of § is at distance less than §/2 from T,,, it
follows that each point of § is at distance less than 4 from {z;}.

zm'n) =
- Ba)eC = {4, B],. Finally, from 9.4, i) and ii), it follows that
¢ whenee [Lylly < e and
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Let now L, be a sequence of completely eontinuous multilinear
n

maps from @ 4, to A converging in norm to L. Let 8 be the image of
1

n
the unit sphere [lz;jly, <1 of (?A,- under I and S, that under L,. Olearly

8, is totally bounded, and given &> 0 the distance between S, and §
ig less than & as soon as the norm of L,—L is less than s Hence § is
totally bounded and L is completely continuous. Consider now the fune-
tion F(£). Let f;(2)e%(4;, B;) (*) be such that [|fills, < 1. If for a given
& we caleulate the multilinear function F (%) at the point fi(£), fa(&

3 fu(8) of @(A, ~ B;) we obtain a function f(E) «F (A, B) (this rea-

dily verified on account of the multilinear character of F(£) and the
fact that F(&)(we, ..., 2,) is for fixed u;ed; ~ B; a function in # (4, B)
Az we will see, for each s, 0 << 5 <1, f(s) belongs to a totally bounded

subset O, of [4, Bl Let 8, be the image of the unit sphere of @4,
1
under F(if) and congider the set | ) 8;.
]

Given ¢ > 0 we can find a finite set {t}, t;c#, such that for each
teF there is a tye{l;} with the property that |F(it)—F (it)}.e, < & which
implies that the distance between 8, and 8y is less than s, and this in
turn implies that every point of LU 8, is at distance less than ¢ from L{JSLL.,

¥

but the sets 8y, are totally bounded and consequently so is |JSy,. Since
7

this holds for every ¢ it follows that | J&§; is totally bounded. Returning
teR

to the function f(&)e# (4, B) wehave f(7f) el ) S;for all t E, and [[f(X+ it)||p
tcl
gsupHF(l—}—‘it)ﬂﬂl. Hence, by 9.6, it follows that for each s, 0 << s <1,
t
there exists a compaet subset K, of [4, B]such that f(s)e K. Now the
points [f,(8), .., ful8)]; ;¢ 9 (4;, By, |Ifills; <1, are dense in the unib
»
sphere of @[4,, B;], and consequently the image of this sphere under
1
F(s) is also contained in K,.
344, Let us begin observing that under the given assumptions we
also have

S ACIPPIIN ] e zyedy,

< My, H eyl agrng; i

BB,

M@y, el < nmlnﬂﬂ o)l gyem; i

(%) Bee 9.2,
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where M — max(M,, M,). Suppose now that z, ¢ 4,4+ B, and set z, = y,+

+2,, where y,64,, z,¢B,, llydla +lkls, < Hml”AﬁBl’{'B; then the pre-
ceding inequalities give

L@y, ooy ®n) = LYy, Ty oony T) + L2y, 4, ..., 2,),
where
MLy -5 Badla < My lhy, ﬁ Mgty s
L(zyy .oy @a)llp < Mllzalig, f] [P
Thus ﬂ
IL(@1s oy Ba)llarn < M(alayrm,+e) H [P
and since £ is arbifrary
1) W@y o) T)lavn < Mk, 15 Ij sty mmy -

Let now f,e# (4, B,) and f;<%(4;, By), i = 2, ...

(2) £(8) oy Juln)ldn

, %, and set

= [ M3 ML), fal), (£ =stit, 0 <8 <1),
I

where I' i a path joining the point § with the point & and entirely con-

tained in 0 < s < 1. We will show that fe# (4, B) and that

il < Wuls, [ 155,
where #; = % (4;, B)), #; = F(4,, B,).

From the multilinear character of I and (1) it is clear that the in-
tegrand of the integral above represents an (A +B)-valued, (4-4B)-
-bounded, (4 -+-B)-analytic function in 0 << s << 1. Thus f(#) is (4 -B)-
-analytic and uniformly (4-+B)-eontinuous in 0 < s <1 and it can
therefore be extended to an (A --B)-continuous function in 0 <& <1.
This extension, which we will also denote by f(£), clearly satlsfles the
inequality [[f(£)|lasn < e(L-+ &)

Let now & be a positive real number and let 4(k) be the smallest
real for which

M6+ i) —f;(ENgymm; < 8(R), O <t
| METE T M T

<R, 0<s<1,j=2,..,n,

< 8(h)/min(M,, M,), O0<i<h, 0<s<1,


GUEST


* ©

144 A.D. Galderén lm

and let ¢ = ||fi( Magem, +1: 6 2 0 (EMlagmys thén from 30.1, (1), and
31.1, (1), we obtain

WA LI (i), fo 8, o falé )]
— M ML E+ ), fal 8y ooy Sl My
< wMmin(M,, M) ¢"5(h).

Integrating this inequality with respect to ¢ bebween 0 and » we obtain

IF(Eh) —f(£) — Mj IA'WI“L[L(H—M ~h(E) F2 8y oes FalE)lasm

< nMwmin{M,, M) "o () h.
Setting

sh .
E;ZE-H"]”' (J==0,1,2,. 5 m)

by addition we obtain

w1

If(&Hiny—f(&)— X MFMTILIf(E+1)—

F=p
h
& Fal &) oo FulE e <.n\hzs(¢h ) M in (3, M)t

By continuity this inequality is valid for all £ in the strip 0 <5 <1,
and since &(h)— 0 as k- 0 it follows that the sum

m—1
Bnléy h) = 2 MG ML) — &), Fa(&)s o5 Ful E)]

=0 . '

eonverges to f(£+4h)—Ff(f) in- A4B a8 m > oo, 0 s <1,
Now suppose that & = it; then f; (& s1)—fi(&)ed; and thus the value
of the preceding sum belongs to 4. Furthermore, if m = 2* and k— oo,
8n(é, k) converges in 4. In fact, let now §(h) be the smallest positive
real such that
Hf;'(‘ii+’b'f)_f1(’”)1141 <o), 0<Lr<h,

M I T < S (MY, 0 <t < B
. Let
: ih X
—wt—{—w» (§=0,...,m);
then from 30.1, (1), zmd 3L.1, (1), we obtain
UMY MDD (0 Fo (8D, Falit), .oy fulit)]—

'—ﬂlﬁiqlﬂﬁjz’[fl(EJH)'—fl('Sj))fZ(EJ')f 7f71 )14 < nd(h)e (

i
' ) MG,
m
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where

1 .
ZI- [fl(itJriT)'fx(m]%%Al-!-l amd  ez{f)y, (j=2,...,n)

for all ¢ and .
Summing over j we get

NG My LT fy (it 1R) —F1088), Fa(08), oy Fu (6] — Sality Bl
< né(h) "R M M;?
and from this inequality by addition we obtain

R
185088, B) — Sy (48, BY4 < ™D (?) RAHGY.

Since 8(k) — O as k — 0, from this we conclude that & (it b) con-
verges in 4 as %k — co. Thus

Flit+-h) — f(it) = Hm 84 (if, h)e .
Lim 8,

To estimate the norm in A of f(it4ik)—f(it) we observe that, on
account of 11.1, (1),

ARACETORTACH IS A CH IS A ) 7
ol (i 61) — Fo (i), H VIO WA TATS [] 5l
where #, = F(4,, B,), F; = F(4;, B;), whence by addition we get
8m ity )L < Rliflle, H I,
From this it follows that
It #h) — )L < Wl H U

In a similar fashion we would obtain that f(1-1-4i-+ih)—f(1+ ) <B
and

% IF L dtH b —f(+inlle < 1fills, | ] 105,

Summarizing, we have proved that f(E)eF (4, By and that

IflF < [filiz, H il

Sfudia Mathematica XXIV,2 3 18
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Consider now the multilinear map
Plfsfaresfady  FreF(ds, By  [e@(41, By §=2,...,m,
with values in # (4, B) detined by
L(frsFas -3 Fn) = F(E)

where f(&) is the function defined in 31.1, (2). VY_G have just shown that %

is bounded with respect to the norms of # (4, B,) and &F(4;, B),
j=2,...,n Furthermore % has the following obvious property: if g is
a eomplex valued function which is continuous and bounded in 0 s <1
and analytic in 0 <s <1, then for j =1

d d
(3} d_E-?(flrfz:---’gﬁ:---vfn):g(f)%g(fl’fzy-"!fnﬁ 0 <s<1,

and if f;(&) = g(&)f;, then

d
(4) “&E‘f(fn vevy Ju) "!’(5) ‘g(flsfzr - fn)-

On account of its boundedness, as shown in 30.1, & ean be extended
to a bounded multilinear mapping Lot F (41, B)® @? (4, B;) into

F| (4, B). This extension # also hag propermes (3) and (4). To see this

let us consider the linear mappings 4" and 47, of & (4, B)and F (4, By)
given by

AN = [aFman, H#i(fa= [gmfitnn,
r r

where I'is & path joining the point } with the point & As readily seen,
thege are special cages of the multilinear mapping & introduced above,
and consequently, as we have _already seen .#" and .47, are bounded linear
mappings of F(4,B) and F(4,, B,) into themselves. Now we can
reformulate (3) and (4) in terms of 4" and 4 1, a8 follows:

L(farFay ety eenr fn) =L (f1,..,fa), 2 <j<m,
'Z’('/Vlfllfﬂ" '--yfn) ='*'/V$(f1’ ---afn)-
Since the mappings f; — gfy, f, A1 f; and § -4 f are continuous

in the corresponding spaces, the identities above are preserved by pas-
sages to the limit, and thus they hold for the extended multilinear

mapping 2. .
Tet now 0 <s<1 I Z(fy,...,ful =F set Zy(fy, ..., s) A
Then clearly .2, is a multilinear hounded mapping from # (4, B)@ @
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F(4;, B;) into [4, BF. We will show that the value of %, depends only
on the values of fi(s) and f;(s), 2 <j < n. First let us show that if either
fi{s) =0 or fi(s) =0 for some §, 2 <j<n, then £ (f1,...,fa) = 0.
Let us assume first that fi(s) = 0. Since the value of 2 only depends on
fi; by subtracting an appropriate congtant from f; we may assume that
also fi(s) = 0. Consider now the function

]—‘1(5) fl(E + ffl(’?) dn,

s)‘

where I' is & path joining fthe point 3 with the point Z. It is easy to see
that f,e#({4,, B,). Furthermore

E—S)

E4s)

Consequently by 31.1, (4), we have

HCRAC]

E—s d
Ets df

Lol - 7.fn) = [ L ».4.,f,,,)]£m8 =[ Z(1h, ...,fﬂ)]wmﬂ-

On the other hand, if f;(s) = 0, § = 2, we set

_ ]
=%

Then clearly ;% (4;, B;) and 5o, by 3), we have

fi-

Fulfyeosin = [ Fisenr 30

£=8

[§+s aE Z(fus - 'fff!"‘ifn)]f=8= 0.

Let us set 0 = [4, BY, 01 [4,, BT, ¢; = [4;, B;}; and consider
a multilinear mapping I, of 6—) C; to O defined as follows: if #;¢0;, § = 1,
1

vy and fieF (4., By, freF (A;, B;), are such thabt fi(s) ==, f;(s)
=, j=2,...,n then

Ly(@y, ooy ) = My MEL,(Frs .0y fo)-

First of all let us verify that L, is well cleﬁ;ged. Suppose that for
fre# (4y, By, [; =&F(4;, By, we also have fi(s) =21, fi(s) =y,
F=2,.,%
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Then
Zy(fuy oees Fad=LulFus oo T

E :27]'- fwa-:u yfn)'i‘-?s(ily- 7f7 17f77' 9fn

!
M;

.
I
-

-? 1‘15 j:’ llfi_f;s‘ -1fm)-

I
M;

.q
i

Since fj(s) Fi(s) =0 for 2<f<n and fils)—Fi(s) =0, a8 we saw
above, all terms in the last sum vanish, Congequently

?&(flﬁ 7f7n) _'Z}-V(fli' if"'

and Ty(#y, ..., 8,) is well defined. If we choose j’l, ooy Ju In guch a way
that lfxlls1 Imlllc +& fills; <l +e J=2,...,m, we find that

li-zx(mli EERS] mn)”ﬂ = Ms_xM‘;Il?a (fu . ',fw.)ilc

< MIMEZ(fy, o FllE < M MEIAE, [ [ 15

< 2457045 [ [ (lalio, + <)

Now it is readily wverified that if #,¢0;, and zye4; ~ B;, then
L, (..., m,) coincides with L(z,, ..., #,). For this purpose it is enough
to set fi(£) = o &, f;(&) = const = a;, § = 2,...,n. This concludes the
proof of 31.1.

31.2. Our statement is a special case of 11.1, In fact, we congider
the mulfilinear funetional L(L,x,, ..., 4,) with values in A+ B defined
for Led#,4-#,, v;¢(A; ~ B;} by

LLy @y, ooy @) = L@y, 0ony By)
and apply the result in 11.1.

32.4. We begin discussing the dnals of certain Banach space valued
functions. Let 4 be a Banach space, 4* its dual. Consider the space
A’(A*) of functions with values in some space containing A4* and such
that g¢{t)—g({i)ed* for any 2 and #, and that

|

We reduce this space modulo constant functions and in the guotient
space A(4*) we introduee the norm

gD —g ()

1— 1

1
. [glts) —g(8)]

0 PREEEFEL N

Mglly = sup

1!1 Ay A
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We consider on the other hand the space Cy{4) of continuons 4-va-
Ined funetions f(f), —ee <<t < oo, with compact support. In Oy(4) we
introduce the norm

oo
il = [ IF@lLar.

The completion of G, with respect to this morm can be identified
with the space IL'(4) of strongly measurable A-valued functions f(i)

such that
+0o0

Il = [ 1f@llade< eo

—

reduced modulo functions vanishing almost everywhere.
TFor f(t)eO,(A) and geA’(A*) we define

30
@ [ s, aglayy
a8 the limit of the Riemann sums

D) gt)— g &Y, 4 <w <t
a8 sup{t,,—3%) —> 0. On account of the uniform continuity of f(f) this
i
limit is easily ghown to exist. Furthermore, since

| 3 <) gt — g 3] < D IFmIalg Grx) — g (L
< D LalghaClisn—2),

we have

+o0 +o0
(2) V[ cre), agen) <ol [ 17@1adt = lgllallfl,

which shows that, for given g, the integral (1) represents a linear funetional
of f which is bounded with respect to the norm |[f], and the norm of this
linear funetional does not exceed |jgll,.

More generally, if f(f) is a continnous A-valued function such that

+o
J IFf(®)la@ < oo, there exists a sequence fu(t)eC,(A) such that [|f.—7|
— 0 and we define

+0oo +00
J W, dg@y =tm [ fa), do(@))-

Tvidently for given g this generalized integral still represents a linear
funetional of f which is bounded with respect to the norm [[ff| of f, the
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norm of the functional not exceeding ||gll.. Suppose now that f(#) has
the form @(f)2 where 2 A and p(f) is a continuons integrable numerical
funetion. Then from the definition of (1) it follows that

~00

+o00

[ <t agepy = [ pdde, g,

—0 —00
where the integral on the right is a Stieltjes integral. Since {x, g{1)> is
a Lipsehifz function of ¢ we can write

+oo “+o0 d
®) [ aw,agm = [ cpu)[ﬁ @, g(t)>] .
—t0 —00

Conversely, every linear functional ¢ on 0y, which is bounded with
respeet to the norm Jfil, has the form (1), where [lg|, does not ex-
ceed the norm of . To show this we first extend ¢ to L*(4) and consider
1[z*(t)] where zed and x(z,t) is the characteristic funefion of the in-
terval [0, ) if = >0, or minus the characteristic funection of [z, 0) if
7 < 0. Clearly [«*(z,t})] is & continuouns linear functional of x for each
given z. Consegquently

ta*(z, )] = <&@, g(z)>,
where g(z)eA* On the other hand,

lg(r) =g (zolllar = supHaly(r, —2(v, 01},  lola <1

sup | f e [ (za, 1) — 1 (vas D]ackt

~—00

<M f bt (xy, )=

g (v1) — g (za)llee <

(%) D)t = [{[]7o—1,].

Consequently g(t)ed” and |lg|[, < .
Let now f(£)eCy(4) and 8,() = F(k/n) i kfn <t < (k+1)/n. Then

WH0] = USO8,
-, e -s.n

D
4 Pl |- ol ) (2] om0

S o 22) - (£)> +atreo—-sucon.

icm°®
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Now, as n -» oo, [[f(f)
sion converges to

—8,(1)]| = 0, and the sum in the last expres-

o
[ <fw, agap.
Consequently -

00
) Up = [ <, dg(en,
where [jg], < |fl. But as we saw above, we also have ||| < |lg|l, whence
|l == llgils- By continuity this representation of ¥(f) is also walid for
continuons A-valued functions f{i) such that

4o
J 1 @)lledt < oo

Consider now the interpolation pairs (4,B) and (4%, B*). Since
both 4* and B* are continuously embedded in (4 ~ B)* we have a bi-
linear funectional on (4 ~ B¥B(A*-+B*), which we will denote by &2, ¥,
which is the value of the continmous linear functional ye(4d ~ B)* at
we(d ~ B). Clearly, if yeA* or B* we have

1<, ] <lelledwle  and Ko, 1] < lwlsllyle.
respectively, and thus by 11.1 we also have
K, 93] < l@llelylie

whenever yeC’ = [4*, B*Y, where ¢ = [4, B],. Thus with each ye(’
there is associated a linear funetional on 4 ~ B which is continuous
with respect to the norm of €. Since 4 ~ B is dense in ¢ this linear func-
ticnal can be extended uniquely to €, with norm not exceeding [llc-

Let now fe%(A, B) and geF (A*, B*). Let ¢ < s < 1, and consider

o0 +oa

T=—i] [ <fWuols, ), dgliny+ [ <FlL-Fit)uls, 1), dg(1+it)],
where g, and g, are the Poisson kernels for the strip introduced in 9.4.
Since f(&) = Y '#;f;(£) where z;¢4 ~ B and the f;(£) are complex valued

continunous funetions in 0 <8 <1 analytic in ¢ <s<<1 and tending to
zero at infinity. By (3) we can write I as

+o0
d
1= —z‘Z[ [ )5 <e1s g6 sm(s, 1+

+c0 g
[ i g o ot i s, 0|
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Now consider the functions

74
k(&) = <=’Uj; d—§g(§)>'

They are bounded analytic funetions in the strip 0 < s <1 and have
non-tangential Nimits almost everywhere on the boundary of 0 << s << 1,
equal fo

a d
—igr @ gy and  —i—on <o, g(1440)),
respectively. Consequently
I= Y 50s) <, g ) = (3 aify(8), g'6)) = <Fls), ¢/ (8.
7

Thus if @ = f(s) and ¥ = ¢'(s) we have <(w,y> = I. Now suppose
that <0 = [4, B]; and that fe# (4, B) is such that f{s) = z. Then if
Jae% (A, B) are such that ||f,—flly — 0, that is, such that |If, (i) ~f(52)[4
-+ 0 and [[f.(1-+4)—f(1+4it)|z — 0 wniformly in ¢, we have

FalsY—allc = ifule)—Fs)le < lfa—fllz — 0

and consequently

&y 9> =_’]‘1;Il;<fn(s)f g'(s)
+o0 F oo
=lim [~ [ (fulitols, 2), dg (> —i [ CFall-it)mule, 1), dg 1t it)y—

+0o oo
—i [ <FE) s, ), B —i [t ity (o0), dg(Ltin)y]
which ig the desired representation of the linear functional on ¢ associated
with g,
Now suppose thati Z iz a bounded linear funetional on ¢ — [4, B],.

Binee O is o factor space of # (4, B), T induces o linear functional I on
F(4, B) with the same norm.

Consider now the mapping ¢: #(4, B) = [ AYDIA(B) given by
P = [F (@) o (5, 8), F(1+ ) iy (5, 2)].

T.his mapping is linear and one-one. On the image of # (4, B) under
@ define the linear funetional 4 by

Ale =1I(n.
Then by 9.4, iii), we have

PIp (N0 = (AT = BLFI < RI1FCs)le

©
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+eo +eo
<P [ WFGoama(s, Ddtt [ 170+ it)sm(s, i) = e (DI,

where [|lp(f)]] stands for the norm of ¢(f) as an element of I'(A)®L(B),
which shows that 1 is a bounded linear functional with norm not exceed-
ing |l Now we extend A to all of I!'(4)PL'(B) with presexvation of
norm and represent it as in (4) obtaining

) Alp(H1 =N
+ o0 +oo
= [ (flitdmls, ), de >+ [ SO+ (s, 0), dgy()),

where go(t)eA'(4%) = Ay, ¢,() = 4"(B") = A] and max (llgoliay, galls,)
= [|A]l < |}l The functions g,(t} and g,(f) are determined up to an addi-
tive constent. Suppose now that wed ~ B and that k(£) is a complex
valued function which is continunous in ¢ < s <1, analyticin 0 < s <1
and tends to zero at infinity, Betting f(£) = ah(f) we obtain

UFT = I = h(s)i()
+oo d +ea d
:i h('r:t)ao(s,t)5<w,go(t>>dt+_[o B+ 0 (8, ) (o, a0,

Evidently, it 2(s) = 0, then the right-hand side of the expression
above vanishes, and this, ag we will prove, implies that the functions

d d
W (@, go(t)> and ‘(ﬁ“ <&y g2 (1)

are the boundary values on s = 0 and § = 1 respectively, of & funetion
k{x, £) of & which iz analytic and bounded in 0 << s < 1. Let us accept
this fact for the moment and draw conclusions from it. First of all k(z, &)
clearly depends linearly on @. Furthermore

a d
[k, &) < maX[sgp F <z, gold)> !, sup | = {z, m»ﬂ

< max [zl ligollay Helzllgalle,] < lolla~mmax [lgolle,, gl

which means that k(z, &) is, for each & in 0 < ¢ < 1, a bounded linear
funetional on 4 ~ B. Define now the function k(&) with valuesin (4 ~ B)*
by

&, k(E» = 76(95'7 ).

Then, since the elements of (4 ~ B) form determining space of linear
functionals on (4 ~ B)*, and since <z, k(£)> i8 analytic In 0 < s < 1,
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for each wed ~ B, it follows that k(£) is an (4 ~ B)Y*-yalued bounded
analytic function. Consider now the function

(&) = [T(nan
I

where T is a path entirely contained in 0 < ¢ < 1 and joining the poiut
1/2 with the point & This function g(£) is uniformly {4 ~ B)*-conti-
nuous (sinee its derivative is (4 ~ B)*-bounded) and therefore it can
De extended continuously to 0 < s < 1. Furthermore, if Figin 0 <8 << 1
and @#ed ~ B we have

R
@y gla+ i)y — (@, g(8)> = i | <@, K(E-Hin)dr
0
and by letting s —0 in & = s--it, gince

d
{z, B(s+d4ir)) - -d_'ﬁ (o, go(t+r)>

for almost all © we obtain
R

a
@, glit+ i) —g(ity = i [ — (@, gult+-o)>d = i<, guli-H 1) — galt))

[

and since this holds for all #, we obtain
(6) (it ih)—g(it) = igo (t+h)— go (£)] e 4™
and
[oesor-so], - [aro-sin, <
7 T —g@]) =3 l0t+h—gn0]) <9,
Similarly we obtain

o gAA@--ih)—g(14it) = i[gy(E+h)— g, (5)] B¥,

1
H*,; [g(1+a4ah)—g(1+it)] 13’ < lgallags

and by 9.1, ii), we eonclude that g(&)eF (4*, B*) and |lg]# < max (|igollsy

llgalla,) << 18
Now, from (5), (6), and (7) we obtain

HEI=HD
+o0 +-00
= =i [ Flitls, 0, dgli)y —i [ <Ot pals, 1), dg(L+ )

and 83 we saw-above the value of this integral is precisely <f(s), g’ (s)>.
Thus, we have ¥[f(s)] = <f(s); ¢'(s)> or, setting g'(s) = y and f(s) = »,

* ©
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Hw) = <m,y> where ye0' =T[4, BT and lylo < lglls < (U Bubt as
we showed already, for linear functionals of this form we bave [#]] < |yl
whenee |yllc: = [fl. In other words, with the bilinear functional <z, y>,
zed B, ye[4A*, B*T, extended to [4,BlHl4*, B*'T, [4*, B*T be-
comes the dual of [4, B];.

There remaing to prove our assertion about the functions <z, g;(#)>
and {®, ¢,({)> being the boundary values of an analytic function. Let
0 < o<1, and let £(n) be a funetion mapping conformally the cirele
In] <1 onto the strip ¢ < s < 1, such that £(0) = o.

We may take for example

1. 7 e_imr_ 81:7;0-]
8 = —log| ——
(8) £n) == og[ —

where log stands for the principal branch of the logarithm. BEvidently
the mapping &(z) can be extended to a continuous map from |y <1
with the points 7 =1 and 5 = ¢ removed onto the closed strip 0 < s
< 1. Let now u{&) be a complex valued bounded continuous function
in ¢ <s<1 which is harmenic in ¢ << s <<1. Then

43 o0 '
f w(@Bpolo, di+ f B+t (e, )dt = pls) = p[£(0}]

B _l_ 214 "
— f alE(61d0.

Since the boundary values of u(Z) are confinuous and bounded,
but otherwise arbitrary, if g,(t) and ¢,(f) are two bounded continuous
functions in oo < ¢ << oo, and k{f) = g,[—if(&®)] if the real part of
£(¢") vanishes, and #(0) = g, [{—i£(e®)] if the real part of £(¢%) is 1,
then

400 +0o0 2
1
® [ mve@at [ we,0nwi=-— [ boas.

This identity evidently holds alse for any two bounded measurable
functions g, and g,, provided A(0) is defined accordingly. Suppose now
that g, and g, have the property that

+oo +oo
(10) [ 1nge@pelo, Ddit [ FOA4it) g0 palo, Hds = 0

for every function f(£) which is continuous and bounded in 0 < s <1,
tends to zero at infinity, is amalytic in 0 < s < 1, and vanishes at § = o.
Then setting
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ing ins \n
¢ "€ 3
) =, >0,

5 = (W

and letting & tend to zero, we conclude that (10) also holds for
e'ins_‘ e’l:ns

f(f):(m), %:1,2,...

Applying (9) o the left-hand side of (10) with

einE_ G'Lns )-n

f(&) = (B’i,nf__ o=t

we tind that if »(8) is the function associated with the pair g,(8), g,(9)
then

bxd o0 +oo
1 - . .
%Df h(6)e™ap = —[O T(Et) go(thpeelos MH—_[D F(L4-) g (B ey (o, 8) di = 0.

Therefore the Fourier series of h(f) contains only terms with non-
negative index, that is

R(8) = Z‘a,,e”'””.
[}
Since A{0) iz bounded, the funetion
hin) = ) an”

is analytie and bounded in |y| <1 and has non-tangential limit h(0)
at y = ¢ for almost all §. If we set g(€) = h(n) where £(n) is given by
(8) we obtain a bounded analytic funetion in the strip whose non-tan-
gential limits at s = 0 and s = 1 colncide almost everywhere, with g,(t)
and g¢,(t), a8 we wished to show. This completes the proof of 12.1.

322, To prove our assertion we will use the theorem of Eberlein
according to which the unit sphere of a Banach space i3 weakly compact
if and only if every sequence of elements in the sphere hag a subsequence
converging weakly to a limit, and the fact that a Banach space is reflexive
if and only if its unit sphere is weakly compact.

" Let C =4, B, 0 <s<1, and let #,¢0, |p,)o <1. We will show
first that it is possible to extract a subsequence {#n,} from {w,} so that
Y(m,) converges for svery continuous linear functional { on €. Onee this
is established we will prove the existence of an element « to which {#}
converges weakly.

To show that we can extract from {w,} a sequence {w,} such that
E(:;n,ﬁ,) converges for every { it will be sufficient to prove the following
slightly weaker statement; given a sequence {®n}, 20eC, fonllc <1 and

icm

©
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a positive number &, there exists a subsequence {w,} of {z,} such thab
lim [ (0, — 3, )] < |Rlie for every I If this holds, then it is possible to
j 00

15
extract from {z.} a weakly convergent sequence by an obvious diagonal
Process.

So let 2,60, jlzaflo <1 and £>0 be given. Let f,eF (4, B), if.ls
< 2 be such that f,.(s) = »,. Assume fthat 4 is reflexive, and let a be
real and such that ¢*~9% < ¢/8. Then for the functions h, (&) = f,(£)e°
we have hn(s) = 35, [y (@) < 267, [Ra(1+ 82| < 26479% << 24, Con-
sider now the A-valued functions k,(if)ue(s, ©*°. The norms of these

~ funefions are uniformly square integrable, that is, these functions belong

to a bounded subset of the space L*(4) of the strongly measurable 4-va-
lued funetions of ¢, —oo <<t < co, of square integrable norm (see [8]).
By a theorem of Phillips, if 4 is reflexive so is J7(4) and consequently
any cloged sphere in I7(4) is sequentially weakly compact, and the se-
quence ,(it)ue(s, 1) has a subsequence hy(it)z4(s,?)'” which conver-
ges weakly in I*(4). Let now ¥ be a continuous linear functional on (.
By 12.1 we have

@
+00 +e0
Yan) = —i [ alit)pols, 1), dg(i>—i [ u(L4-it)m (s, )dg(1+40)),

where geF (A*, B*) and lgllg < 2§H).
Congider the space (,(4) (see 32.1) and the linear functional i on
0, (A) defined by

+oo
A = [ FWuols, 19", dglt)).

Then as we showed in 32.1, (1),

+oo

I U@ pals, 0P

—c0

+o0
AP =1 [ <F@uols, 02, dglinn>| < lgtit)la

<lgle | [useantea] ™ [_T#a(s, L]

that is, A is econtinuous with respect to the norm of I7(A4). Since Gy{4)
is dense in L*(4), » ean be extended to a bounded linear functional on
I*(A), which we will also denote by i. Returning to (1) we can write

+o0
Han) = — AR (i) o8, DM T—1 [ Cll+ityms, 1), dgl+a6))
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setbing # = n; above, since h, (i) p,(s, H' converges weakly in IT2(4),
AT (68) o (8 5 1] converges and consequently

T[22, ~ 2| = 1im | f (g (L4 88— Ty (L 48) T paa {8, ), g (14 0)) |
00 Ao .
and applying 32.1, {2), we find that
4o
| [ gy (L 8= (1 8001y (5, ), g (L 88

+-00
<l f [y (14 8)1m A Wy, (LA~ ) [ 1 1 (3, £ 2

< 20| (s/2) f pals; 8 < e

Thus _
Hm fH{z, —2,)] < |F]e
500

a8 we wished to show. Consequently if @, <0, |,lo < 1, there is a sub-
sequence {a,} which converges weakly.

Now we will show that the sequence {w,} has & weak limit. Let as
hefore f,eF (4, B), [[f.l# <2, be such that f,(s) = ,. CUonsider the A-
valued functions f, (it) 4, (s, £)'". As we pointed out above, these functions
have bounded norms in I*(4), and since I?(4) is reflexive, we can gelect

a subsequence from f, (i) u,(s, )" which converges Wea.kly to a limit
in I?(4). By a theorem of Banach there exists a sequence of finite eonvex
combingtions of the fnj, say

Bn(t) = ) amy (it}
7

ami—_uﬂifjgm, am; > 0, Zamf=1’

such thab &, converges strongly to the same limit in I*(4), By restricting
ourselves fo & subsequence of the {k,} we may assume that h,(f) con-
verges in A for almost all ¢ Let h,(£) = Z‘Lmjfwfff) Then by 9.4 we see

that
k‘m(s) = Zam)fm(s) = Zavn;;wuj
7 7
converges in (! == [4, B], to a limit . Then
limi(z,,) = lim 2%1(%) = ]iml(Z oy, = U(a),

which shows that # is the weak limit of the sequence @,.. This completes
the proof of 12.2.

* ©
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323. Let ¢ =[4, B], and 0, = [4,, B;],. We will show first that
C < 0y and |zlly = llzlle, for every zeC.

For let fe#(4,B) and ¢(&) =f[a(l—&)4-PE. Then g(it) —
= fI(B—a)it+ Eleny = fIE+it(B— a)Te~"),_, and consequently

lglithl, <UfLE+E(B— )]s = I flls,
T @i, < IFEE+i0A~ a)]e¥ s
and the expression on the right tends to zero as |t| - co. Furthermore,
g (i) — g (#)iLq, < NFEE+R(B~—a)]—f(E)4,

and the right-hand side of this inequality tends to zero with k. Conge-
guently g(it) is an 4,-valued continuous function of ¢, tending to zero
at infinity and [g{(@)jly, < [fls.

Similarly one shows that g(14- ) is a B,-valued continuous function
tending to zero at infinfty and iy (L+it)lls, < [ifll=- On the other hand,
g(£) is & bounded (44 B)-valued smalytic function and so, by 9.1,
geF (A4, B,) and its norm, a8 an element of this space, does not exceed
fll. Now given weC == [4, B,, we let feF (4, B), f(s) ==, [flls < [l
+e& and g(£) = fla(l—&)+ &1 Then g(o) = f(8) = 2, and therefore
veC, = [4,, B;], and Jfafle, < llglls < lifils < J@llc+2. Sinee ¢ is arhitrary
the desired conclusion follows.

Similarly one shows that if C = [4, B]® and €; = [4,, B,T, then
0 = 0, and [y = |lwll, for every meC. For let fe# (4, B) and

1
g(&} = 5 a JTa(l— &)+ BE],
then geF (4, B;) and the norm of g as an element of this gpace doer
not exceed [fl|z. Given € we find feF (4, B) such that f'(s) = [|lc+ &
Setting

9(8) = = fla(l— &)+ 8]
pf—ua

we get ¢'(0) = f'(s} = @, whence xeC; and
lwlle, < lglz < MilF < [olle+e.

Congider now the spaces (4 ~ B) and {4, ~ B;). Since 4 ~ B is
continuously embedded in both 4; and B, the inclugion map I of A ~ B
into A; ~ B, is continuous, and so is the adjoint T* of I which maps
(A1 ~ By)* into (4 ~ B)*. Furthermore, since 4 ~ B iz assumed to be
denge in A, ~ B,, I* is one-to-one. Let A} and A} be respectively the
subspaces of (4 ~ B)* and (4; ~ B,)* of linear functionals which are
continuous with respect to the norm of 4, and introduce in A¥ and A%
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the norm of linear functionals on 4. Let BY and Bf; Le similarly defined.
Then clearly I* maps A}, B}, and A} +-Bi; isometrically onto A}, B!
and A}-+B! respectively, and thus also [4}, Bh], onto [AF, BY,.
Let now I be a confinuous linear functional on [ A, B];. Then I ig of the
form I{z) = <, y)> where ye[A*, B*]. Now as we saw above [4*, B*f
< [47, BT the inclusion being norm decreasing; consequently there
is a ze[A};, BLT such that I*(s) = y and [l2] < |ly|l = |f]l. Furthermore,
for #eA ~ B we have
o) = o, 45 = @, ),
whenee |z]l; = sup[l(z)] < sup|lw, 2)| < |zllg,, since (w,2) is a conti-
< 1<l

nnous linear funetional on C; {see 12.1) of norm equal to the norm of #
in [Af, BT (®). Since 4 ~ B ig dense in [4,B], and the norms of
[4,, B,], and [4, B, coincide in 4 ~ B, it follows that [4, B, is iso-
metrically embedded in [4,, B,],. Now by assumption 4 ~ B is dense
in 4, ~ B, with respeet to the norm of 4, ~ B, and therefore it will also
be dense in 4; ~ B, with respect to the (smaller) norm of [4,, B,],. Con-
sequently, since [4, B], is a elosed subspace of [4,, B,],, from [4, B],
=> 4 ~ B follows [4, B], > 4, ~ B;. But 4, ~ B, is dense in [4,, B,],
and therefore [4 ~ B, > [4,, B,],. :

Finally assume that A = B. Then of course we have A == 4 ~ B
but the norms of these spaees need not be equal. Nevertheless they are
equivalent. In fact, hoth 4 and B are continuously embedded in a to-
pological vector space V and thix implies that if {w,} is a sequence of
elements in 4 sueh |, —,) — 0 and |o,— )z — 0 then @, > oy and
@, ~> 2y in ¥ whence #, = x, e 4. Therefore the inclusion map of A into B
is cloged, and since it is everywhere defined on A, it is continuous, and
fiwlls < eilelly for seA. Consequently

lole < lollans = max(lLy, [lols) < o)l max(L, o).

On the other hand, 4 +B = B and the normg of these two spaces
ape again equivalent, gince the identity mapping B - A+B is norm
decreasing, and therefore sontinuons. Furthermore, the mapping is onto
and therefore has a continuous inverse. Now let us show that A, = By,
Let me A, and 1ot f<F (A, B) be such that f(a) = 2. Qonsider the function

P ;

G(&) = o&-# f(fﬁ). Then g(£) is an (44B)-continuous function of ¢
ino<s g.l i_;e‘l.ldjll.g to sero at infinity, g(it) is A-continuous and tends
to zero. at infinity, and g{14it) is (4 4-B)-continmous and therefore also
B-eontinuous and teads to zero at infinity. In other words, g(£)e# (4, B).
Thus = = f(a) = g(f)e[4, B], = B, and 4, < B,. From this it follows

(*) Thas the norms of 0 and 0, coineide on 4 ~ B.
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that the spaces 4, and 4, ~ B, eoincide and that their norms are squi-
valent. Sinee 4 ~ B is dense in A4,, it is also dense in 4, ~ B,.

32.2. That V is a complete metrie space is well known. Tt is also well
known that if the sequence f,, converges te f in measure on every set
of finite measure, then d(f,,f) - 0. Consequently, to prove that X is
continuously embedded in ¥ it will be enough to show that [|f,lix - 0
implies that f, converges in measure to zero on every set of finite measure.
TFor suppose that for some positive number e and a subsequence f"j
of f, we had |f,] >¢ on a subset E, of measure larger than §, § > 0,
of a set B of finite measure. Then if y; denotes the eharacteristic function
of the zet En;' we would have ey; < 1f,L7.1 and consequently [zllx — 0. We
now select & subsequence of y;, which we will also denote by x;, such

N

o0
that }llylx < co. Let Sy = Yy; and suppose that lim Sy is finite almost
1 1 Neaoo

everywhere; then outside a subset D of F of measure less than §/2 we
would have imSy < M for some M < oo, and { Sydw < M{E—D)|.
N B D

On the other hand, we also have
¥ N
[ Swdz = > [ yyde = YB—D)~ B, = Noj2
E-1I 1 E-D 1

and this would be impossible for sufficient large ¥. Consequently Sy - co
on a set of positive measure and Sy — oo uniformly on a set D of posi-
tive measure. Let y be the characteristic function of D; then given any
integer m we would have m < 8y for sufficiently large N and

o0
1 I 0
e N N I3
1

m m
But sinee Yzilx is finite and m is arbitrary this would imply that
1

llxllx = 0 and consequently y = 0 almost everywhere, and the set D
would have measure zero, which is a contradiction.

The proof our second assertion is immediate. If f, is such that >'if,/lx
1

< oo, then Sy = }if,) converges to a limit in X. Consequently the series
of functions Y|f,| converges, in measure on every subset of finite mea-
sure of .. Since the series has positive terms this implies that the series
converges almost everywhere. Consequently the series }'f, (x) converges
absolutely almost e;rerywhere on #, and its limit mugt be f(z) almost

everywhere since Y f, converges in measure to f.
$ n

Studia-Mathematica XXIV, 2 11
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33.3. Let ¢(f) be a concave non-negative function on 0 < ¢ < oo,
@(0) = 0. Let 2, and a,, be two sequences of pogitive numbers and suppose
that } 1, < co. Then we have the inequality

oo

2

1

g’inw(%) [ EMJ

which is the analogue of Jensen’s inequality for convex functions. The
analogue of Jengen’s integral inequality is also valid for concave func-
tiong and is proved in a similar way.

Let now ¢(#, 1), 2e#, 0 <{t < co, be a concave non-negative func-
tion of ¢ for each # vanishing at ¢ = 0. Consider the space ¢(X). This
clags of funetions is evidently closed under multiplication by scalars.
So to show that it is a linear space we merely have to prove that g,, g.e
¢(X) implies that g+ gyeq(X). Let |g; ()| < A[e, f;(2)] almost every-
where, j =1, 2, with f;eX, f; = 0 and |fillx = 1, then '

A Asfs
a0 < Baplo, £+ e, £ < Gy o, DD R

and consequently g, 4 ¢g.e<p(X).

Let now g, be a finite or infinite sequence of clements in ¢(X) such
that 3, leex < co. Then we can find numbers 2,,, 2, < ||g,/lx-+2/2%, and
functions f, >0 in X with [[f,/lx <1 such that |g,| < A,¢(®,f,). From
the inequality for concave functions stated above we obbain

Zig,.} < _,\jﬂ,lfr(ﬂf,.f,,) < m[f, ZE%L] (22)

Now according to 13.2, since 3L, fullx < 34, <o+ g, llx, it fol-

lows that Y 4,f.(w) converges almost everywhere to a function f(z) in X
o0

of norm not exceeding }'i,. Consequently 21g,, ()] is finite almost every-
1

where and belongs to ¢(X) and since ¢ is arbitrary we find that 131g.] Mgty
< 2”9,..114:(2:)- Thus the norm introduced in ¢(X) is subadditive. The ho-
mogeneity of the norm is clear so that the only property of the norm that
remains to be shown is that lgllyxy = 0 implies g = 0.

If Hgllyx) = 0 for each n, » > 1, there exists foeX, o2 0, [flx <1

1
&uch that |g| —7;3—:;0(50, f.) almost everywhere. Clearly this inequality will
also hold almost everywhere simultaneously for all n. Now since @, 1)

- ©
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is concave in t and ¢@(w,0) = 0 it follows that for 0 <1 <1 we have
olz, 1t) = Ap(x, t). Consequently

1 1 1
lg] < o (s f.) < o (n', N qrfn) for all %, almost everywhere.
: , g

Now the series Zl

1
an

1 . . 1
Zﬁ f,, converges almost everywhere, and, in particular, o £, converges

18 convergent, and thus, by 13.2, the series

. i 1,
to zero almost everywhere. Let now z be a point where |¢l << —¢ (m, e jw)
n e

i .
holds for all %, and where — f, = 0 as % — oo; ab such o point g must
W

obviously vanigh, Consequently g{#) = ¢ almost everywhere,
Finally let us show that ¢(X) is complete. For this purpose it is

enough to show that if g, is sneh that ZHgﬂ[lwx) < oo then the partial
N 1

sums g, converge in X. We have shown above that under these assump-
1

tions the series Y|y, | converges almost everywhere to a function in ¢(X};
and this implies that the series }'g, also econverges almost everywhere
N oo

to a function g in ¢ (X). But then we have g— >y, = 3 g, and, as we saw
1 N4l

o
above, the pointwise sum of the geries » ¢, has norm not exceeding
N+1

2 ”g'-nva(X)-
Nl 2
Thus [[§— > ¢ullyxy tends to zero as ¥ — oo.
1

33.4. Properties i) and ii) of the function f** are obvious. Properties
iii) and iv) are immediate consequences of the inequalities

ffsg“sdm < [ffdw]'g[fgdm]lns,
- p:A 7

> fotnar <2y [T%*T fran| <cp[-} [ fdw] B < 1,
"k B CE

valid for non-negative functions. The first inequality is nothing but
Hélder’s inequality, and the second follows from the analogne of Jensen’s
integral inequality and the fact that ¢(it) > Ap(t) for A <1. From pro-
perties i) and ii) it follows at once that the nerm introduced in X* ig
actually subadditive and homogeneous. Furthermore, if [fllxx =0
implies that ||f**|x = 0 whence f** = 0 almost everywhere, and conse-
quently f = 0 almost everywhere.
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To show that X* is complete consider a sequence of functions f,
in X* such that Yfuls < oo. Then 3)[fi*llx < co and consequently,
o0

by 13.2, the series ) [+* converges for almost all #; but if ¢ is value for
oo 1

which 3 fi*(1) converges, we have
! Ay N ]
*ak
(2] < 2t < Yt < e

N
which shows that the integral of E If.] on any set of finite measure has
1
a bound independent of N, and by the monotone convergence theorem
it follows that the series Y|f,| converges almost everywhere and that
I3

o

(Xifull™ < Jf** for almost all 4. Let now g be the sum of the series Y 'f,..
1 1

1

Then ¢** < Y|fal™ = X' fa¥ and this last function belongs to X on account
1

1

of the fact that J'[[f7*{lx < oo (see 13.2). Consequently g X*. Furthermore,

o= 2k < S
N1 N1

<[ Yl < Dl = Yl
N+l N+l N1

and the last expression tends to zero as ¥ — oo, Oonsequently the partial

N

lo— 3s,

sums of 3 f, converge to a limit in X*, which proves the completeness
of X*. !

33.5. That X,+ X, and X, ~ X, are Banach lattices is clear, except
perhaps for the validity of the inequality lglix,ex, < IS x,+x, Whenever
lol <7l almost everywhere. Let f = fi+f, with ifillr, +Ifallx, < [flix,4x,
+e; then g = fig/f-+foylf; where g/f is defined to be zero wherever
I=0. Since Ifig/fl < |fi, we have [fig/fiix, < |filx, and consequently
lgllx,s.x, < fille, +ilfollz, < flix,ox,+ &. Sinee ¢ is arbitrary, the desired
inequality follows. Concerning the space X;~°X3 lat f, be a sequence ol

fonetions in X = X7°X% such that Dfallx < co. Then given & > ¢ there
1

exist positive numbers A, and funetions g, and k, in X, and X, 3 Tespec-
tively such that '

A < Ifullx - 5/2%;

lgalle; <10 Wall z, <1, |fal < Aulgnl* " (0"

* ©
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Then from Hblder's inequality we obbain

DU X 2l "l (X i) (X Auiml]

A 2w (Sa) TS ) (S0
1 1 )

Now the expression within the first pair of square brackets on the
right represents a function in X, of norm not exceeding 1, and the ex-
presgion in the second pair of square brackets represents a function in

oo
Xy of norm less that or I‘equal to 1. Consequently 3'[f,| is a funetion in X
oo 1
of norm not exceeding 34, == Y |/fullx- & and since sig arbitrary, it fol-
o0 1
lows that | fallx < 3 Hfallx. This gives, in particular, the subadditivity
1

of the norm introduced in X. The homogeneity of the norm iz clear so
that the only remaining property of the norm we have to prove is that
|Ifllx = 0 implies f = 0 almost everywhere. Suppose that ||flx = 0; then
for each integer n, » >0, there exigt functions g,<X; and h,<X, such
that [jgllx, <1, Jhallx, <1 and [f] < u7%|g,['""|R,°. But then we have

DT g <o, M Tl < oo

&

and by 13.2 we find that n~"!~%, and » '*h, tend almost everywhere
to zero as % —> co. Consequently, since |f| < i Y=g, /"= |n~Yp, |* almost
everywhere for all n, it follows that f = 0 almost everywhere.

To show that X is complete, let f,,eX be sueh that 3 [if.]x < oo.
Then, as we saw above,  |f.| is finite almost everywhere. Let f be the

o
pointwise sum of the series 3 f,. Then |f] << Y|f,| and, as we saw above,
1

the right-hand side of this inequality iz a function in X. Congequently
feX. Furthermore,

N oo ou
= Dol = [ Y0l <[ Dt < Yisile,
1 NGl N+ NAL
which tends to zero as N — co. Consequently the partial sums of the
weries 3'f, converge to f in X.
Next let us consider the space g, (X) g, (X)*. First let ns show that
if the fumctions ¢,(x,t) and g,{z,t) are non-negative and concave in f,

80 is g1, )p,(z, t)°. In fact, we have
e (2, AR AR Tl C A A A
- [‘E.l_(&fl)_ 4 ('?J?)'Jl"s [‘Eﬂﬁﬁii‘ﬁ (ﬂ@]ﬁ <p1(:v : 11*_’52)“8% (J,. i ’2)5
< s s 7 )

2 2 2

Z &«
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On the other hand, since ¢, (#, 0) = ¢,(x,0) = 0, we hlave Ay (2, 1)
< qy(z, ) whenever 0 < 4 <1; furthermore, since @;(, 1) 18 a non-de-
creasing function of ¢, if ¢, <, we have

bty bty
gi(%, ta) 2= (‘fr‘-o_" 2 P
2 2ty

1
gilw, ) = role, ).

Congequently

qé “#{w, il)?‘;:(x;; ) < 2 '(“Br T
-

From these inequalities we find that if
Ifi < 21
almost everywhere, then

B\" 7
P <zz¢:i-*(w, Jyntww)%(m, mh:lr\) _ 21([)(£7Jq,lg_l_l,l_),

where plz, 1) = ¢i~" (2, t)¢i(®, 1), which shows that ¢, (X) *eu(X)" is
contained in ¢ (X} and the norm in the second space does not exceed twice
the norm in the firgt. The reverse inclusion and the fact that the norm
in the first space does not exceed that of the second, are obvious.

Next let us consider the lattices X*. Let X; and X, be two Banach
lattices on (0, co). Let fe(X7)~°(X3)*. Then given ¢ > 0 there exist g X}
and heXy, g0, b >0, ]lg]]x* <1, Hh”y <1, such that [f] < Ag-—hs
with 4 <[if||+& where [f] denotes the nmm of fin (X7)"°(X3°. Then
from inequality iii) in 13.4 it follows that f** < A(g'~*h*)** L A(g™ S (W)
and sinee |lg*[lx, = lgllx;, B*|x, = Ihilxy, it follows that f**eXi-*X;
and that the norm of F** a8 an element of this space does not exceed J,
and thiy in turn implies that fe(X7-°X3)* and that the corresponding
norm of f is dominated by 2.

The proof that (X17°X3)* = (X})'~°(X¥)* under the additional con-
ditions postulated is more complicated. We begin with some remarks.

If the measure space 4 is non-atomie, given a pogitive ¢ less than the
meagure of the total space .# and a subset E, of .4 of measure less than 1,
there exists a second subset B, such that H, © ¥, and | By =% Conse-
quently the definition of f** can be modified as follows:

1
[

Ty lgl) gz (@, [h])

FHH = s f \flda,
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where the supremum is taken over all sets of measure egual to 1, if 1 ig
less than the measure of 4, or I = .# in the remaining cases. Given
a measurable function f(z) on .#, we denote by f,(t} the distribution
function of [f(x}], 1. e. the funetion in (0, co) whose value for any given ,
0 <t K oo, is the measure of the set where |f(z)] =i

Of course, we allow --oo as a value for f«() and we complete the
definition by sefting f,(0) = oo, even if # hag finite total measure.
Furthermore, if f,(f) = +-co for ¢t < 3, we modify the value of f,(f),
if necessary, and set f, () = +oo.

The distribution function iz non-inereasing and comtinuouns on the
left. On the other hand, we denote by f*(#) the left-continnons non-in-
creasing rearrangement of |f(&)| in [0, co) for which f*(0) = +co and
f*{+4o0) = limf*(z). The fanction f*(t) is uniquely defined and is related

=00

to £,(1)
1) LFfwize U=t
an analogous relation between f*, f, and |f(z)| is given by the inequality

(2) FULLF@T = ()

which follows from the second inequality in (1).

An equivalent way of defining f*(2) iy this: f7(#) is the non-inereasing
left continunous funetion in (0, oc) which iy equimeasurable with f(z),
that is, such that the sets {z] |f()] > A} and {1 | f*(t} > 4} have the same
measure for A >0, and for which f*(0) = J-oo and f*(co) = tlimf*(t).

It is not diffienlt to see, and well known, that for all £ less than the
mneasure of .4 we have

as follows:

¢
bup ’ Iflz)ide = f‘f*(s)d,'s,

(J

and, if the measuve of # is finite,
N i
Jife)as = [f*(s)ds
a

whenever ¢ > L#|, Consequently we have

'
1 "
HOE ?ff"(s)ds

or in teris of our operator &y, f** = §,7%. Bvidently we have f**(t) = f*(1)
Consider now the operators &, and S,. If ¢(#) = 0 we have
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g i K i ~ ( ) o 3] (/({)
° s LY Y g
= | - p)dy = | dr oy b — ty
(3) 8.8y ' o .fy(ﬂ)(l'u ;,‘ dv J o ;J ( uJ -

f (v)do- {—f dv = 8, ¢+8.¢.
On the other hand, if ¢;(¥) and g,(¢) ave mon-negative funetions,

Dby Hélder’s inequality we have
o do P8 dn P
(£) ‘5:2(.‘71—5 y) = f 91(9 — [,f ¢ () — I [[‘ (/a(’”)‘;r‘)“”:l

= (San) " (8ata)’ -

Now we are ready to show that condition i) implies the desired re-
sults. Tet ¢ be a bound for the norms of the operators §; and §, in X,
and X,. Suppose that fe(X1 °X3)* and let ns denote by ||f] its norm in
this space. Then, if 1 > ||f], there exist two functions g;(#) > 0 and g,(#)
=0 in X, and X, respectively such that [gillx, <1, [igsllx, <1 and
Fe(8) < gy (8)%ga(1)". Let

1 1
k= _ﬂSﬂ!h: hg= —8aa; M(0) =00, Ii(+oe) =lmh ().
¢ [ o0
Then from the preceding inequality and (4) we obtain Nf** <
€ 28,01 7798) < MBagn) " (8ag) = 2RI,
On the other hand, we have f* = §,f* whence by (3) we find that

(8) Szf** = Sz‘glf* = 6’1f*+82f* >f*
which eombined with the preceding inequality gives
(6) I < o'k ~°Rs.

Defive now f,(e) = by {f,[[f(2)]]} and falw) = by {f, [f(z)[]}. Since
if(z}] and f*(f) are equimeasurable, f;(®) = 1;{f [|f(«}|]} is equimeas-
urable with A;{f.[f*(#)]}, whieh, since h; iz non-increasing, is a non-in-
creasing fenction of f. Consequently f}(t) = hf, [f* ()] except perhaps
at the points of discontinuity of f7(f). Now the first inequality in (1)
and the non-inereasing eharacter of hy(t) imply that A {f, [f* (01} < k(2
and this combined with the preceding result, implies that f(1) < Ty (1)
except perhaps at the points of discontinuity of f¥(z). Hence we obbain

1
= 8uff < 81l = — 8.8,4:.
c* !
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But the operators §; and 8, are bounded in X, and their norm does
not exceed c. Consequently fI*¢ X; and [|fi¥x, <1 which implies that
fieX7 and ifidlx? < 1. Now from (6) and (2) it follows that

FE U LFEN < e (LU L, LN
= e4f (2)' " folx)

Since fie X7 and ||fifxy €1, it follows fhat Fe(XH'*(XH* and that
its norm as an element of this space does not execeed ¢*A = &*(||fll+ &),
where ||f]| denotes the norm of f as an element of (X; *X3)*. Since ¢ is
arbitrary the desired conclusion follows.

Now we will show that the assumed properties of the operators H®
imply that i) is satisfied. We will limit ourselves to show that the integral
defining §; is absolutely convergent and that it represents a bounded
operator in X;, an almost identical argument being applicable to N,.

First let us consider any positive number «, and the integral

[ePEf)ds = [f(te°) ds

where f(1) is a non-negative function belonging to, say, X;. This integral
ean be interpreted in two different ways. Either as a possibly divergent
Tebesgue integral depending on a parameter t, or as the Riemann in-
tegral of the X,-valued function H'f(t) of 5. In the second sense the in-
tegral is meaningful becanse of the assumed continnity of the X -valued
function H*f(1) of s. In other words, the Riemann sums of the integral
are functions in X, which converge to a limit with respeet to the norm
of X,. But convergence with respect to the norm implies convergence
in measure on every set of finite measure and consequently the Riemann
sums of the integral converge in measure with respect to ¢ on every set
of finite measure, and the limit is finite almost everywhere. Assume now
that f(f) is integrable on every interval (b,e), 0 << b <<e. Let £ and 4
be two positive numbers and let f = f,+f, where f, is continuous and
; 1
[ lRwidt < ==
24

b exp(—a)
L}
Sinee f, is continuous, the Riemann sums of [ f(te")e"ds will con-
—

verge to their lmit uniformly in b <<t << e. On the other hand, if —a
=g, < § < ... <8 =0 denotes a subdivision of (—a,0) and s < oy
< 8;,1 We have

£ wl =1 e 1
o !L Folte ™) e 1 (8; - 8p) W = T (5p0-8) [ Ih{thidl < -ed

h 1 -

bux{l( -a)
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g0 that, if the subdivision is so fine that the Riemann sum of fu(tef) e’
differs by less than 62 from the corresponding integral for all ¢ in (b, ¢),
the set of values of ¢ in (b, ¢) for which the Riemann sum of f(le®)e® differs
from the corresponding integral by more than § has measure less than e.
Thus the Riemann sums of f(fe*)e’ converge in measure to the Lebesgue

integral
[

[ fiee’yeels
on every interval (b, ¢).

Now these Riemann sums alse converge in measure to the integral
in the wveetorial sense, whence it follows that the two definitions of the
integral coincide almost everywhere provided that f(f) is assumed to be
integrable on every interval (b, ¢). Now we shall remove the agsnmption
of infegrability of f(#). Suppose that f{#) iz non-integrable in some interval
(be™*2, b) and let f,(¢) be the function f() truncated at height ». Then

0 :
f@”’ﬂH’f”({)ds = }'fn Ve'ds = 1 J Fuls)ds

-« " Lox(--a)

] SPH it ds =

where the two first integrals ave taken in the vectorial sense and the
remaining ones in the sense of Lebesgne, and the first integral represents
4 function which is finite almost everywhere and the last tends to in-
finity with » for all ¢ in the interval (b, be®?), which is impossible. Hence
J(t) must be integrable on every closed. interval contained in 0 < ¢ < oo,

0

Consider now the integral [ ¢°H°f(t)ds. Since the norm of H*

does not exceed ¢! where a < 1/2, this integral, taken as & vectorial
integral, eonverges absolutely and represents a bhounded operator on f.
I f >0 we have in addition

fcquSf Vit = ! sszj () dt = [f e’y ds

—o —a

where the last integral is taken in the sense of Lebesgue. This shows that
the Lebe,sgue integral f Flte")e'ds is finibe for almost all ¢ and is majo-
rized by f "R IF( t)dt Henee the Lebesgue integrals

i J flese'ds = - j‘f(s)ds = 8 f

represent a bounded operator in X; as we wished to show.

- ©
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To obtain the same conclusion about S, we argue ag above with the
integrals

f ACI PR [ sieenras = [ e rpas.
$ o .
I3 [ [Q

33,6, We begin by showing that X (B) is complete with respect to
its norm. For this it is enough to show that if f, <X (B) is a sequence such

223

that 3 Ifullx@ < oo, then the partial sums of the series 3 f» converge
1

to a limit in X(B). In fact, let g,(x) =

definition of the norm of X(B) our assumption is that } |lg.ix < oo.
¥

oa

fal@)z; then on account of the

Since X is complete, the partial sums of the series ) g, eonverge to
1

a limit in X and thus they converge also to the same limit funetion in
measure on every set of finite measure. Since the limit function is finite
almost everywhere and g,(z) > 0, convergence in measure of the partial
sums implies convergence almost everywhere to a finite limit, that is

D a(®)
1

for almost all =, aud the series Z fn(@) converges in B for almost all .

‘|§B<oo

= Yilfalo)

Let now Riz) = an(.m then
N
iy — M), = \ by
1 \tI
N ‘ oo
b= Nl \| X Wt oy < Wf,,m,
1

and the last expression tends to zero as N — oo, that is he X (B) and the
partial sums of }Y, converge to h in X(B).

Before proceeding to the proof of i) and ii) we will establish some facts
about vector valued measurable functions. First of all let us observe
that it B, is continuously embedded in B,, then a B,-measurable
function is also Bj,-measurable. Thus if X, is continuvously embedded
in X,, then X,(B,) is contained in X,(B,) and the inclusion map is
continuous.

Assume now that (B,, B;) is an interpolation pair. Let f(z} be a func-
tion with values in B, ~ B, which ig both B, and B;-measurable; then f(z)
is algo (By ~ B,)-measurable. To show this let ¢,.(#) and &, (z) be two se-
quences of gimple functions with values in B, and Bj; respectively such
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that [y, (@) —f{@)ls, 0 and |k, (@) — J(@flg, -0 almost everywhere,
Tet B, cByc...cB,e... be sets such that & — (JH, bas
measure zero and thab [g.(®)-—f(5)ls,+ Ih.(#)—f(w}lp, = 0 uniformly
on each of the sets B,. For each m let n = n(m) be such that |jg,— fH],.U
+ e —flls, < 1/m on By, and split E,, into a union of finitely many
disjoint sets H,y in such a way that ¢, and h, be constant on each of
the sets B,,.. Now sclect a point o on each set ¥,; and define s,,(x)
= f(2) for 2eFy and s,(x) = 0 for x¢H,. Then for x <k, we have
gu () = gul2z), hp(2) = h,(2x;) and consequently

B8 (8) — F@Miym 1, = W (o) — F @)y, < U@} —F (@)l 11 () — S ()15,
< W Cen) — g (@dllzsg - 1 (@) — g ()L, F WP ) — o Gl

2
= (@), <

Consequently, as m — co, 8, converges uniformly to f with respect
to the norm of B; ~ B, on each of the sets B, H,, ..., ete. Thus f(x)
is (B, ~ B,}-measurable.

Next consider the space X (B). We will show that functions in X (R)
with eountably many values form a dense subspace of X (B). In faet,
let f(z)eX(B) and let g,(z) be a sequence of simple functions and ¥,
a sequence of disjoint sets with union 4# such that ||g,— fllz tends uni-
formly to zero on each of the sets . Further, let Dy be the set wheve
If(#)iz >1, and D,, k>1, the set where H(E—1) > |f(@)lp = 1/k.
Given e > 0, for each pair (m, k) let # = n(m, k) be so large that g (2}
—fl@)lz < ek*lnﬂlibg) In By ~ Dy and define h(z) = go(e), n = alm, k)
for #eB, ~ Dy, and hiz) =0 if |[f(s)lz = 0. Then clearly h(w) has
countably many values and |[h(z)—f(2)|sz < s||f('m)|\3||fﬂ§}13j, whenee it
follows that k<X (B) and that flh—fliixm < e

We are now ready to prove i). Let F(z, £) be a function in
F[Xo(By), X1(B,)] of the form

Fla, &) = & 3 f,(0)6™,

where § >0, the A, are real and f,<X,(B,) ~ X,(B,). Wo know now that
fn is measurable as a funetion with values in B, ~ B, and congequently
it is also measurable as a funetion with values in B, By 9.4, ii), for any
given z we have

1 1 (=, 8)in

- 1 = ) 1—sr] T
*[1‘:8 / HF(wmleu(syt)dt] [— | ”F(-’Uy1+"'-t)H.nlﬂx(-"7t)dt]

&
Z & .
o3 —00
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Setting )
1T e
glxy = 1. JN W (@, it)li, g (8, 1)t
we find that
g e ] fr

(2) tgly, = oy ,.f P E TS v)mhxn

o1 n i sl b

<77 ] HIE o, A Hl ol D)L

We postpone the detailed justification of this last inequality and
proceed with the proof. Denoting by |||F||| the norm of F as an element
of ZIX,(By), X,(B;)] we have

WBE (2, i)y, = IF (2, )llymy < 1)

Thus from {2) we obtain
400
lglsy < WFM = [ wals, nat = 2],
b = i 1—¢ p [IRS 1
Similarly we find that |[klx, < {{|F]l], where
1 +o0a
Wa) = = [ PG, 1+ i), (s, .

Thus (1) ean be expressed as
1# (@, s)ils < g()' b (2)
where geXy, hedy, |gllx, < [IIF]]] and {hlly, <[/|F]}] and this implies
that |[[F'(«, s)lzeX. Consequenfly F(z,s)eX(B) and [F(z,s)lxm =
= (Il¥ (x, s)is)llx < |[|F|||. Let now f be an element of [X,(B,), X,(B,)]s
and F{z,z) a function in F[X(B,), &,(B;}] such that F(=z, s} = flx)
and [||Fi|} < |Ifii- s, where ||f]] denotes the norm of f as an element of
[Xo(By), X,(B1)ls. Liet F, be a sequence of functions in #F[X,(B,),
X1(B,)] ruch that ||| F,—F||| - 0. Then we have

F.u(w, ) —f()ll = |[Fy(2, s)—F (e, )il < [[Fa—FH -0

where the first two expressions denote norms in [X(B,}, X,(B,)]. Con-
sequently #,{x, s) converges to f(z) in [Xy(By), X (B k. On the other
hand, we have

W8 Gy 8)— By (2, 3)‘[4\'(1)') < NF—Fylll = 0,

17y $llixe < [HFR] - HFE < 1A+ e
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(onsequently 7,(z,s) also converges to a limit in X(B) of norm
not exceeding |f]4-& Now, X(B) and [XD(BU),XI(I.?l)] are both_conw
tinuously embedded in (X,-+X,)(By+ B,), whence it follows that the
limits of Fn(m,s) coincide. Consequently feX(B) and || flxm) < If1-+e;
now & is arbitrary and therefore we have [fllxs < 1A .

To prove the second half of property 1) let us conmdftr the class ;?’,,
of simple functions in X(B) defined as follows: feS, if and only if
there exist g(@)eXo, h{@)eXy, g, <1, IRz, <1 such that ||f(@)lr =
(1+ &) ilflxm 4(2) k() and the non-zero values of g and & have
positive upper and lower bounds.

Given f(o)eS, we can write

.

i) = E?f/(”’)”i
1

where the y; are characteristic functions of disjoint measurable sets an_(}
u;eB. Let now (&) be functions in &#(B,, B,) such that @ (8) = oty fhuyllz
and [/[gy]l| < 1-+¢, where ||ig]j] denctes the norm of g; a8 an element
of #(B,, B,), and seb

Plo, &) = 1+ ) flxmg @)D @F Xy @),
1

it if(@)jlp # 0 and F(z, &) =0 otherwise, Then for each &, F(w, §) i
a funetion in #(B,, B,), which is continuous, uniformly with respect
to @, If y(x) is the characteristic funetion of the support of |[f(2)|iz, then
[iF{zy &)lByen, < cx(@). But [[f{@)]p is simple and therefore we have y{()
<o|f(x)lp which implies that z(x)eX < X,+X,. COConsequently
1P (2, &)y 5, e Xo+ Xy or Pz, £)e(Xy+X,)(By+By) for each & Now
for each £ in 0 < ¢ <1 we have

|
|
|

e b4
Born, () ()

d i
ks [F (e, &4+9)—Flex, 5)]—;{*1’1(”: &)
3 ¢ :

with ¢(%) tending to zero with », which implies that the inerement quo-
tient has a limit in (X, X,) (B, B,) when 5 tends to zero. In other words,
F(x, £) i a function of § with values in (X, +X,)(B,+.B,) which is analytic
in 0 < ¢ < 1. Furthermore, since )

(e, &) =P (@, Ealllnge iy < 0l ) xlm),

where ¢(&y, &) tends to zero with |£,— &) — 0 wniformly for &, and &,
in the interval 0 < o < 1, we infer that ¥ (x, £), as a function with values
in (X¢-+X By B,), I8 continnous in 0 <o < 1.

° ©
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Now let us consider the values of F(z, &) on & = ii. Evidently, for
cach o we have F(z, )¢ B, and

HIJ('P) ﬁ);‘:l-’n S F(t)z(‘l.)w
WELe, i(t4-7) 1= F (a, #8)p, < et 7) 2 (),

where ¢(t) and o(f,7) tend to zero as !t] - oo and 7 — 0 respectively.
But since both g(x) and k(z) are bounded below on their supports which
contain that of |f(#)lp, it follows that y(w) < cglx) and therefore
#(#)eX,. Thug the preceding inequalities imply that, for each t, Bz, i) e
Xo{By), and that as function of ¢ with values in X,(B,), B, i) is con-
tinnous and tends to zero as |f] — co.

Similarly we conclude that F(z, 1-if) is o continuons X, (B,)-valued
function of ¢ which tends to zero at infinity.

Now we apply 9.1, 1), and conclude that F(z, £), as a function of &,
belongs to £TX,(B,), X.(B4)]. Now we estimate the norm of # as an
element of thig space. Since |||g;]|| < 1+, we have llrs (#8}lp, <142 and

[ (@, )|, < (L4 el flxmg ),
whence it follows that

17 (2, ) lxymy < (14 &) flxem;
similarly we obtain

HF (2, 380 xymy < (14 2)8flxm

which implies that the norm of ¥ as an element of #[X, (Bo), X, (By)]
does not exceed (1L} e)¥fllxm- But F(z,s) = f(x) which shows that
FelXo(By), X (By)], and [If)l < (1 + &)¥(fllzm), where ||f]| denotes the norm
of f ag an element of [X (B}, X,(By)ls.

Now we will show that 8, is dense in X (B). Given fe X (B) and § > 0,
let kX (B) have countably many values and be such that ||f— &|| |z < 6/2.
Since |[k(2))ze X, there exist two functions g and kb, geX,, he X, Hgllx,
<1, |z, <1 such that [k(@)ls < (1+/2) k(@) xmg @) *h@). Let
Uy sy +evy Umy ... De the non-zero values of k(z) and let y,(z) = 1 if
k@) =u;, j <my and Ifm <g(n) <m, Ijm <h®) <m and y,(z) =0
otherwise. Evidently we have [ (0)k(z) — k(2)|z < [[B(®)||z and |z () k()
~k(a)|l— 0 as m > oo for every @. Consequently |[{]| xm ()% (2) % (5)|5)lx
= |tmEk—kllx@m >0 as m-—>oc and I kllzmy = klx@ a8 m— oo
turthermore | (@)% (2)llz < (14 &/2)klix [m (@) g (#)]'~° [m (@) R (@)} and
taking m 5o large that (14 5/2)Hk”XfB) < (1+ S)mekHX(B) and |lym k— Fllxs
< 8/2 we will have

llom () (el = (0 )l Bl Cion 9 ()1 D B () T
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If we had equality sign here, since [ymgllx, < llgllx, and []x,,,lthl

< |[bjlx, and the positive values of yng and x,h are between 1/m and m
it \vould follows that y,.%keS,. Actually, the equality sign in the relation
above can be obtained by replacing &, if necessary, by a smaller function.
This new function, as readily seen, also has its positive values bounded
away from zero. Thus we can conclude that y,keS,. Since Nl To— Fll 2
< N lo— Kl gz + o — fllxemy < 8, we have proved that §, iz dense in
X(B).

( }_«et now f be any function in X(B). Given ¢ >0, we construct in-
ductively = sequence f, of functions in §, as follows: we select first f,
in such & way that [f—fi < Hflxm a0 [fillg < 340 flegy. Hav-
ing ehosen fy, fay--.s fw i SUCh & way that

; s 1 1
= Sy < 5 Wl Wl < g (1) [flL
< 2
we select f,,, in such a way that the above inequalities be valid with m
replaced by m-+1. Due to the density of 8 in X (B) this is always possible,

o
Consider now the seriex ) 'f,; its partial sums obviously converge to f in
1

X(B). On the other hand, since f, 8, we have f,e[X,(By), X,(B));
and

Ifli < (1+8) lifm“X(B) 2m (1+¢) ”fHX(B):

where |f.| denotes the norm of f, in [X,(B,), X, (B;)ls.
o)y X, (B

not exceeding (14 &)*|[flx@m- Bubt the two sums of the series coincide.
Consequently we infer that fe[X,(B,), X,(By)], and [|f| < (l—l—B)"Hfilxm),
where ||f denotes the norm of f as an element of [X {B,), X,(B,)]-
Since s iy arbitrary, it follows that |If] < |[|flxm). Thus i) is established,
except for the justification of (2).

Referring to 2) let us observe that ||F(w, 4t)||5, 15 & continuous func-
tion of ¢ for all #; consequently for any given & > 0, and all @ we have

Congequently

the series > f, also converges in [X (B 0] and its sum has norm
1

(3) JIB (@, i)ls, pals, 1) dt = Lim R (w),

—_a 00

where B, (») is a Riemann sum of the integral corresponding to the sub-
divisien of {—a, @) into intervals of length afn. On the other hand, we
have

W (@, 2+ &Ml — 17 (0, i) i, << (NI (@, 44 i) — B (o, it)l,)l1x,

= | F(w, it ih)—F (z, )] x o i2g) 5

icm°®
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and sinee F(z, if) as a function of ¢ with values in X, (B,) is eontinuous,
the last expression above tends to zero with h for each t But then the
first expression also does, which shows that |F(z, mt)][Bo, as a function
of t with values in X, also is continuous. Thus the R, (z), which ag elements
of X, are also Riemann sums of the integral in (3) interpreted as a vee-
torial Riemann integral, converge, in XX, ag n — oo. But if I{x) is the limjt
of R, in Xy, then R, (%) also converges to I(z) in measure, and since R, (z)
tends to the integral in (3) for all #, it follows that this integral eoin-
cides with I(%) and

I _f e, sl )]y, = o | Ralix,.

Let now g, be the Riemann sum of the integral

B

I WE @, it)iz)ix, mals, Bt

—a
constructed with the same points of the interval (—a,a) as R,; then
evidently |[B,]lx, < o, Since g, tends to the preceding integral ag n— oo,
it follows that

+a

W | J 1@ s, 0 = iR, < Timo,
+a

= [ WP (@, it)lz)lx, mols, Bt <

-0

+oo
[ I (2, i6)ls,) Ly o (st}

Finally, since [|F(», it)iz, < Yifn(@)l|5, Where the f, are the functions
that enter in the definition of F, we have

]
1 3 1fu@dlngtrols, D],

= | 215l . f.uo(s i)t

H [ 1F (s, i) lny o5, )], <
a<b,

and the lagt expression tends to zere as o — oo 0r b+ —oo. Conse-
quently

o
[P (o, i), pols, Ot

converges in X, ag well as pointwise everywhere as ¢ tends to infinity.
Letting a tend to infinity in (4) we obtain (2).

We pass now to the proof of ii). We will show first that [X,(B,),
X,(B,)T « X(B), the inclusion being norm-decreasing, provided that
X(B) is closed in X (B,)+X,(B)).

Studia Mathematica XXIV, 2 12
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Tiet f(x) e[ Xy (By), Xo(B,)I be given and let F(z, &) be a function
- d g
in F[X(By), X:(By)] such that EF(m, &) = f(z) and the norm ||| F||
of F as an element of this space is less than, say, |[fll+e, where [|f[] is the
norm of f as an element of [Xy(B,), X;(B,)T. Then

Fulm, &) = ;,% [P(s, £+ hi)—F(o, 616, L>0,

belongs to F[X,(B,), X:{B,)]; now in the proof of i} we showed that
[X,(By), X1 (By)); is contained in X (B) and that the norm of the former
majorizes that of the latter, without using the hypothesis on X made
in i). Consequently we can assert that ¥, (z, s) e X (B) and that |F, (w, s)[];(]f)
does not exceed the norm of Fy in F[X,(B,), X;(By)], which 1? readily
seen to be majorized by ¢{||P|||. Thus we have ||Fy(@, 8)llxm < "|[1F]]| <
< & (Ifil+¢). But as b — 0, Fy(w, 5) converges to f(«) in Xo(Bo) +X:1(By)
and belongs eventually to the sphere of X (B} with radius [Ifil4+-2s and
center at zero. Since this sphere iz elosed in X,(B,)+X,(B,), it follows
that feX(B) and ||fllxm < [Ifil+ 2e which, since e is arbitrary implies that
= < A

Let f be a funetion in X (B) with countably many values and let ge X,
heX, besuch that glx, <1, hlix, <1, If (@)l = Iflxe L+ e)g (@) k(@)
Denote by y, %y, ..., #n, .... the non-zero values of f and by y(w)
the characteristic function of the set where f(w) = w;. Let ¢,(&) be fune-
tions in F(B,, B,) such that g;(s) = w|u,|z' and with norm in & (B,, B,)
not exceeding 14 e. Define now

(8) Pz, &) = flx (L+e) (@)~ h)f D 1i(o)p(8)

if h(w)g(x) # 0 and F(z, £) = 0 otherwise. Let I' be a path in the strip
0 <o <1 joining the points & and 1/2 and set

B, 8) = [ Flo,n)dn, (o, &) = [ Fylo, n)in,
r I

- where the integrals here are understood as integrals of (B, B,)-valued
functions depending on the parameter @ Now, for each & F(w, &) is
a (By+By)-valued measurable function of z, and congequently so arve
the Riemann sums for the first integral above, assuming that the same
points of I" are nged to construct a given Riemann sum for all o; thus
(>, £) which is the pointwise limit of such pumg, is also (By-+-1B,)-mea-
surable. Similarly we conclude that F,(z, £) is {B,y--B,)-measurable.
Since p;(¢)layn, <1+, we have

(8) I (, Ellnysm; < (L4 o) | filximlg (@) R ()]
< A+ 9)filfllzm [9() -+ B @)1

icm
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and from this we obtain

¥y (2, £&)— T, (m, f1)”B,J+Bl < (1+ Pz [g(2) +h{w) 1|8, — &,

1Fs (2, Ea)—Fy(w, &) — (&,— &) Fy (2, E)llBgs 5,
(M) &y
| - | [ tPute, =Tt 01an,
&

( < (Ut ) fllxn [9 (@) + B (@)1 £3— £,J2.

Since (g-+h)eX,+ X,, these inequalities show that F, Py and T,
have for each & values in (X,+X,)(B,+B,); that F, as a function of £
with values in thig space iz continuous in ¢ <o <1 and that ¥, is the
derivative of 7,.

Now the preceding argument can be repeated with £ replaced by
i and B,+B, replaced by B,, and the inequality

181 (2, ) —Fs (@, ity)|lm, < (L4 2)4|f|xem g (@) /s — 1]

would follow, showing that F,(a,dt), as a funeion of i, has values in
X,(By) and thab

IF1 (, it)—F (2, it)llxymy < (L4 £ Lz ta— hl.-
Similarly we would obtain
Py (@) 14 it) — ' (, 1ty [xyqmy) < (L+ )2)|f lxemy fa— Bl

_ From these two inequalities and (6) we conclude that Iy belongs to
F[X(By), X, (B,)] and that its morm in this space does not exceed

1+ &)%iflix@. But %Fl(s) = f(«); in fact, the increment quotient of

F, converges to its derivative in X, (Bo)+X,(B;), and therefore also in
(Xo+X}(Bo+B,), and it converges pointwise to F(z,s) in By+By;

sinee the limits coincide, it follows that the vectorial cerivative ;E‘Fl

ab s equaly F(z,s), and, as readily seen, F(z, s) = f{z). Thus we. have
proved that f belongs to [X,(B,), X,(B,)T and its norm in this space
does not exceed (1-- £)¥|fllxm. Since & is arbitrary, denoting with IIf1l
the norm of fin [X,(B,), X;(B,)T, we have ||fi| < I llxem-

Finally let f be any given element of X (B) and f» @ sequence of fune-
tions in X (B) with countably many vaiues such that Ifo— Tz — 0
Denoting as above by [[k|| the norm of an element % of [Xo(B}, X, (BT,
we have (fu—fu)e[Xo(By), Xi(BY)] and [lfu—ful < Ifa—Fullxem — 0,
whieh shows that f, converges in [Xo(By), Xi(By)T to an element k.
Since [full < lfulixes), we have bl = lim|f,| <M ||fullx = [filxa. Now,
both X(B) and [X.(B,), X, (BT arve continuously embedded in
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X, LX.)(B,+B,); therefore the two limits of the sequence f, coineide,
Sﬁhant_]‘is,lj)‘(zoz._ (;i;:equently fe[Xo(By), X, (BT and (1fll < Ifllxe)- This
concludes the proof of ii).

344, and 342. We begin by showing that under the assumptions
of 14.1, iif), the funetion rain (¥, ) belongs to X. For this purpose let
gty =0 be & non-vanishing element of X and let

. : ds % o ds
wp) =t 6[9(8)-@:“ f 9(8) e

Then, according to ii) andﬂ iii), k(f) belongs to X. Futhermore, k(i)
is continuous, positive, and
ds . h(t - ds
5> 0, ]% t(;c)>fg(9)sk—+1>0
— ¥

gt

R _
lim—(,.—) = f g(s)
==t i
cousequently, for sufficiently large ¢, we will have ch{f) = min(¢¥, )

and this implies the desired conclusion.
Next let us prove that ii) implies that

~ s
ofg(S)W

is » bounded linear Funetional of g for 0 < j < r. Let x(t) be the charac-
terigtic funckion of the interval (1, 2). Then, if g = 0, we have

1 13
ds . ds
) [ ato) s < J st

Bub according to iii) the integral on the right represents an element
of X of norm. not exceeding ofgllx. Consequently, we have

1
ds
I [ 96) -7 < olilie

and gince ||zllx > 0, the desired conclusion follows for g =z 0. The general
case i reduced to this by replacing ¢ by lg|.

Let us now turn to the operator & in 14.2. Let us assume that X
satisfies the condition postulated in 14.1, iii), and show that if w(y) ix
any infinitely differentiable funetion with compact support in R°, then

the integral
°° -1 1
o= [ e [or (G vmara

icm°®
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is absolutely convergent whenever F(i}eX(B) and 0 <j <7, and re-
presents an element w of B sueh that r,w is a confinuous bounded
B-valued funetion. In fact

[T R ey e P G TR
1 1

< oft”l”

On the other hand,

Ieyro—wlls = | f t“—“ﬂ'cu{ [rr (%) Co s —19) — i)}

1 . s
F (7) HBdt = cof WP () 771 < ol Flxeay-

B

F(-lt—) latf it i)y 2]
ol

But since v is infinitely differentiable, we have

[ lw(z—1y)—p(#)|de < omin(tlyl, 1)

so that if we assume that ly| <1 we have
1w 3

eyw—w|p < ely) f f”_li’(%) ”Bdt‘l“ﬂ f Y
! i

M

lnif |W(z—3y’)wrp(z)ldz}dt.

=2}
]
1
o5
]
1

b (17) e

1 i

d. d

= clyl [ 1P@srrte [ 1P 6)n 5z
ler| ]

now ag ly| — 0, the second term in the last expression tends to zero,
and so does the first. For if & is a positive number and |y] << § we have

1 [ 1
it . d
o [ 1PGssms = 101 [ 1POlass 1ol [ 1P 6)iasges
]

171 i

3 d 1 d
< [ @t L [ 1F 6

e 3

and the second term in the lash expression tends to zero with |y| and the
first is arbitrarily small if 4 is sufficiently small.
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This shows that if we differentiate § times, j < 7, under the integral
sign t, applied to the second integral in the definition of & we obtain
an absolutely convergent integral representing an element w of B such
that z,w is a B-valued continuouns function of 4. The same thing is evi-
dently true for the first term in the definition of &, Thus every element w
in the range of & has the property that v,w as a B-valued function of y
has 7 continuous strong derivatives. Furfhermore, if a = (a, asy ..., o)
is a multi-index and we write

=atoctetan (gl =) () -G
lal = o+ apte .+ o,y By = F E ---0%1

where ¥y, ¥gy --+; Yo are the coordinates of E", we have

W (5 e ], < oo, o<m<r

9.

Let now w denote a derivative of order r of 7,[¥(F,u)] at ¥y = 0,
let u(y) be a measure in E* with compact support and with moments
of all orderg less than % — » equal to zero and consider the funection

) Gl) = [ (ryw)dnly).
We will show that ¢ belongs to X(B) and that
(3) 1Pz < olullz+ el Filxz-

By differentiating 7,4 r times under the integral sign, from 14.2,
i), we obtain

w = f (v4) L () dot- f s"-1+'{ f 77 (%) wi(sz)dz}ds

where ¢} and y} are infinitely differentiable functions with compact
support. Substituting in (2) and inverting the order of integration we obtain

() TR = f’fa% [ f v (e—ty) dp ('y)] da-\-

+f.9""1+'!f1,,14’ (%)[f«pi(sz—tsy)dy(y)] dz}ds.

Expanding v} by Taylor’s formula at the point & we obtain
'P}(@’*iy) =P;(z, W) +E;(#, ty)

Wherfs ‘Pj is a polynomial of degree k—r—1 in the coordinates of &y whose
cocfficients are bounded functions of #, and the remainder B, is dominated
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by elty*". Since all moments of u(y) of orders less than k—r are
rero, we find that

| [ whe—tm)ani)| = | [ Rudp(y)] < o~
Since, on the other hand, we also have
| [ We-tnant)| <o,
it follows that
| [ oo ) duw) | < omin(@, 2.
Consider now the expression
1] vitse~staue|ae = s [| [ vite—sw)duy) | .

If the supports of ¢ and p are contained in a sphere of rading g, we

have .
pu{z—sty) =0

for || > 20, [y] < o and st < 1. Consequently for st <1 we have
J|f ha—swduw)|as = [ | [ vite—sy)au)|d
. [8<2e

< f |f—R1(Z: tsy)dlu(y)ldz_g e{st)".

Iz <2
On the other hand, e
[ [ #e—smanm)|de < [| [ wile—stp)lde]2lu) <e,
whence
T | whtee— st auy) @ < os~"min [(st)*", 11.

Substituting in (4) we obtain

o0

60l < olullpmin(, )+t [ 5

FE
lF(s)”Bmm[(st)" ,1]ds

o i
ds a
= clpllsmin®, )+ [ 1FE g+ of [ F6) -
t 0

Since min (¢, 1) belongs to X, inequality (3) follows on account
of iii).

Suppose now that in the preceding situation we have r = 0 and
2(y) = ¢(y)dt. Then

1
60 = [ tramptiy = [ cyio Loy = 7w
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and (1) and (3) show that w = & (F, u) belongs to Az, y) and
Jwly < eluliz+ el Fllxm)-

Thus & maps X (B)+B continuously inte A(B, X).
Let us turn to the functions v, and y, in the definition of &. As we
will show below, for & to be the right inverse of # it is enough that

(5) [ ) p@Elogl—yldedy = —1,
1

©) valy) = [0 [ plty —2)pa(e) de] .
1]

First let us show that condition (3) can actually be fulfilled. Consider
the function

[logly—zlp(a)de = 2" [logly—o|p(z)de—1"logh [p(s)dz, 1> 0.

Since the integral of ¢ vanishes, the last term can be dropped. This
shows that if

7 [logly—slp(Ae)de

vanishes identically in y for A =1, then it vanishes identically for all 4,
Asguming this to be the case and denoting by g and ¢(y) the distribution
Fourier transforms of logly| and ¢(y) respectively, the transforms of
() and (7) will be given by i ™@(A7'y) and ui "p(A~'y), and wo wil
have pi™™p(i~'y) = 0 for all A Since @(0) = @, this implies that the
support of u is the origin and that g is the Fourier trangform of a poly-
nomial, which if is not. Consequently

[logly—z2lp(2)de

is no¥ identically zero. But since p(z) is spherically symmetrie, the above
integral represents a spherically symmetric fanction of ¥ and thus fhere
exists & spherieally symmetric function v, (y) such that

Jw) [Togly—zlpte)de = —1
which is (5).
Let us turn now to y,(y). Let
@) = [ ply—2)p(2)ie.

Then, since ¢ and y, are spherically symmetric, so i3 &, and, since ¢
hag zero integral,

Jeay = [y [oly—m)tyde = 0.
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It we calculate the integral of G in spherical coordinates we find that
fao [ G@mye—tar =0
z i}

where |¥| = 1. But the inner integral is independent of ». Therefore

[ ¢yt = o,

[

But & has compact support, thus G(f») = 0 for £ > a and
[ w)rta = 0.
L]

Now by definition we have

1 1
(8) paly) = [0 [ [oly—2n(a)de|dt = [ 'Ga
Q ]

which shows that y,(y) is infinitely differentiable. Furthermore, if y = g,
where [y| = g, then

1 e
waly) = [0 Gt dt = o " [ 'G (I} dtl.
0

0

Thus v,(y) = 0 for |y = a.
Now y,(y) is spherically symmetric, consequently

1 1
Juwidy = [ a[t=ewmay = [+ [ ¢uiy|a

7| <o 0 i<
t i %
=[5 [ eww=[Z [ewa
0 Wi<ta 0 W|<é
(e ~ vl
=~ f1og2a] [ eway]=— [ a@,)log(ﬂay
0 k<] W<e

and since the integral of & is zero, we finally obtain
Jwaln)dy = — [ @(y)logly|dy.
But the expression on the right is precisely the integral in (5), Thus

[waly)ay =1.
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Now let us caloulate ¥Fu. We have
(9) sy =Tlm{ [ (ryu)py)dy+ f 1 [, [0 f () (o) s (1) et
ad 1
Now the second term on the right can be also written as

f(r,,u){fﬁ""l[fqa(t@/——tz)rpl(tz)dz]dt}cly
~ [ | [ [ plig—elwa(ore] )y

i
= [ [ 176 (ty) | dy

Substituting in (9) and using the expression for y, given in (8), we

find that
A

sou =t [ e 6],
bat .

i 1
Jeoaar = 1 {6 wy)dy = Mpy(ly)
[} 0

and consequently

FIu = lim " [ (o, uy, (hy) dy.
Jmr00

Sinee the integral of ¢, is equal to one and (z,u) is a continuous fune-
tion of ¥ in the appropriate topology, it follows that the limit above
must be equal to vyu = 4. Thus, we have shown that FFu = w.

Now let ng show that, up to equivalence of norms, the space A(B, X)
13 independent of the choice of the function p used in its definition. For
suppose we have two functions p and denote by A,(B, X), 4,(B,X)
the corresponding spaces, #; and £, the corresponding operators S
and &, and 5, their left inverzes. Az we saw, the operator & of 14.2
maps X(B)YPB into 4(B, X), regardless of the choice of ¥, and y,. Con-
sequently we may agsert that &, maps X (B)@BE into 44(B, X), and
since it also maps X(B)@B onto 4,(B,X), it follows that A,(B, X)
< 4,(B, X). Similarly we conclude that A,(B, X) = 4,(B, X). Con-
sequently A;(B, X) = A,(B, X). To show that the norms of these gpaces
are equivalent we uge the fact that they are both continnously embedded.
in B; thus we may eonsider them as an interpolation pair and form the
space A;+A,, which coincides with 4, and. 4, but hag a smaller norm.

icm
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Since the inclusion mapping A; - A+, is continuous and onto, the
open mapping theorem imples that the norms of A, and 4,-+-4, are
equivalenf. The same argnment shows the equivalence of the norms of
A, and A;+4,, whence the desired ¢onclusion follows.

‘We pass now fo the proof of 14.1, iii).‘ Given zeR" we define

wt) = 2" -1stg—ge, m >,
=\

where & iy Dirac’s 8-function with support at the origin. Evidently all
moments of w, of orders less than m are zero. Returning to 1) apd 2),
given #ed(B, X) we set F = Tu. Then #(F,u) = ¥ (Tu,w) = 4 and
1) becomes

)
am

On the other hand, setting p = u,, (2) becomes

< cllullsteliTullxem = clully, 0o <7

.

Gy =1 f (Tayt0) A (y) = z'Z(’;’) (LY rpt0 = ' dgw

F=0
and (3) gives
W Al < oflufla-

Asg readily verified from the derivation of (3), the eonstant ¢ here
can be taken to be independent of 2z, provided that |2| = 1. This shows
that the elements % of A(B, X) have the properties described in 14.1,
iii). Thus half of iii) is established.

To prove the second half, let  be an element of B with the properties
postulated. We assume first that r is even and choose any funetion #(z)
infinitely differentiable, spherieally symmetric, supported in |z| <1 and
with moments of orders less than m equal to zero. Setting

n aﬂ
4 == _ETTI]
L]
we define
gty = tr:“llli 4 (A0) 5.
P
Then geX and, for any z¢R" we have

16" A (A0l << |21 g (2]2]) -
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From this we obtain

ao | [ravamnaa

B

[t iena
st

< [ gD @id <

1 1 3
ds ds
= cfs"“l"g(ts) ds <e fg(ts) T < ct"fg(s) ol
0 ] 0

On the other hand, since the integral of 5 iy zero, we have

¥ f Au( AP0 () Az = £ f r,(Affiu)g(?) (—17 3,1,;77 (%) dz.

Now it is readily seen that
n

a‘z 2
i) = ( 32
¢

F=1

whence integrating by parts in the last integral we obtain

{(11) t’f A { A Pu) g (2)de = t‘”f (75u) G—z)dz

1 m 1 [ AG
) 1V AE —
w0 =3 (7 re(F) e (ZM) 7).

Sinee 7{z) has compact support, {(z) does not vanish identically
unless #(2) does, which of course we agsume not to be the case. But then
neither ¢(z) vanishes identically, for, since {(z) has compact support,
ﬂlel:e exigts 2 such that {(z/m) #0 and Z(sff) =0 for 1 <j < m. In
addition, ¢ is clearly spherically symmetric and ity moments of order
less than m-}-r are zero. In fact, sinee the moments of 5(2) of order less
than m are zero, the moments of ¢(#) of order less than m---# are zero
and conseguently the same is true for p(z).

Combining (10) with (11) we find that TueX (B) and that | Tu]xp
< ¢liglix- This concludes the proot of iii) when y is even. @

‘When y is 0dd we replace the left-hand side of (11) by

" a - 6
t’ZIA“(a—%WA( lj[zu)ég;n(z)élz

=1

where

and use the same argnment.
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14.3. We begin proving that v, restricted to B is a strongly continuous
group of isometries.

That 7, is an isometry when restricted to B is an immediate conse-
quence of 4. To show that =, is strongly continuous given ueB we let
F(E)eF (By, B)) be such that F(s) = u. Then m,u—u = 7, F(s)—F(s);
but 7,F()—F (&) is a funetion in &(B,, B,) and the function

T, (it) — F'{if)

is a B,valued funetion which is uniformly continuous in ¢ and tends
to zero ag t— oo, uniformly in y. Since for each f this function tends
to zero with y we conclude that

sup Iy (i) —F (), > 0

ag y — 0. Similarly we obtain

sup [le, F (1~ it) —F (14 it)llz —~ O
i

whenee it follows that 7, F —F tends to zero in & (B, By) as y — 0. Now
this implies that |z,4— /s —~ 0 a8 we wished to show.

Next lot us show that X satisfies conditions i) and ii) of 14.1. Let
g(t)eX; then lg(f)| < AR(t)k(3)° where [iflx, <1, [klx, <1 and 1
< 2|jgllx. Then

i 3 i it
e [ do e, o OO . do T—* do °
t]“afm(o')lFS Azkofh(a)l k() ga[z"uj h(a)?ﬁ] [thk(a)UTH];

bub the expressions in square brackets repregent functions in X, and X,
of norms not exceeding a fixed constant and this implies that the first
of the preceding integrals represents a funetion in X with norm not
exceeding ¢|lgllx. The other integral in 141 can be treated in a similar
way. Bvidently X, X, also satisfies conditions i) and ii).

Let ug now write B = B,+ By, X = Xy+X, and consider the ope-
rators # and & introduced in 14.2 mapping A{B, X) inte X(B)®B
and conversely, and let us assume that & has been chosen in such a way
that & is a left inverse of #. Tvidently X;(B)®B; (i = 0,1) and X(B)
@B are continuously embedded in X(B)@®B, and A(B;, Xy) (i = 0,1)
and A(B, X) are continuously embedded in A(B, X). Assume now that
X(B) == [X(By), X.(B}))e. Then since .# maps A(B;, X;) continuously
into X;(B)®B; by 4, it also maps [A(Bg, Xo);A(Byy X,)]s into

[X,(B)®B,, X, (B)®B]s = [Xo(B)@X(B)LB[B,, Bals = X(B)DB,

as the reader will have no diffienlty in verifying.
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On the other hand, &% maps X(B)DB onto A(B, X) and conse-
quently &.#, which ig the identity, maps [A(By, Xo), A(By, X )], conti-
nuously into A(B,X). Thus [A(B,, X,), 4By, X})] 18 continuously
embedded in A(B, X). .

Now, & maps X;(B;)®B; continuously into A(B;, Xy) (4 =0,1)
and therefore it maps [Xo(By)BBy, Xy (B)EB ] = X(B)PB into
[A(By), Xy, A(By, X,)];. But the image of X (B)®B under & iy A(B, X).
Congequently

A(B, X) = [A(Byy Xy), A(By; X1)]s.

We already proved the reverse inclusion and its continuity, and thus
the open mapping theorem yields the desired conclusion.

In the case where X(B) = [X(B,), X;(B,)] the result sought is
obtained by wsing 7 instead of 4 in the preceding argument,
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A ring of analytie functions

by
R.M. BROOKS (Baton Rouge, La)*

This paper is devoted to an investigation of a topological ring of
analytic functions. Specifically, this ring, denoted by R, is the set of fune-
tions analytic on the unit dise with the usnal addition and scalar muli-
plication, the Hadamard produet for its ring multiplication, and the com-
pact-open topology. The ring R iv identified algebraically with a subring
R of the ring of eontinuous functions on the non-negative integers X.
The operations in R are the usual pointwise operations , and the gtructure
of R is determined by considering its isomorph &,

In SBection 2 we are concerned with the problems of identifiying
the maximal ideal space of E and deseribing the maximal ideals intrinsi-
cally. We first show, using theorems on general rings of continnous func-
tions, that the maximal ideals are in one-to-one correspondence with
the points of the Stone-Cech compactification pX of X. We next give
an intringic description of the maximal ideals, nsing the properties of
the power series expansions of analytic functions. Using thiz description
we strengthen the previous theorem appreciably and show that the max-
imal ideal space with the hull-kernel topology is homeomorphic to AX.
Finally, the Hadamard produet is used to give a gimple ¢haracterization
of the dual space of the topological linear space of analytic functions on
the unit dise. This dual space is isomorphic to the set of funetions in B
whose radius of convergence exceeds one, which is exactly the intersec-
tion of the maximal ideals eorresponding to points of AX —X (the dense
maximal ideals of R).

In Beetion 3 we continue the investigation of the maximal ideals
by studying the structure of their associated residue class rings. The
complex number field C is isomorphically embedded in R/M, where M
is a maximal ideal of R. If M corresponds to a point of X, then R/M and
the isomorph €* of € are identical; whereas, if M corresponds to a point
of pX--X, then R[M is a transcendental extension of C* having trang-
cendence degree ¢, the cardinality. of the continuum. Moreover, we show,

* This research has been supported in part by NSF and the AFOSR.
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