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Abstract

While pretrained models such as BERT have

shown large gains across natural language un-

derstanding tasks, their performance can be

improved by further training the model on a

data-rich intermediate task, before fine-tuning

it on a target task. However, it is still poorly

understood when and why intermediate-task

training is beneficial for a given target task. To

investigate this, we perform a large-scale study

on the pretrained RoBERTa model with 110

intermediate–target task combinations. We

further evaluate all trained models with 25

probing tasks meant to reveal the specific

skills that drive transfer. We observe that

intermediate tasks requiring high-level infer-

ence and reasoning abilities tend to work best.

We also observe that target task performance

is strongly correlated with higher-level abil-

ities such as coreference resolution. How-

ever, we fail to observe more granular corre-

lations between probing and target task per-

formance, highlighting the need for further

work on broad-coverage probing benchmarks.

We also observe evidence that the forgetting

of knowledge learned during pretraining may

limit our analysis, highlighting the need for

further work on transfer learning methods in

these settings.

1 Introduction

Unsupervised pretraining—e.g., BERT (Devlin

et al., 2019) or RoBERTa (Liu et al., 2019b)—has

recently pushed the state of the art on many nat-

ural language understanding tasks. One method

of further improving pretrained models that has

been shown to be broadly helpful is to first fine-

tune a pretrained model on an intermediate task,

before fine-tuning again on the target task of inter-

est (Phang et al., 2018; Wang et al., 2019a; Clark

et al., 2019a; Sap et al., 2019), also referred to as

∗Equal contribution.

Figure 1: Our experimental pipeline with intermediate-

task transfer learning and subsequent fine-tuning on tar-

get and probing tasks.

STILTs. However, this approach does not always

improve target task performance, and it is unclear

under what conditions it does.

This paper offers a large-scale empirical study

aimed at addressing this open question. We per-

form a broad survey of intermediate and target task

pairs, following an experimental pipeline similar to

Phang et al. (2018) and Wang et al. (2019a). This

differs from previous work in that we use a larger

and more diverse set of intermediate and target

tasks, introduce additional analysis-oriented prob-

ing tasks, and use a better-performing base model

RoBERTa (Liu et al., 2019b). We aim to answer

the following specific questions:

• What kind of tasks tend to make good inter-

mediate tasks across a wide variety of target

tasks?

• Which linguistic skills does a model learn

from intermediate-task training?

• Which skills learned from intermediate tasks

help the model succeed on which target tasks?

The first question is the most straightforward: it

can be answered by a sufficiently exhaustive search

over possible intermediate–target task pairs. The

second and third questions address the why rather

than the when, and differ in a crucial detail: A
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model might learn skills by training on an inter-

mediate task, but those skills might not help it to

succeed on a target task.

Our search for intermediate tasks focuses on nat-

ural language understanding tasks in English. In

particular, we run our experiments on 11 interme-

diate tasks and 10 target tasks, which results in a

total of 110 intermediate–target task pairs. We use

25 probing tasks—tasks that each target a narrowly

defined model behavior or linguistic phenomenon—

to shed light on which skills are learned from each

intermediate task.

Our findings include the following: (i) Natural

language inference tasks as well as QA tasks which

involve commonsense reasoning are generally use-

ful as intermediate tasks. (ii) SocialIQA and QQP

as intermediate tasks are not helpful as a means to

teach the skills captured by our probing tasks, while

finetuning first on MNLI and CosmosQA result in

an increase in all skills. (iii) While a model’s abil-

ity to learn skills relating to input-noising correlate

with target task performance, low-level skills such

as knowledge of a sentence’s raw content preser-

vation skills and ability to detect various attributes

of input sentences such as tense of main verb and

sentence length are less correlated with target task

performance. This suggests that a model’s abil-

ity to do well on the masked language modelling

(MLM) task is important for downstream perfor-

mance. Furthermore, we conjecture that a portion

of our analysis is affected by catastrophic forgetting

of knowledge learned during pretraining.

2 Methods

2.1 Experimental Pipeline

Our experimental pipeline (Figure 1) consists

of two steps, starting with a pretrained model:

intermediate-task training, and fine-tuning on a

target or probing task.

Intermediate Task Training We fine-tune

RoBERTa on each intermediate task. The training

procedure follows the standard procedure of

fine-tuning a pretrained model on a target task, as

described in Devlin et al. (2019). We opt for single

intermediate-task training as opposed to multi-task

training (cf. Liu et al., 2019a) to isolate the effect

of skills learned from individual intermediate

tasks.

Target and Probing Task Fine-Tuning After

intermediate-task training, we fine-tune our models

on each target and probing task individually. Target

tasks are tasks of interest to the general commu-

nity, spanning various facets of natural language,

domains, and sources. Probing tasks, while poten-

tially similar in data source to target tasks such as

with CoLA, are designed to isolate the presence

of particular linguistic capabilities or skills. For

instance, solving the target task BoolQ (Clark et al.,

2019a) may require various skills including coref-

erence and commonsense reasoning, while prob-

ing tasks like the SentEval probing suite (Conneau

et al., 2018) target specific syntactic and metadata-

level phenomena such as subject-verb agreement

and sentence length detection.

2.2 Tasks

Table 1 presents an overview of the intermediate

and target tasks.

2.2.1 Intermediate Tasks

We curate a diverse set of tasks that either represent

an especially large annotation effort or that have

been shown to yield positive transfer in prior work.

The resulting set of tasks cover question answer-

ing, commonsense reasoning, and natural language

inference.

QAMR The Question–Answer Meaning Repre-

sentations dataset (Michael et al., 2018) is a crowd-

sourced QA task consisting of question–answer

pairs that correspond to predicate–argument re-

lationships. It is derived from Wikinews and

Wikipedia sentences. For example, if the sentence

is “Ada Lovelace was a computer scientist.”, a po-

tential question is “What is Ada’s last name?”, with

the answer being “Lovelace.”

CommonsenseQA CommonsenseQA (Talmor

et al., 2019) is a multiple-choice QA task derived

from ConceptNet (Speer et al., 2017) with the help

of crowdworkers, that is designed to test a range of

commonsense knowledge.

SciTail SciTail (Khot et al., 2018) is a textual en-

tailment task built from multiple-choice science

questions from 4th grade and 8th grade exams,

as well as crowdsourced questions (Welbl et al.,

2017). The task is to determine whether a hypothe-

sis, which is constructed from a science question

and its corresponding answer, is entailed or not

(neutral) by the premise.

Cosmos QA Cosmos QA is a task for a

commonsense-based reading comprehension task
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Name |Train| |Dev| task metrics genre/source

CommonsenseQA 9,741 1,221 question answering acc. ConceptNet
SciTail 23,596 1,304 natural language inference acc. science exams
Cosmos QA 25,588 3,000 question answering acc. blogs
SocialIQA 33,410 1,954 question answering acc. crowdsourcing
CCG 38,015 5,484 tagging acc. Wall Street Journal
HellaSwag 39,905 10,042 sentence completion acc. video captions & Wikihow
QA-SRL 44,837 7,895 question answering F1/EM Wikipedia
SST-2 67,349 872 sentiment classification acc. movie reviews
QAMR 73,561 27,535 question answering F1/EM Wikipedia

In
te

rm
ed

ia
te

T
a

sk
s

QQP 363,846 40,430 paraphrase detection acc./F1 Quora questions
MNLI 392,702 20,000 natural language inference acc. fiction, letters, telephone speech

CB 250 57 natural language inference acc./F1 Wall Street Journal, fiction, dialogue
COPA 400 100 question answering acc. blogs, photography encyclopedia
WSC 554 104 coreference resolution acc. hand-crafted
RTE 2,490 278 natural language inference acc. news, Wikipedia
MultiRC 5,100 953 question answering F1α/EM crowd-sourced
WiC 5,428 638 word sense disambiguation acc. WordNet, VerbNet, Wiktionary
BoolQ 9,427 3,270 question answering acc. Google queries, Wikipedia

T
a

rg
et

T
a

sk
s

CommonsenseQA 9,741 1,221 question answering acc. ConceptNet
Cosmos QA 25,588 3,000 question answering acc. blogs
ReCoRD 100,730 10,000 question answering F1/EM news (CNN, Daily Mail)

Table 1: Overview of the intermediate tasks (top) and target tasks (bottom) in our experiments. EM is short for

Exact Match. The F1 metrics for MultiRC is calculated over all answer-options.

formulated as multiple-choice questions (Huang

et al., 2019). The questions concern the causes

or effects of events that require reasoning not only

based on the exact text spans in the context, but also

wide-range abstractive commonsense reasoning. It

differs from CommonsenseQA in that it focuses

on causal and deductive commensense reasoning

and that it requires reading comprehension over an

auxiliary passage, rather than simply answering a

freestanding question.

SocialIQA SocialIQA (Sap et al., 2019) is a task

for multiple choice QA. It tests for reasoning sur-

rounding emotional and social intelligence in ev-

eryday situations.

CCG CCGbank (Hockenmaier and Steedman,

2007) is a task that is a translation of the Penn

Treebank into a corpus of Combinatory Categorial

Grammar (CCG) derivations. We use the CCG su-

pertagging task, which is the task of assigning tags

to individual word tokens that jointly determine the

parse of the sentence.

HellaSwag HellaSwag (Zellers et al., 2019) is a

commonsense reasoning task that tests a model’s

ability to choose the most plausible continuation of

a story. It is built using adversarial filtering (Zellers

et al., 2018) with BERT to create challenging nega-

tive examples.

QA-SRL The question-answer driven semantic

role labeling dataset (QA-SRL; He et al., 2015)

for a QA task that is derived from a semantic role

labeling task. Each example, which consists of

a set of questions and answers, corresponds to a

predicate-argument relationship in the sentence it

is derived from. Unlike QAMR, which focuses on

all words in the sentence, QA-SRL is specifically

focused on verbs.

SST-2 The Stanford sentiment treebank (Socher

et al., 2013) is a sentiment classification task based

on movie reviews. We use the binary sentence

classification version of the task.

QQP The Quora Question Pairs dataset1 is con-

structed based on questions posted on the commu-

nity question-answering website Quora. The task

is to determine if two questions are semantically

equivalent.

MNLI The Multi-Genre Natural Language In-

ference dataset (Williams et al., 2018) is a crowd-

sourced collection of sentence pairs with textual

entailment annotations across a variety of genres.

2.2.2 Target Tasks

We use ten target tasks, eight of which are drawn

from the SuperGLUE benchmark (Wang et al.,

2019b). The tasks in the SuperGLUE benchmark

1http://data.quora.com/First-Quora-DatasetRelease-
Question-Pairs
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cover question answering, entailment, word sense

disambiguation, and coreference resolution and

have been shown to be easy for humans but dif-

ficult for models like BERT. Although we offer a

brief description of the tasks below, we refer read-

ers to the SuperGLUE paper for a more detailed

description of the tasks.

CommitmentBank (CB; de Marneffe et al.,

2019) is a three-class entailment task that con-

sists of texts and an embedded clause that ap-

pears in each text, in which models must determine

whether that embedded clause is entailed by the

text. Choice of Plausible Alternatives (COPA;

Roemmele et al., 2011) is a classification task that

consists of premises and a question that asks for the

cause or effect of each premise, in which models

must correctly pick between two possible choices.

Winograd Schema Challenge (WSC; Levesque

et al., 2012) is a sentence-level commonsense rea-

soning task that consists of texts, a pronoun from

each text, and a list of possible noun phrases from

each text. The dataset has been designed such that

world knowledge is required to determine which

of the possible noun phrases is the correct referent

to the pronoun. We use the SuperGLUE binary

classification cast of the task, where each example

consists of a text, a pronoun, and a noun phrase

from the text, which models must classify as being

coreferent to the pronoun or not. Recognizing Tex-

tual Entailment (RTE; Dagan et al., 2005, et seq)

is a textual entailment task. Multi-Sentence Read-

ing Comprehension (MultiRC; Khashabi et al.,

2018) is a multi-hop QA task that consists of para-

graphs, a question on each paragraph, and a list

of possible answers, in which models must distin-

guish which of the possible answers are true and

which are false. Word-in-Context (WiC; Pilehvar

and Camacho-Collados, 2019) is a binary classifi-

cation word sense disambiguation task. Examples

consist of two text snippets, with a polysemous

word that appears in both. Models must determine

whether the same sense of the word is used in both

contexts. BoolQ (Clark et al., 2019a) is a QA task

that consists of passages and a yes/no question as-

sociated with each passage. Reading Comprehen-

sion with Commonsense Reasoning (ReCoRD;

Zhang et al., 2018) is a multiple-choice QA task

that consists of news articles. For each article, mod-

els are given a question about each article with one

entity masked out and a list of possible entities

from the article, and the goal is to correctly identify

the masked entity out of the list.

Additionally, we use CommonsenseQA and

Cosmos QA as target tasks, due to their unique

combination of small dataset size and high level of

difficulty for high-performing models like BERT

from our set of intermediate tasks.

2.2.3 Probing Tasks

We use well-established datasets for our probing

tasks, including the edge-probing suite from Ten-

ney et al. (2019b), function word oriented tasks

from Kim et al. (2019), and sentence-level probing

datasets (SentEval; Conneau et al., 2018).

Acceptability Judgment Tasks This set of bi-

nary classifications tasks was designed to inves-

tigate if a model can judge the grammatical ac-

ceptability of a sentence. We use the following

five datasets: AJ-CoLA is a task that tests for

a model’s understanding of general grammatical-

ity using the Corpus of Linguistic Acceptability

(CoLA) (Warstadt et al., 2019b), which is drawn

from 22 theoretical linguistics publications. The

other tasks concern the behaviors of specific classes

of function words, using the dataset by Kim et al.

(2019): AJ-WH is a task that tests a model’s

ability to detect if a wh-word in a sentence has

been swapped with another wh-word, which tests

a model’s ability to identify the antecedent associ-

ated with the wh-word. AJ-Def is a task that tests

a model’s ability to detect if the definite/indefinite

articles in a given sentence have been swapped. AJ-

Coord is a task that tests a model’s ability to detect

if a coordinating conjunction has been swapped,

which tests a model’s ability to understand how

ideas in the various clauses relate to each other.

AJ-EOS is a task that tests a model’s ability to

identify grammatical sentences without indicators

such as punctuation marks and capitalization, and

consists of grammatical text that are removed of

punctuation.

Edge-Probing Tasks The edge probing (EP)

tasks are a set of core NLP labeling tasks, collected

by Tenney et al. (2019b) and cast into Boolean

classification. These tasks focus on the syntactic

and semantic relations between spans in a sentence.

The first five tasks use the OntoNotes corpus (Hovy

et al., 2006): Part-of-Speech tagging (EP-POS)

is a task that tests a model’s ability to predict the

syntactic category (noun, verb, adjective, etc.) for

each word in the sentence. Named entity recog-

nition (EP-NER) is task that tests a model’s abil-
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ity to predict the category of an entity in a given

span. Semantic Role Labeling (EP-SRL) is a task

that tests a model’s ability to assign a label to a

given span of words that indicates its semantic role

(agent, goal, etc.) in the sentence. Coreference

(EP-Coref) is a task that tests a model’s ability to

classify if two spans of tokens refer to the same

entity/event.

The other datasets can be broken down into both

syntactic and semantic probing tasks. Constituent

labeling (EP-Const) is a task that tests a model’s

ability to classify a non-terminal label for a span

of tokens (e.g., noun phrase, verb phrase, etc.). De-

pendency labeling (EP-UD) is a task that tests a

model on the functional relationship of one token

relative to another. We use the English Web Tree-

bank portion of Universal Dependencies 2.2 release

(Silveira et al., 2014) for this task. Semantic Proto-

Role labeling is a task that tests a model’s ability

to predict the fine-grained non-exclusive semantic

attributes of a given span. Edge probing uses two

datasets for SPR: SPR1 (EP-SPR1) (Teichert et al.,

2017), derived from the Penn Treebank, and SPR2

(EP-SPR2) (Rudinger et al., 2018), derived from

the English Web Treebank. Relation classifica-

tion (EP-Rel) is a task that tests a model’s ability

to predict the relation between two entities. We

use the SemEval 2010 Task 8 dataset (Hendrickx

et al., 2009) for this task. For example, the relation

between “Yeri” and “Korea” in “Yeri is from Ko-

rea” is ENTITY-ORIGIN. The Definite Pronoun

Resolution dataset (Rahman and Ng, 2012) (EP-

DPR) is a task that tests a model’s ability to handle

coreference, and differs from OntoNotes in that it

focuses on difficult cases of definite pronouns.

SentEval Tasks The SentEval probing tasks (SE)

(Conneau et al., 2018) are cast in the form of

single-sentence classification. Sentence Length

(SE-SentLen) is a task that tests a model’s ability

to classify the length of a sentence. Word Con-

tent (SE-WC) is a task that tests a model’s abil-

ity to identify which of a set of 1,000 potential

words appear in a given sentence. Tree Depth (SE-

TreeDepth) is a task that tests a model’s ability to

estimate the maximum depth of the constituency

parse tree of the sentence. Top Constituents (SE-

TopConst) is a task that tests a model’s ability to

identify the high-level syntactic structure of the

sentence by choosing among 20 constituent se-

quences (the 19 most common, plus an other cat-

egory). Bigram Shift (SE-BShift) is a task that

tests a model’s ability to classify if two consec-

utive tokens in the same sentence have been re-

ordered. Coordination Inversion (SE-CoordInv)

is a task that tests a model’s ability to identify if

two coordinating clausal conjoints are swapped (ex:

“he knew it, and he deserved no answer.”). Past-

Present (SE-Tense) is a task that tests a model’s

ability to classify the tense of the main verb of the

sentence. Subject Number (SE-SubjNum) and

Object Number (SE-ObjNum) are tasks that test

a model’s ability to classify whether the subject or

direct object of the main clause is singular or plural.

Odd-Man-Out (SE-SOMO) is a task that tests the

model’s ability to predict whether a sentence has

had one of its content words randomly replaced

with another word of the same part of speech.

3 Experiments

Training and Optimization We use the large-

scale pretrained model RoBERTaLarge in all experi-

ments. For each intermediate, target, and probing

task, we perform a hyperparameter sweep, varying

the peak learning rate ∈ {2× 10−5
, 1× 10−5

, 5×
10−6

, 3× 10−6} and the dropout rate ∈ {0.2, 0.1}.

After choosing the best learning rate and dropout

rate, we apply the best configuration for each task

for all runs. For each task, we use the batch size

that maximizes GPU usage, and use a maximum

sequence length of 256. Aside from these details,

we follow the RoBERTa paper for all other training

hyperparameters. We use NVIDIA P40 GPUs for

our experiments.

A complete pipeline with one intermediate task

works as follows: First, we fine-tune RoBERTa on

the intermediate task. We then fine-tune copies of

the resulting model separately on each of the 10

target tasks and 25 probing tasks and test on their

respective validation sets. We run the same pipeline

three times for the 11 intermediate tasks, plus a set

of baseline runs without intermediate training. This

gives us 35×12×3 = 1260 observations.

We train our models using the Adam optimizer

(Kingma and Ba, 2015) with linear decay and early

stopping. We run training for a maximum of 10

epochs when more than 1,500 training examples

are available, and 40 epochs otherwise to ensure

models are sufficiently trained on small datasets.

We use the jiant (Wang et al., 2019c) NLP

toolkit, based on PyTorch (Paszke et al., 2019),

Hugging Face Transformers (Wolf et al., 2019),

and AllenNLP (Gardner et al., 2017), for all of our
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QAMR CSenseQA SciTail CosmosQASocialIQA CCG HellaSwag QA-SRL SST-2 QQP MNLI
CB

COPA
WSC
RTE

MultiRC
WiC

BoolQ
CSenseQA
CosmosQA

ReCoRD
Avg. Target

EP-POS
EP-NER
EP-SRL

EP-Coref
EP-Const
EP-SPR1
EP-SPR2
EP-DPR
EP-Rel
EP-UD

SE-SentLen
SE-WC

SE-TreeDepth
SE-TopConst

SE-BShift
SE-Tense

SE-SubjNum
SE-ObjNum

SE-SOMO
SE-CoordInv

AJ-CoLA
AJ-Wh
AJ-Def

AJ-Coord
AJ-EOS

-4.0 -0.4 -6.2 -0.4 -21.7 -12.2 -3.1 -7.2 -1.2 -31.0 -0.4
-4.0 8.7 4.3 6.0 -3.7 -20.7 6.7 -3.7 -2.0 0.7 -0.7
-0.3 0.0 1.3 2.9 -4.8 -3.2 3.6 4.8 2.6 -3.8 0.3
0.6 3.4 3.4 5.1 -4.3 -18.2 4.8 1.1 2.6 -2.4 3.1
2.4 7.9 2.6 10.1 -10.6 -8.1 6.8 2.6 1.1 -4.2 6.5
-1.3 0.1 2.5 1.7 -2.0 -1.1 0.1 2.1 -6.4 1.4 0.9
-0.1 0.9 0.1 1.1 -2.8 -10.6 0.7 0.0 0.9 -4.2 1.4
-4.7 -1.6 -2.6 0.1 -7.8 -12.0 0.4 -5.1 -0.9 -7.6 -2.6
-2.5 -0.1 -2.1 -0.4 -9.1 -6.9 -0.0 -3.0 -0.0 -8.4 -0.5
-4.0 -0.0 -1.5 -0.1 -12.4 -6.1 0.2 -4.7 -0.5 -11.9 -1.6
-1.8 1.9 0.2 2.6 -7.9 -9.9 2.0 -1.3 -0.4 -7.1 0.7
0.0 0.0 -0.0 -0.1 -0.1 -0.0 0.0 -0.0 0.1 -97.4 0.0
-0.1 0.0 -0.1 -0.1 -21.5 -0.2 0.0 -0.2 0.0 -64.9 -0.3
12.2 0.1 30.7 12.4 -61.7 31.2 30.9 31.1 31.9 -61.9 31.3
0.0 0.0 0.0 0.1 -0.6 -0.3 0.1 0.0 -0.1 -13.4 0.1
-0.0 -0.1 -0.1 0.0 -0.0 -0.2 -0.1 0.0 -0.9 -0.2 -0.1
-0.2 0.1 0.1 0.2 -1.7 -0.4 0.2 0.1 0.3 -21.9 0.2
-0.2 -0.0 -0.1 0.1 -3.9 -0.4 -0.1 -0.3 -0.1 -8.2 -0.1
7.5 7.9 7.3 8.6 -15.6 3.5 8.3 8.2 7.9 -14.7 6.6
0.1 -25.0 0.4 0.1 -55.1 0.2 0.4 -28.8 0.8 -85.4 0.1
-0.2 0.0 0.0 0.1 -62.0 -0.2 0.0 -0.1 0.1 -89.7 -0.0
-0.0 -0.2 -0.1 -0.3 -0.4 0.5 -0.1 0.1 0.1 -0.9 -0.2
-0.1 -0.0 -0.0 -0.0 -33.3 -0.0 0.0 -0.0 -0.0 -33.8 -0.0
0.1 -0.1 -0.1 -0.1 -1.1 0.3 -0.5 -0.1 -0.1 -1.4 -0.6
-0.2 -0.3 -0.3 -0.1 -0.4 -0.2 -0.2 -0.2 -0.2 -0.4 -0.3
-0.1 0.2 0.1 0.0 -0.4 -0.2 0.2 0.0 0.1 -0.1 0.1
-1.1 -0.4 -0.5 -0.0 -0.3 -1.3 0.0 -0.8 -0.2 -1.5 -1.2
0.3 0.5 0.4 0.9 -0.1 0.8 0.8 0.2 0.5 -0.1 0.4
-0.6 -0.1 -0.1 0.0 -0.5 0.2 -0.3 0.2 -0.4 0.2 -0.1
-2.2 0.4 -1.1 0.1 -4.1 -3.6 0.2 -1.8 -1.0 -2.5 -1.2
-0.7 -0.1 -0.4 -0.2 -1.3 -1.0 -0.0 -0.3 -0.2 -3.0 -0.1
-2.6 -0.7 -1.9 -1.6 -10.3 -6.9 -0.7 -3.7 -0.6 -5.5 -1.1
13.4 26.8 3.4 14.5 14.2 26.8 14.5 28.4 28.4 3.8 11.8
23.1 46.0 11.1 0.0 18.0 46.4 32.4 22.5 14.0 11.1 23.7
25.2 17.7 11.1 20.2 22.3 32.6 11.1 22.2 17.4 11.1 11.1
11.9 13.2 13.9 13.2 -21.3 8.5 5.0 11.8 -4.5 -13.9 6.0

Ta
rg

et
Pr

ob
in

g
Baseline

Performance
99.1
86.0
67.3
83.5
47.4
70.5
86.6
74.0
81.9
86.0
78.2
98.1
97.0
61.9
97.1
88.8
87.2
83.8
81.4
85.4
95.8
46.4
99.8
76.1
93.5
97.7
91.1
93.3
95.7
77.2
88.3
68.1
69.9
47.2
47.2
84.7

Figure 2: Transfer learning results between intermediate and target/probing tasks. Baselines (rightmost column)

are models fine-tuned without intermediate-task training. Each cell shows the difference in performance (delta)

between the baseline and model with intermediate-task training. We use the macro-average of each task’s metrics

as the reported performance. Refer to Table 1 for target task metrics.

experiments.

4 Results and Analysis

4.1 Investigating Transfer Performance

Figure 2 shows the differences in target and probing

task performances (deltas) between the baselines

and models trained with intermediate-task training,

each averaged across three restarts. A positive delta

indicates successful transfer.

Target Task Performance We define good inter-

mediate tasks as ones that lead to positive trans-

fer in target task performance. We observe that

tasks that require complex reasoning and inference

tend to make good intermediate tasks. These in-

clude MNLI and commonsense-oriented tasks such

as CommonsenseQA, HellaSWAG, and Cosmos

QA (with our poor performance with the similar

SocialIQA serving as a suprising exception). So-

cialIQA, CCG, and QQP as intermediate tasks lead

to negative transfer on all target tasks and the ma-

jority of probing tasks.

We investigate the role of dataset size in the inter-

mediate tasks with downstream task performance

by additionally running a set of experiments on

varying amounts of data on five intermediate tasks,

which is shown in the Appendix. We do not find

differences in intermediate-task dataset size to have

any substantial consistent impact on downstream

target task performance.

In addition, we find that smaller target tasks such

as RTE, BoolQ, MultiRC, WiC, WSC benefit the

most from intermediate-task training.2 There are

no instances of positive transfer to Commitment-

Bank, since our baseline model achieves 100% ac-

curacy.

Probing Task Performance Looking at

the probing task performance, we find that

intermediate-task training affects performance

2The deltas for experiments with the same intermediate
and target tasks are not 0 as may be expected. This is because
we perform both intermediate and target training phases in
these cases, with reset optimizer states and stopping criteria in
between intermediate and target training.
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on low-level syntactic probing tasks uniformly

across intermediate tasks; we observe little to no

improvement for the SentEval probing tasks and

higher improvement for acceptability judgment

probing tasks, except for AJ-CoLA. This is also

consistent with Phang et al. (2018), who find

negative transfer with CoLA in their experiments.

Variation across Intermediate Tasks There is

variable performance across higher-level syntactic

or semantic tasks such as the Edge-Probing and

SentEval tasks. SocialIQA and QQP have nega-

tive transfer for most of the Edge-Probing tasks,

while CosmosQA and QA-SRL see drops in per-

formance only for EP-Rel. While we do see that

intermediate-task trained models improve perfor-

mance on EP-SRL and EP-DPR across the board,

there is little to no gain in SentEval probing tasks

from any intermediate tasks. Additionally, tasks

that increase performance in the most number of

probing tasks perform well as intermediate tasks.

Degenerate Runs We find that the model may

not exceed chance performance in some training

runs. This mostly affects the baseline (no interme-

diate training) runs on the acceptability judgment

probing tasks, excluding AJ-CoLA, which all have

very small training sets. We include these degener-

ate runs in our analysis to reflect this phenomenon.

Consistent with Phang et al. (2018), we find that

intermediate-task training reduces the likelihood

of degenerate runs, leading to ostensibly positive

transfer results on those four acceptability judg-

ment tasks across most intermediate tasks. On

the other hand, extremely negative transfer from

intermediate-task training can also result in a higher

frequency of degenerate runs in downstream tasks,

as we observe in the cases of using QQP and So-

cialIQA as intermediate tasks. We also observe

a number of degenerate runs on the EP-SRL task

as well as the EP-Rel task. These degenerate runs

decrease positive transfer in probing tasks, such

as with SocialIQA and QQP probing performance,

and also decrease the average amount of positive

transfer we see in target task performance.

4.2 Correlation Between Probing and Target

Task Performance

Next, we investigate the relationship between target

and probing tasks in an attempt to understand why

certain intermediate-task models perform better on

certain target tasks.

We use probing task performance as an indica-

tor of the acquisition of particular language skills.

We compute the Spearman correlation between

probing-task and target-task performances across

training on different intermediate tasks and mul-

tiple restarts, as shown in Figure 3. We test for

statistical significance at p = 0.05 and apply Holm-

Bonferroni correction for multiple testing. We omit

correlations that are not statistically significant. We

opt for Spearman and not Pearson correlation be-

cause of the wide variety of metrics used for the

different tasks.3

We find that acceptability judgment probing task

performance is generally uncorrelated with the tar-

get task performance, except for AJ-CoLA. Simi-

larly, many of the SentEval tasks do not correlate

with the target tasks, except for Bigram Shift (SE-

BShift), Odd-Man-Out (SE-SOMO) and Coordi-

nation Inversion (SE-CoordInv). These three tasks

are input noising tasks—tasks where a model has to

predict if a given input sentence has been randomly

modified—which are, by far, the most similar tasks

we study to the masked language modeling task

that is used for training RoBERTa. This may ex-

plain the strong correlation with the performance

of the target tasks.

We also find that some of these strong correla-

tions, such as with SE-SOMO and SE-CoordInv,

are almost entirely driven by variation in the de-

gree of negative transfer, rather than any positive

transfer. Intuitively, fine-tuning RoBERTa on an

intermediate task can cause the model to forget

some of its ability to perform the MLM task. Thus,

a future direction for potential improvement for

intermediate-task training may be integrating the

MLM objective into intermediate-task training or

bounding network parameter changes to reduce

catastrophic forgetting (Kirkpatrick et al., 2016;

Chen et al., 2019).

Interestingly, while intermediate tasks such as

SocialIQA, CCG and QQP, which show negative

transfer on target tasks, tend to have negative trans-

fer on these three probing tasks, the intermedi-

ate tasks with positive transfer, such as Common-

senseQA tasks and MNLI, do not appear to ad-

versely affect the performance on these probing

tasks. This asymmetric impact may indicate that,

beyond the similarity of intermediate and target

tasks, avoiding catastrophic forgetting of pretrain-

3Full correlation tables across all target and probing tasks
with both Spearman and Pearson correlations can be found in
the Appendix.
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Figure 3: Correlations between probing and target task performances. Each cell contains the Spearman correlation

between probing-task and target-task performances across training on different intermediate tasks and random

restarts. We test for statistical significance at p = 0.05 with Holm-Bonferroni correction, and omit the correlations

that are not statistically significant.

ing is critical to successful intermediate-task trans-

fer.

The remaining SentEval probing tasks have sim-

ilar delta values (Figure 2), which may indicate

that there is insufficient variation among trans-

fer performance to derive significant correlations.

Among the edge-probing tasks, the more semantic

tasks such as coreference (EP-Coref and EP-DPR),

semantic proto-role labeling (EP-SPR1 and EP-

SPR2), and dependency labeling (EP-Rel) show

the highest correlations with our target tasks. As

our set of target tasks is also oriented towards se-

mantics and reasoning, this is to be expected.

On the other hand, among the target tasks,

we find that ReCoRD, CommonsenseQA and

Cosmos QA—all commonsense-oriented tasks—

exhibit both high correlations with each other as

well as a similar set of correlations with the prob-

ing tasks. Similarly, BoolQ, MultiRC, and RTE

correlate strongly with each other and have similar

patterns of probing-task performance.

5 Related Work

Within the paradigm of training large pre-

trained Transformer language representations via

intermediate-stage training before fine-tuning on

a target task, positive transfer has been shown in

both sequential task-to-task (Phang et al., 2018)

and multi-task-to-task (Liu et al., 2019a; Raffel

et al., 2019) formats. Wang et al. (2019a) perform

an extensive study on transfer with BERT, find-

ing language modeling and NLI tasks to be among

the most beneficial tasks for improving target-task

performance. Talmor and Berant (2019) perform a

similar cross-task transfer study on reading compre-

hension datasets, finding similar positive transfer in

most cases, with the biggest gains stemming from

a combination of multiple QA datasets. Our work

consists of a larger, more diverse, set of interme-

diate task–target task pairs. We also use probing

tasks to shed light on the skills learned by the inter-

mediate tasks.

Among the prior work on predicting transfer per-

formance, Bingel and Søgaard (2017) is the most

similar to ours. They do a regression analysis that

predicts target-task performance on the basis of var-

ious features of the source and target tasks and task

pairs. They focus on a multi-task training setting

without self-supervised pretraining, as opposed to

our single-intermediate task, three-step procedure.

Similar work (Lin et al., 2019b) has been done

on cross-lingual transfer—the analogous challenge

of transferring learned knowledge from a high-

resource to a low-resource language.

Many recent works have attempted to understand

the knowledge and linguistic skills BERT learns,

for instance by analyzing the language model

surprisal for subject–verb agreements (Goldberg,

2018), identifying specific knowledge or phenom-

ena encapsulated in the representations learned by

BERT using probing tasks (Tenney et al., 2019b,a;

Warstadt et al., 2019a; Lin et al., 2019a; Hewitt and

Manning, 2019; Jawahar et al., 2019), analyzing

the attention heads of BERT (Clark et al., 2019b;
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Coenen et al., 2019; Lin et al., 2019a; Htut et al.,

2019), and testing the linguistic generalizations of

BERT across runs (McCoy et al., 2019). How-

ever, relatively little work has been done to analyze

fine-tuned BERT-style models (Wang et al., 2019a;

Warstadt et al., 2019a).

6 Conclusion and Future Work

This paper presents a large-scale study on when

and why intermediate-task training works with

pretrained models. We perform experiments on

RoBERTa with a total of 110 pairs of intermedi-

ate and target tasks, and perform an analysis using

25 probing tasks, covering different semantic and

syntactic phenomena. Most directly, we observe

that tasks like Cosmos QA and HellaSwag, which

require complex reasoning and inference, tend to

work best as intermediate tasks.

Looking to our probing analysis, intermediate

tasks that help RoBERTa improve across the board

show the most positive transfer in downstream

tasks. However, it is difficult to draw definite con-

clusions about the specific skills that drive positive

transfer. Intermediate-task training may help im-

prove the handling of syntax, but there is little to no

correlation between target-task and probing-task

performance for these skills. Probes for higher-

level semantic abilities tend to have a higher corre-

lation with the target-task performance, but these

results are too diffuse to yield more specific con-

clusions. Future work in this area would benefit

greatly from improvements to both the breadth and

depth of available probing tasks.

We also observe a worryingly high correlation

between target-task performance and the two prob-

ing tasks which most closely resemble RoBERTa’s

masked language modeling pretraining objective.

Thus, the results of our intermediate-task training

analysis may be driven in part by forgetting of

knowledge acquired during pretraining. Our re-

sults therefore suggest a need for further work on

efficient transfer learning mechanisms.
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A Correlation Between Probing and

Target Task Performance

Figure 4 shows the correlation matrix using Spear-

man correlation and Figure 5 shows the matrix

using Pearson correlation.

B Effect of Intermediate Task Size on

Target Task Performance

Figure 6 shows the effect of dataset size on interme-

diate task training on downstream target task per-

formance for five intermediate tasks, which were

picked to maximize the variety of original interme-

diate task sizes and effectiveness in transfer learn-

ing abilities.
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Figure 4: Correlations between probing and target task performances. Each cell contains the Spearman correlation

between probing and target tasks performances across training on different intermediate tasks and random restarts.
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Figure 5: Correlations between probing and target task performances. Each cell contains the Pearson correlation

between probing and target tasks performances across training on different intermediate tasks and random restarts.
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Figure 6: Results of experiments on impact of intermediate task data size on downstream target task performance.

For each subfigure, we finetune RoBERTa over a variety of dataset size (sampled randomly from the dataset). We

report the macro-average of each target task’s performance metrics after finetuning on each dataset size split.


