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Abstract

The proof of the intermediate value theorem for power series on a Levi-
Civita field will be presented. After reviewing convergence criteria for power
series [19], we review their analytical properties [18]. Then we state and prove
the intermediate value theorem for a large class of functions that are given
locally by power series and contain all the continuations of real power series:
using iteration, we construct a sequence that converges strongly to a point at
which the intermediate value will be assumed.

1 Introduction

In this paper, the intermediate value theorem will be shown to hold for analytic
functions on the Levi-Civita field R. We recall that the elements of R and its
complex counterpart C are functions from Q to R and C, respectively, with left-
finite support (denoted by supp). That is, below every rational number q, there are
only finitely many points where the given function does not vanish. For the further
discussion, it is convenient to introduce the following terminology.

Definition 1.1. (λ, ∼, ≈, =r) For x 6= 0 in R or C, we let λ(x) = min(supp(x)),
which exists because of the left-finiteness of supp(x); and we let λ(0) = +∞.

Given x, y ∈ R or C and r ∈ R, we say x ∼ y if λ(x) = λ(y); x ≈ y if λ(x) = λ(y)
and x[λ(x)] = y[λ(y)]; and x =r y if x[q] = y[q] for all q ≤ r.

At this point, these definitions may feel somewhat arbitrary; but after having
introduced an order on R, we will see that λ describes orders of magnitude, the

2000 Mathematics Subject Classification : Primary 12J25, 26E30, Secondary 30G06, 46S10.
Key words and phrases : Levi-Civita field, non-Archimedean analysis, power series, analytic

functions, intermediate value theorem.

Bull. Belg. Math. Soc. Simon Stevin 14 (2007), 1001–1015



1002 K. Shamseddine – M. Berz

relation ≈ corresponds to agreement up to infinitely small relative error, while ∼
corresponds to agreement of order of magnitude.

The sets R and C are endowed with formal power series multiplication and com-
ponentwise addition, which make them into fields [3] in which we can isomorphically
embed R and C (respectively) as subfields via the map Π : R, C → R, C defined by

Π(x)[q] =

{
x if q = 0
0 else

. (1.1)

Definition 1.2. (Order in R) Let x 6= y in R be given. Then we say x > y if
(x− y)[λ(x− y)] > 0; furthermore, we say x < y if y > x.

With this definition of the order relation, R is an ordered field. Moreover, the
embedding Π in Equation (1.1) of R into R is compatible with the order. The order
induces an absolute value on R, from which an absolute value on C is obtained in
the natural way: |x + iy| =

√
x2 + y2. We also note here that λ, as defined above,

is a valuation; moreover, the relation ∼ is an equivalence relation, and the set of
equivalence classes (the value group) is (isomorphic to) Q.

Besides the usual order relations, some other notations are convenient.

Definition 1.3. (�,�) Let x, y ∈ R be non-negative. We say x is infinitely smaller
than y (and write x � y) if nx < y for all n ∈ N; we say x is infinitely larger than
y (and write x � y) if y � x. If x � 1, we say x is infinitely small; if x � 1,
we say x is infinitely large. Infinitely small numbers are also called infinitesimals or
differentials. Infinitely large numbers are also called infinite. Non-negative numbers
that are neither infinitely small nor infinitely large are also called finite.

Definition 1.4. (The Number d) Let d be the element of R given by d[1] = 1 and
d[q] = 0 for q 6= 1.

It is easy to check that dq � 1 if q > 0 and dq � 1 if q < 0. Moreover,
for all x ∈ R (resp. C), the elements of supp(x) can be arranged in ascending
order, say supp(x) = {q1, q2, . . .} with qj < qj+1 for all j; and x can be written as
x =

∑∞
j=1 x[qj]d

qj , where the series converges in the topology induced by the absolute
value [3].

Altogether, it follows that R is a non-Archimedean field extension of R. For a
detailed study of this field, we refer the reader to [3, 15, 5, 19, 20, 16, 4, 17, 21, 18].
In particular, it is shown that R is complete with respect to the topology induced
by the absolute value. In the wider context of valuation theory, it is interesting to
note that the topology induced by the absolute value, the so-called strong topology,
is the same as that introduced via the valuation λ, as was shown in [18].

It follows therefore that the fields R and C are just special cases of the class of
fields discussed in [13]. For a general overview of the algebraic properties of formal
power series fields in general, we refer the reader to the comprehensive overview by
Ribenboim [12], and for an overview of the related valuation theory to the books
by Krull [6], Schikhof [13] and Alling [1]. A thorough and complete treatment of
ordered structures can also be found in [11].

In [19, 18], we study the convergence and analytical properties of power series
in a topology weaker than the valuation topology used in [13], and thus allow for
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a much larger class of power series to be included in the study. Previous work
on power series on the Levi-Civita fields R and C had been mostly restricted to
power series with real or complex coefficients. In [8, 9, 10, 7], they could be studied
for infinitely small arguments only, while in [3], using the newly introduced weak
topology, also finite arguments were possible. Moreover, power series over complete
valued fields in general have been studied by Schikhof [13], Alling [1] and others in
valuation theory, but always in the valuation topology.

In [19], we study the general case when the coefficients in the power series are
Levi-Civita numbers, using the weak convergence of [3]. We derive convergence
criteria for power series which allow us to define a radius of convergence η such that
the power series converges weakly for all points whose distance from the center is
smaller than η by a finite amount and it converges strongly for all points whose
distance from the center is infinitely smaller than η. Then, in [18], we study the
analytical properties of power series within their domain of convergence. We show
that power series on R and C behave similarly to real and complex power series.
In particular, within their radius of convergence, power series are infinitely often
differentiable and the derivatives to any order are obtained by differentiating the
power series term by term. Also, power series can be re-expanded around any point
in their domain of convergence and the radius of convergence of the new series is
equal to the difference between the radius of convergence of the original series and the
distance between the original and new centers of the series. We then study a class of
functions that are given locally by power series (which we call R-analytic functions)
and show that they are closed under arithmetic operations and compositions and
they are infinitely often differentiable.

This paper is a continuation of [19, 18] and it focuses on the proof of the in-
termediate value theorem for the R-analytic functions. Given a function f that is
R-analytic on an interval [a, b] and a value S between f(a) and f(b), we use itera-
tion to construct a sequence of numbers in [a, b] that converges strongly to a point
c ∈ [a, b] such that f(c) = S. The proof is quite involved, making use of many of
the results proved in [19, 18] as well as some results from Real Analysis.

2 Review of Power Series and R-Analytic Functions

We start this section with a brief review of the convergence of sequences in two
different topologies; and we refer the reader to [19] for a more detailed study.

Definition 2.1. A sequence (sn) in R or C is called regular if the union of the
supports of all members of the sequence is a left-finite subset of Q. (Recall that
A ⊂ Q is said to be left-finite if for every q ∈ Q there are only finitely many
elements in A that are smaller than q.)

Definition 2.2. We say that a sequence (sn) converges strongly in R or C if it
converges with respect to the topology induced by the absolute value.

As we have already mentioned in the introduction, strong convergence is equiv-
alent to convergence in the topology induced by the valuation λ. It is shown in [2]
that the fields R and C are complete with respect to the strong topology; and a
detailed study of strong convergence can be found in [14, 19].
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Since power series with real (complex) coefficients do not converge strongly for
any nonzero real (complex) argument, it is advantageous to study a new kind of
convergence. We do that by defining a family of semi-norms on R or C, which
induces a topology weaker than the topology induced by the absolute value and
called weak topology.

Definition 2.3. Given r ∈ R, we define a mapping ‖ · ‖r : R or C → R as follows:
‖x‖r = max{|x[q]| : q ∈ Q and q ≤ r}.

The maximum in Definition 2.3 exists in R since, for any r ∈ R, only finitely
many of the x[q]’s considered do not vanish.

Definition 2.4. A sequence (sn) in R (resp. C) is said to be weakly convergent if
there exists s ∈ R (resp. C), called the weak limit of the sequence (sn), such that
for all ε > 0 in R, there exists N ∈ N such that ‖sm − s‖1/ε < ε for all m ≥ N .

It is shown [3] that R and C are not Cauchy complete with respect to the weak
topology and that strong convergence implies weak convergence to the same limit.
A detailed study of weak convergence is found in [3, 14, 19].

2.1 Power Series

In the following, we review strong and weak convergence criteria for power series,
Theorem 2.5 and Theorem 2.8, the proofs of which are given in [19]. We also
note that, since strong convergence is equivalent to convergence with respect to the
valuation topology, Theorem 2.5 is a special case of the result on page 59 of [13].

Theorem 2.5. (Strong Convergence Criterion for Power Series) Let (an) be a se-
quence in R (resp. C), and let

λ0 = lim sup
n→∞

(
−λ(an)

n

)
in R ∪ {−∞,∞}.

Let x0 ∈ R (resp. C) be fixed and let x ∈ R (resp. C) be given. Then the power
series

∑∞
n=0 an(x−x0)

n converges strongly if λ(x−x0) > λ0 and is strongly divergent
if λ(x− x0) < λ0 or if λ(x− x0) = λ0 and −λ(an)/n > λ0 for infinitely many n.

Remark 2.6. Let (an), (qn) and λ0 be as in Theorem 2.5. Since the sequence (an) is
regular, there exists l0 < 0 in Q such that λ(an) ≥ l0 for all n ∈ N. It follows that

−λ(an)

n
≤ − l0

n
≤ −l0 for all n ∈ N;

and hence

λ0 = lim sup
n→∞

(
−λ(an)

n

)
≤ −l0.

In particular, this entails that λ0 < ∞.

Remark 2.7. Let x0 and λ0 be as in Theorem 2.5, and let x ∈ R (resp. C) be
such that λ(x − x0) = λ0. Then λ0 ∈ Q. So it remains to discuss the case when
λ(x− x0) = λ0 ∈ Q.
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Theorem 2.8. (Weak Convergence Criterion for Power Series) Let (an) be a se-
quence in R (resp. C), and let λ0 = lim supn→∞ (−λ(an)/n) ∈ Q. Let x0 ∈ R (resp.
C) be fixed, and let x ∈ R (resp. C) be such that λ(x − x0) = λ0. For each n ≥ 0,
let bn = and

nλ0. Suppose that the sequence (bn) is regular and write
⋃∞

n=0 supp(bn) =
{q1, q2, . . .}; with qj1 < qj2 if j1 < j2. For each n, write bn =

∑∞
j=1 bnj

dqj , where
bnj

= bn[qj]. Let

η =
1

sup
{
lim supn→∞ |bnj

|1/n : j ≥ 1
} in R ∪ {∞}, (2.1)

with the conventions 1/0 = ∞ and 1/∞ = 0. Then
∑∞

n=0 an(x − x0)
n converges

absolutely weakly if |(x− x0)[λ0]| < η and is weakly divergent if |(x− x0)[λ0]| > η.

Remark 2.9. The number η in Equation (2.1) will be referred to as the radius of
weak convergence of the power series

∑∞
n=0 an(x− x0)

n.

As an immediate consequence of Theorem 2.8, we obtain the following result
which allows us to extend real and complex functions representable by power series
to the Levi-Civita fields R and C.

Corollary 2.10. (Power Series with Purely Real or Complex Coefficients) Let∑∞
n=0 anX

n be a power series with purely real (resp. complex) coefficients and
with classical radius of convergence equal to η. Let x ∈ R (resp. C), and let
An(x) =

∑n
j=0 ajx

j ∈ R (resp. C). Then, for |x| < η and |x| 6≈ η, the sequence
(An(x)) converges absolutely weakly. We define the limit to be the continuation of
the power series to R (resp. C).

2.2 R-Analytic Functions

In this section, we review the algebraic and analytical properties of a class of func-
tions that are given locally by power series and we refer the reader to [18] for a more
detailed study.

Definition 2.11. Let a, b ∈ R be such that 0 < b − a ∼ 1 and let f : [a, b] → R.
Then we say that f is expandable orR-analytic on [a, b] if for all x ∈ [a, b] there exists
a finite δ > 0 inR, and there exists a regular sequence (an (x)) inR such that, under
weak convergence, f (y) =

∑∞
n=0 an (x) (y − x)n for all y ∈ (x− δ, x + δ) ∩ [a, b].

Definition 2.12. Let a < b inR be such that t = λ(b−a) 6= 0 and let f : [a, b] → R.
Then we say that f is R-analytic on [a, b] if the function F : [d−ta, d−tb] → R, given
by F (x) = f(dtx), is R-analytic on [d−ta, d−tb].

It is shown in [18] that if f is R-analytic on [a, b] then f is bounded on [a, b]; also,
if g is R-analytic on [a, b] and α ∈ R then f + αg and f · g are R-analytic on [a, b].
Moreover, the composition of R-analytic functions is R-analytic. Finally, using the
fact that power series on R are infinitely often differentiable within their domain
of convergence and the derivatives to any order are obtained by differentiating the
power series term by term [18], we obtain the following result.
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Theorem 2.13. Let a < b in R be given, and let f : [a, b] → R be R-analytic on
[a, b]. Then f is infinitely often differentiable on [a, b], and for any positive integer
m, we have that f (m) is R-analytic on [a, b]. Moreover, if f is given locally around
x0 ∈ [a, b] by f (x) =

∑∞
n=0 an (x0) (x− x0)

n, then f (m) is given by

f (m) (x) =
∞∑

n=m

n (n− 1) · · · (n−m + 1) an (x0) (x− x0)
n−m .

In particular, we have that am (x0) = f (m) (x0) /m! for all m = 0, 1, 2, . . ..

3 Intermediate Value Theorem for R-Analytic Functions

In this section, we present the proof of the central result of the paper, Theorem 3.2.
We start with the following definition which will be useful in the proof.

Definition 3.1. Let Q(x) be a polynomial over C of degree n, let ξ1, . . . , ξn be its
n roots in C (C is algebraically closed [2]), let j ∈ {1, . . . , n}, and let l ≤ n be given
in N. Then we say that ξj has quasi-multiplicity l as a root of Q(x) if, for some
j1 < j2 < . . . < jl−1 in {1, . . . , n} \ {j}, we have that

ξj ≈ ξk if and only if k ∈ {j, j1, j2, . . . , jl−1}.

Theorem 3.2. (Intermediate Value Theorem) Let a < b in R be given and let
f : [a, b] → R be R-analytic on [a, b]. Then f assumes on [a, b] every intermediate
value between f (a) and f (b).

Proof. If f(a) = f(b), there is nothing to prove, so we may assume that f(a) 6= f(b).
Let F : [0, 1] → R be given by

F (x) = f((b− a)x + a)− f(a) + f(b)

2
.

Then F is R-analytic on [0, 1]; and f assumes on [a, b] every intermediate value
between f(a) and f(b) if and only if F assumes on [0, 1] every intermediate value
between F (0) = (f(a)− f(b))/2 and F (1) = (f(b)− f(a))/2 = −F (0). So without
loss of generality, we may assume that a = 0, b = 1, and f = F . Also, since
scaling the function by a constant factor does not affect the existence of intermediate
values, we may assume that f has a zero index on [a, b] = [0, 1] (see [18]); that is,
i(f) := min {supp(f(x)) : x ∈ [0, 1]} = 0.

Now let S be between f (0) and f (1). Without loss of generality, we may assume
that f (0) < 0 = S < f (1). Let fR : [0, 1] ∩ R → R be given by fR(X) = f(X)[0].
Since fR is continuous on [0, 1] ∩ R (it being R-analytic there), there exists X ∈
[0, 1] ∩ R such that fR (X) = 0. Let B = {X ∈ [0, 1] ∩ R : fR (X) = 0}. Then
B 6= ∅. If there exists X ∈ B such that f (X) = 0, then we are done. So we may
assume that f (X) 6= 0 for all X ∈ B.

First Claim: There exists X0 ∈ B such that for all finite ∆ > 0, there exists
x ∈ (X0 −∆, X0 + ∆) ∩ [0, 1] with λ (x−X0) = 0 such that f (x) /f (X0) < 0.
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Proof of the first claim: Suppose not. Then for all X ∈ B there exists ∆ (X) > 0,
finite in R, such that

f (x)

f (X)
≥ 0 ∀ x ∈ (X −∆ (X) , X + ∆ (X)) ∩ [0, 1] with λ (x−X) = 0. (3.1)

Since fR is continuous on [0, 1]∩R, we have that for all Y ∈ ([0, 1] ∩ R)\B there exists
a real ∆ (Y ) > 0 such that fR (X) /fR (Y ) > 0 for all X ∈ (Y − 2∆ (Y ) , Y + 2∆ (Y ))∩
[0, 1] ∩ R. It follows that, for all Y ∈ ([0, 1] ∩ R) \ B, f (x) /f (Y ) > 0 for all
x ∈ (Y −∆ (Y ) , Y + ∆ (Y )) ∩ [0, 1]. In particular,

f (x)

f (Y )
> 0 ∀ x ∈ (Y −∆ (Y ) , Y + ∆ (Y )) ∩ [0, 1] with λ (x− Y ) = 0. (3.2)

Combining Equation (3.1) and Equation (3.2), we obtain that for all X ∈ [0, 1]∩R
there exists a real δ (X) > 0 such that

f (x)

f (X)
≥ 0 ∀ x ∈ (X − δ (X) , X + δ (X)) ∩ [0, 1] with λ (x−X) = 0. (3.3)

{(X − δ (X) /2, X + δ (X) /2) ∩ R : X ∈ [0, 1] ∩ R} is a real open cover of the com-
pact real set [0, 1] ∩ R. Hence there exists a positive integer m and there exist
X1, . . . , Xm ∈ [0, 1] ∩ R such that

[0, 1] ∩ R ⊂
m⋃

j=1

((
Xj −

δ (Xj)

2
, Xj +

δ (Xj)

2

)
∩ R

)
.

Thus [0, 1] ⊂ ⋃m
j=1 (Xj − δ (Xj) , Xj + δ (Xj)).

By Equation (3.3), we have for j ∈ {1, . . . ,m} that

f (x)

f (Xj)
≥ 0 ∀ x ∈ (Xj − δ (Xj) , Xj + δ (Xj)) ∩ [0, 1] with λ (x−Xj) = 0. (3.4)

Using Equation (3.4), we obtain that f (1) /f (0) ≥ 0, a contradiction to the fact
that f (0) < 0 < f (1). This finishes the proof of the first claim.

Since f is R-analytic on [0, 1], there exists a real δ (X0) > 0 and there exists a
regular sequence (an (X0))n∈N in R such that

f (X0 + h) = f (X0) +
∞∑

n=1

an (X0) hn for 0 ≤ |h| < δ (X0) .

Now we look for x such that 0 < |x| � 1 and f (X0 + x) = S = 0. That is we look
for a root of the equation

f (X0) +
∞∑

n=1

an (X0) xn = 0.

Since fR (X0) = 0, we have that 0 < |f (X0)| � 1. Let

m = min {n ∈ N : λ (an (X0)) = 0} .
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Such an m exists by virtue of Remark 4.8 in [18]. Consider the polynomial

P (x) = f (X0) + a1 (X0) x + · · ·+ am−1 (X0) xm−1 + am (X0) xm. (3.5)

Thus,
f(X0 + x) = P (x) +

∑
n>m

an (X0) xn. (3.6)

We distinguish two cases: m > 1 and m = 1.
Case I: m > 1. (m can be odd or even.)

Second Claim: P (x) has a root x1 ∈ R such that X0 + x1 ∈ [0, 1].
Proof of the second claim: Suppose not. Then P (x) has the same sign as P (0) =
f(X0), and hence

P (x)

f(X0)
> 0 ∀x ∈ R satisfying X0 + x ∈ (X0 − δ(X0), X0 + δ(X0)) ∩ [0, 1]. (3.7)

There exists M1 > 0 and M2 > 0 in R such that

|P (x)| > M1 and

∣∣∣∣∣∑
n>m

an (X0) xn

∣∣∣∣∣ < M2 |x|m+1

for all x ∈ R satisfying X0 +x ∈ [X0 − δ (X0) /2, X0 + δ (X0) /2]∩ [0, 1] and λ (x) =
0. Let

δ1 = min


(

M1

2M2

) 1
m+1

,
δ (X0)

2

 .

Then δ1 > 0, δ1 is finite, and∣∣∣∣∣∑
n>m

an (X0) xn

∣∣∣∣∣ < M2 |x|m+1 <
M1

2
<
|P (x)|

2

for all x ∈ R satisfying X0 + x ∈ [X0 − δ1, X0 + δ1] ∩ [0, 1] and λ (x) = 0. Thus
f (X0 + x) = P (x) +

∑
n>m an (X0) xn has the same sign as P (x) for all x ∈ R

satisfying X0 + x ∈ [X0 − δ1, X0 + δ1] ∩ [0, 1] and λ (x) = 0. Since δ1 < δ (X0) , it
follows from Equation (3.7) that f (X0 + x) /f (X0) > 0 for all x ∈ R satisfying
λ (x) = 0 and X0 +x ∈ [X0 − δ1, X0 + δ1]∩ [0, 1], which contradicts the result of the
first claim. This finishes the proof of the second claim.

Since C is algebraically closed, P (x) has exactly m roots in C, including x1 and
not necessarily mutually distinct. We rewrite P (x) as follows:

P (x) = am(X0)(x− x1)(x− x2) · · · (x− xm), (3.8)

where x1 is as in the second claim above and where x2, . . . , xm are the other (not
necessarily distinct) roots of P (x) in C. Since λ (am(X0)) = 0, λ (aj(X0)) > 0 for
1 ≤ j < m, and λ(f(X0)) > 0, it follows that λ(xj) > 0 for j = 1, 2, . . . ,m. For if
λ(x) ≤ 0 then Equation (3.5) entails that P (x) ≈ am(X0)x

m and hence P (x) 6= 0.
Third Claim: At least one of the R-roots of P (x) has an odd quasi-multiplicity.

Proof of the third claim: Assume not. Then all R-roots of P (x) (including x1)
have even quasi-multiplicities. It follows that m is even and am (X0) has the same
sign as f(X0). It follows that P (x) and hence (as in the proof of the second claim)
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f(X0 + x) has the same sign as f(X0) for all x satisfying λ(x) = 0 and X0 +
x ∈ (X0 − δ1, X0 + δ1) ∩ [0, 1] for some finite δ1 satisfying 0 < δ1 ≤ δ(X0). This
contradicts the result of the first claim above.

Without loss of generality, we may assume that x1 has an odd quasi-multiplicity,
say l. Then 1 ≤ l ≤ m.
Subcase I-1: 1 ≤ l < m. By rearranging the roots of P (x), if necessary, we may
assume that

x1 ≈ x2 . . . ≈ xl and xj 6≈ x1 for l < j ≤ m. (3.9)

Now we look for y ∈ R such that λ(y) > λ(x1) and

0 = f(X0 + x1 + y)

= f(X0 + x1) + f ′(X0 + x1)y + . . . +
f (l)(X0 + x1)

l!
yl+

+ . . . +
f (m)(X0 + x1)

m!
ym +

∑
k>m

f (k)(X0 + x1)

k!
yk.

It follows from Equations (3.8) and (3.9) that

P (l)(x1) ∼
m∏

j=l+1

(x1 − xj) ;

and hence

λ
(
P (l)(x1)

)
=

m∑
j=l+1

λ(x1 − xj) ≤ (m− l)λ(x1). (3.10)

Since f (l)(X0 + x1) = P (l)(x1) +
∑

n>m n . . . (n− l + 1)an (X0) xn−l
1 and since

λ

(∑
n>m

n . . . (n− l + 1)an (X0) xn−l
1

)
> (m− l)λ(x1),

it follows that

λ
(
f (l)(X0 + x1)

)
= λ

(
P (l)(x1)

)
≤ (m− l)λ(x1). (3.11)

Let

g1(y) := l!
f(X0 + x1 + y)

f (l)(X0 + x1)
.

Then

g1(y) = l!
f(X0 + x1)

f (l)(X0 + x1)
+

l−1∑
k=1

αky
k + yl +

∑
k>l

αky
k (3.12)

where

αk =
l!f (k)(X0 + x1)

k!f (l)(X0 + x1)

for k = 1, . . . , l − 1 and for k > l.
Since P (x1) = 0, it follows that

λ(f(X0 + x1)) = λ

(∑
n>m

an (X0) xn
1

)
≥ (m + 1)λ(x1)
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and hence

λ

(
l!

f(X0 + x1)

f (l)(X0 + x1)

)
≥ (m + 1)λ(x1)− (m− l)λ(x1)

= (l + 1)λ(x1). (3.13)

For 1 ≤ k < l, we have, using Equations (3.8) and (3.9), that

λ

(
P (k)(x1)

P (l)(x1)

)
> (l − k)λ(x1).

Also

λ

(∑
n>m n . . . (n− k + 1)an(X0)x

n−k
1

P (l)(x1)

)
>

(m− k)λ(x1)− (m− l)λ(x1) = (l − k)λ(x1).

Hence

λ

(
f (k)(X0 + x1)

P (l)(x1)

)

= λ

(
P (k)(x1) +

∑
n>m n . . . (n− k + 1)an(X0)x

n−k
1

P (l)(x1)

)
> (l − k)λ(x1).

Thus,

λ(αk) = λ

(
f (k)(X0 + x1)

f (l)(X0 + x1)

)
= λ

(
f (k)(X0 + x1)

P (l)(x1)

)
> (l − k)λ(x1) for 1 ≤ k < l. (3.14)

Similarly, we show that

λ(αk) ≥ (l − k)λ(x1) for l < k ≤ m, (3.15)

Finally, for k > m, we have that

λ
(
f (k)(X0 + x1)

)
= λ

( ∞∑
n=k

n(n− 1) · · · (n− k + 1)an(X0)x
n−k
1

)
≥ 0.

Thus,

λ(αk) = λ

(
f (k)(X0 + x1)

f (l)(X0 + x1)

)
= λ

(
f (k)(X0 + x1)

P (l)(x1)

)
= λ

(
f (k)(X0 + x1)

)
− λ

(
P (l)(x1)

)
≥ 0− (m− l)λ(x1)

≥ (l −m)λ(x1) for k > m. (3.16)
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Let z = y/x1 and G1(z) = g1(x1z)/xl
1, where g1(y) is as in Equation (3.12).

Then

G1(z) = β0 + β1z + · · ·+ βl−1z
l−1 + zl +

∑
k>l

βkz
k, (3.17)

where

β0 =
l!

xl
1

f(X0 + x1)

f (l)(X0 + x1)

and βk = αkx
k
1/x

l
1 = xk−l

1 αk for all 1 ≤ k < l and k > l. Using Equations (3.13),
(3.14), (3.15) and (3.16), we obtain that

λ(β0) ≥ (l + 1)λ(x1)− lλ(x1) = λ(x1) > 0;

λ(βk) = (k − l)λ(x1) + λ(αk) > 0 for 1 ≤ k < l;

λ(βk) = (k − l)λ(x1) + λ(αk) ≥ 0 for l < k ≤ m;

λ(βk) ≥ (k − l)λ(x1) + (l −m)λ(x1)

= (k −m)λ(x1) > 0 for k > m.

Thus, G1(z) in Equation (3.17) is of the same form as f(X0 + x) in Equation (3.6)
except that the leading polynomial Q1(z) = β0+β1z+ · · ·+zl in Equation (3.17) has
degree l < m, the degree of the leading polynomial P (x) in Equation (3.6). Since
l is odd, Q1(z) has at least one root z1 ∈ R of odd quasi-multiplicity l1 ≤ l and
satisfying λ(z1) > 0. It follows that

P1(y) := l!
f(X0 + x1)

f (l)(X0 + x1)
+

l−1∑
k=1

αky
k + yl = xl

1Q1

(
y

x1

)

has at least one root y1 ∈ R of odd quasi-multiplicity l1 ≤ l and satisfying λ(y1) =
λ(x1z1) > λ(x1). Since λ(y1) > λ(x1), we infer that x1 + y1 ≈ x1. Thus,

X0 + x1 + y1 is on the same side from X0 as X0 + x1. (3.18)

Fourth Claim: X0 + x1 + y1 ∈ [0, 1].

Proof of the fourth claim: First assume that X0 ∈ (0, 1); then X0 is finitely away
from both 0 and 1. Since |x1 + y1| � 1, it follows that X0 + x1 + y1 ∈ (0, 1). Now
assume that X0 = 0. Since X0 + x1 = x1 ∈ [0, 1] by the second claim above, it
follows that 0 < x1 � 1. Using Equation (3.18), it follows that 0 < x1 + y1 � 1;
and hence X0 + x1 + y1 = x1 + y1 ∈ (0, 1). Similarly, we show that if X0 = 1 then
X0 + x1 + y1 = 1 + x1 + y1 ∈ (0, 1). This finishes the proof of the fourth claim.

Continuing as above, we either obtain a root of f after finitely many iterations;
or we have an infinite number of iterations, after a finite number of which, say N ,
the degree lN of the leading polynomial will agree with the quasi-multiplicity of its
roots for all the following iterations. Assume the latter situation happens. At the
(N + 2)nd iteration (finding yN+1), let

PN+1(y) = α
(N+1)
0 +

lN−1∑
k=1

α
(N+1)
k yk + ylN
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denote the leading polynomial, corresponding to P1(y) in Equation (3.12) of the
second iteration and yN+1 ∈ R a root of PN+1(y) of quasi-multiplicity lN . As in
Equation (3.13), we have that

λ
(
α

(N+1)
0

)
= λ(f(X0 + x1 + y1 + · · ·+ yN)) ≥ (lN + 1)λ(yN).

Since yN+1 has quasi-multiplicity lN as a root of PN+1(y), it follows that

α
(N+1)
0 = (−1)lN (product of the roots of PN+1(y))

≈ (−1)lN ylN
N+1 = −ylN

N+1.

Hence

λ (yN+1) =
λ
(
α

(N+1)
0

)
lN

≥ lN + 1

lN
λ (yN) =

(
1 +

1

lN

)
λ (yN)

≥
(
1 +

1

m

)
λ (yN) .

Thus, we obtain a sequence (ln) in N and a sequence (yn) in R such that ln is
odd, λ(yn+1) > λ(yn) > λ(x1) and X0 + x1 +

∑n
k=1 yk ∈ [0, 1] for all n ≥ 1, and such

that

ln+1 ≤ ln ≤ m for all n ≥ 1 and ln+1 = ln for n ≥ N

λ(yn+1) ≥
(
1 +

1

ln

)
λ(yn) ≥

(
1 +

1

m

)
λ(yn) for n ≥ N

λ(f(X0 + x1 + y1 + · · ·+ yn)) ≥ (ln + 1)λ(yn) > λ(yn) for all n ≥ 1.

Hence, for n ≥ N + 1, we have that

λ(yn) ≥
(
1 +

1

m

)
λ(yn−1) ≥ . . . ≥

(
1 +

1

m

)n−N

λ(yN)

>
(
1 +

1

m

)n−N

λ(x1).

Since λ(x1) > 0, it follows that limn→∞ λ(yn) = ∞; and hence limn→∞ yn = 0.
Hence limn→∞(x1 +

∑n
k=1 yk) exists in R [19]. Let

x = lim
n→∞

(
x1 +

n∑
k=1

yk

)
.

Then x ≈ x1 and hence X0 +x ≈ X0 +x1. Moreover, since X0 +x1 +
∑n

k=1 yk ∈ [0, 1]
for all n ≥ 1, it follows that

X0 + x = X0 + lim
n→∞

(
x1 +

n∑
k=1

yk

)
= lim

n→∞

(
X0 + x1 +

n∑
k=1

yk

)
∈ [0, 1].
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Since λ(f(X0 + x1 +
∑n

k=1 yk)) > λ(yn) and since limn→∞ yn = 0, it follows that
limn→∞ f (X0 + x1 +

∑n
k=1 yk) = 0. Thus,

f(X0 + x) = f

(
X0 + lim

n→∞

(
x1 +

n∑
k=1

yk

))

= f

(
lim

n→∞

(
X0 + x1 +

n∑
k=1

yk

))

= lim
n→∞

f

(
X0 + x1 +

n∑
k=1

yk

)
= 0.

Subcase I-2: 1 < l = m. The search for a solution of f(x) = S = 0 in [0, 1] here
follows the same steps as in Subcase I-1 except that l is replaced by m in the first
two iterations and the two equations (3.10) and (3.11) take the simpler form

λ
(
f (m)(X0 + x1)

)
= λ

(
P (m)(x1)

)
= 0.

After the second iteration, we proceed exactly as in Subcase I-1.
Case II: m = 1. In this case, the (quasi-)multiplicity l of theR-root x1 of P (x) is also
equal to 1 since 1 ≤ l ≤ m = 1. Hence the order of the leading polynomial agrees
with the quasi-multiplicity of its R-root (both equal to 1) from the first iteration
on. Thus, the search for a solution in this case is similar to that in Subcase I-2 (or
Subcase I-1) with N = 1 in this case. �

Finally, we close this paper with the following conjecture.

Conjecture 3.3. (Extreme Value Theorem) Let a < b in R be given, and let f :
[a, b] → R be R-analytic on [a, b]. Then f assumes a maximum and a minimum on
[a, b].

Remark 3.4. Ongoing research aims at proving the Extreme Value Theorem stated
above. Once this conjecture has been proved, Rolle’s Theorem and the Mean Value
Theorem follow readily.
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kleinen Größen. Mathematische Annalen, 118:718–732, 1941-1943.

[11] S. Priess-Crampe. Angeordnete Strukturen: Gruppen, Körper, projektive Ebe-
nen. Springer, Berlin, 1983.

[12] P. Ribenboim. Fields: Algebraically Closed and Others. Manuscripta Mathe-
matica, 75:115–150, 1992.

[13] W. H. Schikhof. Ultrametric Calculus: An Introduction to p-Adic Analysis.
Cambridge University Press, 1985.

[14] K. Shamseddine. New Elements of Analysis on the Levi-Civita Field. PhD
thesis, Michigan State University, East Lansing, Michigan, USA, 1999. also
Michigan State University report MSUCL-1147.

[15] K. Shamseddine and M. Berz. Exception handling in derivative computa-
tion with non-Archimedean calculus. In M. Berz, C. Bischof, G. Corliss, and
A. Griewank, editors, Computational Differentiation: Techniques, Applica-
tions, and Tools, pages 37–51, Philadelphia, 1996. SIAM.

[16] K. Shamseddine and M. Berz. Intermediate values and inverse functions on non-
Archimedean fields. International Journal of Mathematics and Mathematical
Sciences, 30:165–176, 2002.

[17] K. Shamseddine and M. Berz. Measure theory and integration on the Levi-
Civita field. Contemporary Mathematics, 319:369–387, 2003.

[18] K. Shamseddine and M. Berz. Analytical properties of power series on Levi-
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