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Abstract

This paper develops an empirical approach to estimate the equilibrium value of re-
newable electricity technologies, and applies it to evaluate solar energy mandates in
southeastern Arizona. Solar generation and other renewables suffer from intermittency
because weather varies and is only partially forecastable. Intermittency imposes costs
as a planner must maintain backup capacity and allocate operating reserves in order to
avoid system failure. We model an electricity system where a system operator optimizes
the amount of generation capacity, operating reserves, and demand curtailment in the
presence of variable and partially forecastable demand and renewable production. We
use generator characteristics, solar output, demand and weather forecast data to esti-
mate most parameters, and use existing estimates of demand elasticity. Equilibrium
costs of a 20 percent mandate are $136.1/MWh of solar generation, out of which un-
forecastable intermittency accounts for only $2.7/MWh. If CO2 reductions are valued
at $25/ton then this mandate would be welfare neutral if solar capacity costs dropped
from the current $5/W to $1.82/W. Our methods can be applied to examine the value
of other technologies, such as wind power and storage, and electricity market changes,
such as real-time pricing.
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1 Introduction

Electricity generation from fossil fuels is the largest source of greenhouse gas (GHG) emissions

worldwide. Currently over 70 percent of electricity produced in the U.S. is generated from

fossil fuels [see EPA, 2009]. Many U.S. states and foreign countries have enacted renewable

portfolio standards (RPSs) that specify minimum percentages of electricity generation from

renewable energy sources. For instance, California’s RPS specifies 33% power generation for

renewables by 2020 while Arizona has set a 15% RPS by 2025. Carbon tax and cap-and-

trade policies that various jurisdictions have considered or are considering will also likely

significantly increase renewable energy production.

Many observers consider solar energy to be a crucial part of future renewable energy

growth in the U.S., and solar energy has recently attracted large amounts of venture capital

funds, plant investment, and federal and state government subsidies [see Glennon and Reeves,

2010]. While solar facilities produce electricity at marginal costs close to zero, they also

produce intermittently, with production only during daylight hours and by far the highest

production levels during clear, sunny periods. Moreover, weather conditions, and hence

production levels, are not perfectly forecastable. Electricity is very costly to store and involves

scheduling production to meet demand in real time. The inability to meet demand can result

in a system failure where no one receives power and accompanying large welfare losses. If

solar generation is adopted on a large scale then grid operators may need to engage in

costly precautions, such as investing in backup fossil fuel generation capacity and scheduling

additional generation reserves to avoid system failure. Thus, intermittency may significantly

limit the value of solar energy and other renewables.

The general issues of intermittency for renewable power are understood both by policy-

makers1 and academics. A number of recent studies seek to quantify the potential importance

of intermittency for different technologies. Some studies deal with backup capacity invest-

ment [see Campbell, 2010, Hansen, 2008, Hoff et al., 2008, Skea et al., 2008]; others with

1For instance, a recent Texas state report [see SECO, 2011] notes intermittency, costs and surface area as
the three big challenges for solar energy, stating that “the solar resource’s intermittency and cyclical nature
pose challenges for integrating solar at a large scale into the existing energy infrastructure.”
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the time-varying generation profile of renewable energy [see Borenstein, 2008, Denholm and

Margolis, 2007, Joskow, 2010, Cullen, 2010b]; and finally some with intermittency and its

impact on operating reserves [see GE Energy, 2008, Helman et al., 2011]. These are all impor-

tant aspects of renewable energy. Yet, prior studies have not arrived at an overall economic

assessment of the value of large-scale renewable generation. The extent to which different

issues associated with intermittency balance out is unknown and depends crucially on how a

particular renewable energy source affects optimal choices of generator scheduling, operating

reserves and backup capacity.

This paper develops an empirical approach to estimate the equilibrium value of renewable

technologies. We model the decisions of the system operator who must schedule generation

and reserves and invest in new fossil fuel generators under different levels of renewable capac-

ity. We use the approach to evaluate solar energy mandates in southeastern Arizona. This

method could also be used to examine the equilibrium value of other renewable technologies

such as wind power, as well as how developments such as real-time pricing and improvements

in energy storage technology affect the value of renewable technologies.

The starting point of our approach is Joskow and Tirole [2007], who model a system

operator of an electricity market who seeks to maximize the discounted present value (DPV)

of welfare when faced with fossil fuel plants that can suddenly fail. Our model builds on this

paper by modeling renewable energy intermittency as similar to the unexpected failure of a

traditional generator as well as by modeling variability and uncertainty in demand.

In our model, at time 0 the operator chooses how many new fossil fuel plants to build

and how high to set the price for “curtailment contracts.” These contracts allow certain

flexible customers, typically industrial users, to be paid not to consume electricity in periods

of high demand. Each period, which is one hour, the operator is faced with a distribution

of demand, and in the presence of renewables, a joint distribution of demand and renewable

output. These distributions are derived from the previous day’s weather forecasts. The

operator must then decide how many plants to schedule for generation and reserves and also

how much demand to curtail, if any. Operator decisions depend crucially on five factors:

(1) the retail price, which it takes as given; (2) the variability of renewable power sources;
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(3) the extent to which this variability correlates with demand; (4) the extent to which this

variability is forecastable; and (5) the costs of building backup generation.

Our model has two central limitations. First, we do not model any dynamic linkages

from period to period, as would occur with start-up costs for plants, for instance.2 Second,

our model is consistent with competition in the wholesale generation market but not with

strategic multi-firm oligopoly bidding.

We apply our model to the portion of the electric grid operated by Tucson Electric Power

(TEP), whose coverage area roughly consists of southeastern Arizona. We obtain 2008 data

for TEP generator characteristics, demand by time period, generator failure rates, and solar

photovoltaic (PV) output from a site in Tucson. We also obtain day-ahead weather forecast

data from the National Oceanic and Atmospheric Administration (NOAA). We estimate the

predictable and unpredictable components of demand and renewable outputs at every hour

by regressing demand and renewable outputs on the previous day weather forecast of the

conditions at that hour,3 using a seemingly unrelated regression (SUR) model that captures

the fact that the unforecastable components of these processes may be correlated. We recover

most of the other parameters of the model using detailed data that include plant heat rates,

plant outages, fuel prices, prices of spinning reserves, and capacity costs. We assume that

demand follows a constant elasticity up to some maximum reservation price and calibrate

both the elasticity and reservation price from the literature.

One could potentially recover the demand curve by a structural estimation process that

would match the actual level of operating reserves to predicted values. However, we believe

that it would be somewhat problematic to assume that current TEP decisions reflect opti-

mizing behavior within the context of our model and hence that it is more credible to take

these parameters from the literature.4

2Cullen [2010a] estimates a dynamic model of start-up costs for plants. A similar model would hugely
complicate our analysis.

3Electricity system operators commonly schedule operating reserves one day ahead. For example, the
system operator for the Electric Reliability Council of Texas (ERCOT) obtains operating reserves for each
hour in one-day-ahead procurement auctions.

4TEP is subject to rate of return regulation by the ACC and this form of regulation has the potential
to introduce inefficiency. For example, TEP may have limited incentives to hold down costs of generation
and of providing operating reserves, since the regulatory commission is is likely to approve rates that would
allow the utility to recover their costs. This regulatory effect is known as X-inefficiency. Wolfram [2005]
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Using the estimated parameters of the model, we solve for the optimal policies under

different counterfactual scenarios, involving different levels of solar capacity and assumptions

about forecastability. The optimal solution involves balancing very low probability but very

costly system failures against the certain cost of additional operating reserves. Crude simula-

tion of very low probability events can be computationally very time consuming. We develop

a simulation procedure that oversamples multiple plant failures by summing over different

number of failures and then simulating which plants fail given that a certain number fail.

Under the assumption that solar PV capacity costs are $5/W, the DPV of average cost of

solar generation in Tucson is $193/MWh (19.3 cents/KWh) over the life of the installation.

This is $135/MWh higher than the average cost of generation for a new combined cycle

natural gas unit. This cost gap is narrowed to $123/MWh, after taking into account savings in

transmission and distribution costs due to the the distributed nature of some solar generation.

Our model yields expected welfare associated with different potential RPS policies, taking

into account optimizing behavior of the system operator. Not accounting for the benefit of

CO2 reduction, RPS policies of 10, 20 and 30% that are implemented solely with solar PV

would impose equilibrium costs of $129.3, $136.1, and $141.1 per MWh of solar generation

respectively, with the upward slope due to the increasing substitution from low cost plants and

the increasing need to construct backup fossil fuel generators. These per unit welfare costs are

higher than the (adjusted) average cost gap of $123/MWh, but not dramatically higher. The

net costs associated with variability and intermittency range from 3 to 9 % of the average

cost of solar generation for RPS policies in the 10 - 30 % range. Without unforecastable

intermittency, the equilibrium costs of the 20% RPS would drop by $2.7/MWh and without

the positive correlation between solar output and demand forecast errors, would rise by only

$0.2/MWh. If CO2 reduction is valued at $25 per ton, the 10% RPS would be welfare neutral

with a capacity cost of $1.97/W and the 30% RPS would be welfare neutral with a capacity

cost of $1.69/W.

finds evidence that non-regulated merchant power producers operate generation units at lower cost than
do regulated investor-owned utilities. Furthermore, the TEP system operator may act in a more risk averse
manner than predicted by our optimization model, whether due to career concerns or in response to regulatory
penalties for system failure.
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The remainder of the paper is divided as follows. Section 2 provides a background on

the electricity market. Section 3 discusses the model; Section 4 the data, estimation and

computation; and Section 5 the results. Finally, Section 6 concludes.

2 Background on Electricity

2.1 System Operations

The electricity system is a multi-nodal network that connects a number of different types

of generation plants to load centers (e.g., cities) via high-voltage transmission lines and

ultimately delivers power to customers via lower voltage distribution lines. The system is set

up to supply the power that customers wish to use at each point in time. Since storage is

very limited on most systems, the supply of power must equal (almost exactly) the demand

for power, called load, on a real time basis. To ensure matching of supply and demand, the

manager of an electricity grid engages in “system operations.” System operations involve

control of generation plants, decisions about rationing power to customers, and control of

backup systems. The system operator insures reliability in part by having generators available

on a stand-by basis so that customers can continue to be served in the event that one or more

generation plants fails and/or load exceeds forecast. Operating reserves consist of generation

capacity that is scheduled by the system operator over and above the amount required to

serve forecasted load. Operating reserves are part of a set of ancillary services used by the

system operator to regulate voltage and maintain stability of the system. It is common for

ancillary network-support services to require scheduling generation capacity equal to 10-12

percent of load at any point in time.5

Several characteristics of the electricity industry lead to concerns about the adequacy

of electricity resources (supply) to meet customers’ demand; Bushnell [2005] explains these

issues in more depth. First, as noted above, most electricity systems have very limited storage

capacity. Second, in most electricity systems the retail prices paid by customers are fixed over

long periods of time. Thus, the price mechanism is not used to adjust consumption in the

short-to-medium term in response to shortage or surplus. Third, both demand and available

5Joskow and Tirole [2007], p. 78.
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supply can vary considerably from hour to hour. Demand varies by time of day, season, and

weather conditions. Rapid changes in weather conditions can lead to unexpected changes

in demand. Supply can vary quickly and unpredictably due to equipment malfunction or

breakdown and due to intermittent renewable generation.

If available electricity supply is not sufficient to meet demand then a system operator will

typically shut off power to some customers or some geographic areas, resulting in a partial

blackout of the system. A total system collapse is a drastic situation in which demand and

generation are shut off over a large area in an uncontrolled fashion. An example was the 2003

blackout in the Northeast U.S. and Ontario in which 50 million customers lost power.6 In

this case, a transmission line fault led to deviations in network frequency, causing generators

and transmission lines to trip out in a cascading fashion, which led to a blackout over a large

area. In a system collapse, the sudden failure of one or more components of the generation

and transmission system leads to a complete inability to supply power over the grid.

In the absence of coordination by a system operator, the operator of a generation unit may

impose externalities on other suppliers and on consumers. This is because a power generator

may not face the additional cost of being the marginal producer that is causing the system

to have to shut out users or, in some cases, completely collapse [see Joskow and Tirole, 2007].

This externality problem is potentially larger with more intermittency problems, suggesting

that the role of the system operator may be more important with more renewable energy.

The North American Electric Reliability Corporation (NERC), an industry trade group,

has developed a set of standards for safe and reliable operation of the electric grid. These stan-

dards cover many aspects of grid operations, including management of operating reserves.7

NERC Standard BAL-002-0 deals with what is termed “Disturbance Control Performance.”

This standard dictates the amount of reserve capacity that is to be available in the event of

a loss of supply (typically from failure of a generator). Two key provisions of this standard

are:

1. The Balancing Authority shall carry at least enough reserve to cover the most severe

6Minkel [2008].
7See, NERC [2011].
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single contingency (e.g., failure of the largest generation unit in operation).

2. The maximum amount of time permitted for recovery from a disturbance is 15 minutes.8

The NERC standards were approved by the Federal Energy Regulatory Commission (FERC)

in 2007 and are now mandatory for electric utilities in the U.S.

All electric grids have operating reserves, although there is variation in their management

across grids. We have limited information about how TEP manages operating reserves but

more information from the Electricity Reliability Council of Texas (ERCOT), which covers

most of the state of Texas. ERCOT operates in a deregulated framework in which there is

both competition in the wholesale market and competition among retail service providers.

Wholesale electricity service is traded via bilateral contracts and in an energy balancing spot

market. However, even in ERCOT’s deregulated framework, there is a system operator that

is responsible for managing operating reserves so as to maintain reliability.

The ERCOT system operator runs auctions to procure operating reserves from generation

suppliers for several categories of reserves. ERCOT utilizes four main types of ancillary

services [see Baldick and Niu, 2005]: (1) Up Regulation Service; (2) Responsive Reserve

Services; (3) Non-spinning Reserves; and (4) Down Regulation Service. The first three of

these services pay firms in exchange for giving ERCOT the option to force them to operate

with short notice. If they are forced to operate, they then receive the market price on the

balancing market. These three services differ mostly in the length of time which they have to

increase production. The shortest is the Up Regulation, which allows firms 3 to 5 seconds to

adjust production, and the longest is non-spinning reserves, which allows an hour to adjust.

Down Regulation service pays firms that are operating generation units for giving ERCOT

the option to reduce their rate of generation. ERCOT would exercise this option when

demand is lower than expected. ERCOT conducts these ancillary service markets one day

ahead and operates one auction for each service category for each hour.

8The recovery period is defined as the amount of time it takes to return the area control error to the
minimum of zero and its pre-disturbance value.
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2.2 Electricity Provision in southeastern Arizona

Most people in southeastern Arizona live in the Tucson metropolitan area, which is one of

the best locations in the U.S. for solar electricity generation, as evidenced by the solar ra-

diation map in Figure 1. Electricity service is provided by Tucson Electric Power (TEP),

a vertically integrated, investor-owned utility that is regulated by the Arizona Corporation

Commission (ACC). TEP’s service territory covers 1,155 square miles and includes a popu-

lation of approximately one million in the greater Tucson metropolitan area.9 Retail energy

consumption by customer class in 2008 was distributed as follows: 41 percent residential, 21

percent commercial, and 38 percent industrial and public. Copper mining is the largest in-

dustrial user of electricity, accounting for about one-third of industrial consumption. Tucson

is a summer peaking system, with very hot summers and high usage of air conditioning. The

highest load in 2008 was 3,063 MWh for 3-4 p.m., August 1.

Tucson is situated within the Western Interconnection, the electrical grid that encom-

passes the Western U.S. and part of Western Canada. TEP is responsible for system op-

erations and for scheduling generation and transmission power flows within its balancing

authority area, which covers most of southeastern Arizona. At different times, TEP both

imports and exports power over the Western Interconnection. As of the end of 2008, TEP

owned or leased generation units with total capacity of 2,222 MW. This capacity is virtually

all powered by fossil fuel.10 Many TEP customers have solar PV panels at their business or

residence. However, total distributed solar PV capacity in TEP’s service territory was only

2.7 MW as of the end of 2008.11

TEP is subject to a Renewable Portfolio Standard (RPS), mandated by the ACC, which

calls for an increasing fraction of load to be generated from renewable sources until 15 percent

of load is from renewables by 2025. For 2008 the RPS was 1.75 percent. TEP satisfies the

RPS through a combination of its own solar PV generation, wholesale purchases of renewable

9Detailed information about TEP customers and operations are found in the 2008 10-K annual report for
UniSource Energy Corp., TEP’s parent company; [see UniSource, 2008].

10Other utilities in Arizona own and operate non-fossil fuel generation plants. The Salt River Project has
several hydroelectric plants. Arizona Public Service operates the nation’s largest nuclear generator, Palo
Verde. There is some wind generation in Arizona. However, wind is not expected by be a major source of
renewable generation in the state.

11TEP [2009].
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Figure 1: Photovoltaic Solar Resource: Source www.NREL.gov

energy, distributed solar generation by its customers, and retirement of banked renewable

energy credits.

2.3 Solar Energy and Intermittency

The nature of renewable energy intermittency depends on the characteristics of the renewable

generation technology and the location of the equipment. For solar energy there are two main

types of generation systems: solar photovoltaic (PV) and concentrating solar power (CSP),

also known as solar thermal. Solar PV systems utilize panels of materials (such as silicon)

that convert solar radiation into direct current (DC) electricity, coupled with inverters that

convert DC current to alternating current (AC) that is used by customers [see NREL, 2011].

Electricity generation from solar PV panels varies with solar insolation, a measure of energy

from sunlight. Higher solar insolation yields more PV generation, holding everything else

constant. On the other hand, increases in temperature above 77 degrees Fahrenheit cause

10



lower generation from crystal silicon solar PV panels, holding other factors constant.12 The

highest levels of solar PV generation in Tucson occur on sunny spring and fall days, rather

than on the hottest days of summer. Most solar PV panels in the northern hemisphere are

mounted to face south at a fixed tilt, with the tilt based on latitude. There are also single-axis

tracking systems, in which the tilt adjusts according to the season (steep in winter, flatter

in summer), and double-axis systems in which both the angle of panels and the direction

in which panels face are controllable. The facing direction is adjusted over the course of

each day to track the movement of the sun. Single and double-axis tracking PV systems

yield more generation per unit of capacity but their capital costs and space requirements are

greater than those of fixed tilt systems. Among fixed tilt PV systems, Borenstein [2008] notes

that while south-facing panels will yield maximum total generation, west or southwest-facing

panels may be more valuable because generation is shifted to later in the day.

Concentrating solar power (CSP) systems collect the sun’s energy by using mirrors that

focus sunlight on a heat-transfer fluid. The hot fluid then is used to boil water in a conven-

tional steam-turbine generator to produce electricity or, in the case of a dish/engine CSP

system, to drive pistons in an engine to create mechanical power which can run a generator.

CSP systems are typically built at utility scale (50 MW capacity or more) whereas solar PV

systems range from small rooftop residential installations to utility scale projects. Genera-

tion from CSP systems is less intermittent than with solar PV. The thermal energy storage

feature of CSP yields less variability in generation during daylight hours and also permits

generation to continue beyond daylight hours into the evening.13

To illustrate the issues of intermittency, Figures 2 and 3 show southeastern Arizona

demand and solar PV output in solid lines, for Jul. and Aug. 15, 2008 respectively.14 Because

southeastern Arizona power demand is driven by air conditioning, it peaks during hot and

sunny periods; but sunny periods also have a lot of solar production. Thus, solar output

correlates positively with demand during the daytime. This suggests a greater value for

12See Borenstein [2008]. The impact on PV performance depends on the particular PV technology. This
effect is in contrast to CSP technology, for which higher temperatures improve performance.

13Glennon and Reeves [2010] provides an extensive discussion of CSP and solar PV systems, including
issues involving water use, land use and siting, and environmental damage.

14The solar PV output is for a 1.536 KW test facility near the Tucson International Airport.
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Figure 2: Predicted and actual southeastern Arizona load and solar output, Jul. 15, 2008
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solar power than without a correlation since production occurs when demand, and hence

marginal costs of generation, are high. Figures 2 and 3 also illustrate that the correlation

of solar output and demand is not perfect; daily peak demand tends to occur later in the

day than peak solar output. Moreover, although clear skies increase solar production, high

temperatures decrease production.

With dotted lines, Figures 2 and 3 also show the mean forecasted demand and output

using day ahead weather forecasts.15 For Jul. 15, both actual output and load lie above their

predicted values from 11AM onwards, suggesting that the day was sunnier and hotter than

forecasted. However, solar PV output is particularly vulnerable to unforecastable intermit-

tency relative to other technologies, because solar radiation drops precipitously when cloud

cover appears.16 On Aug. 15 at 1PM, actual output plummeted below forecasted output,

illustrating this problem. Unforecastable intermittency is particularly costly because of the

15We provide details on our forecast methodology in Section 4.
16Glennon and Reeves [2010] consider solar PV to “present a major intermittency problem” (p. 97) relative

to the older concentrating solar technology.
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Figure 3: Predicted and actual southeastern Arizona load and solar output, Aug. 15, 2008
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need to schedule backup reserves.17 On one hand, the positive correlation in the unfore-

castable portions of solar output and load will increase the value of solar by decreasing the

variability of load net of solar output. On the other hand, the unforecastable intermittency

in solar production will lower its value.

3 Model

3.1 Overview

We develop a model of electricity generation, system operations and the demand for power.

We model a planner who makes optimal decisions regarding capacity investment for gen-

eration units, generator outputs, operating reserves and demand curtailment. The planner

makes its decisions taking as given a level of solar capacity, as would occur if an RPS were

binding; the current set of generators; and the retail price of electricity, which we assume to

17This point is generally understood by system operators. See, for instance, GE Energy [2008], who discuss
this point for wind energy.
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be a fixed number, p, consistent with the relatively inflexible retail pricing observed in most

U.S. electricity markets.18 System reliability and total welfare are in turn functions of the

planner’s choice variables, retail price and solar capacity.

Our model builds on Section 4 of Joskow and Tirole [2007] and extends their model in

several ways in order to arrive at a framework that can be taken to data. In particular, we

model different types of power plants; price-responsive demand; uncertainty about demand

forecasts; the possibility of demand curtailment contracts; reserves that are less costly than

generation; and the possibility of renewable energy sources.

In our model, the future is discounted with discount factor β at the level of the year,

and time runs from 0 to T , the lifetime of the generators. There are two stages of decision-

making. In the first stage the planner chooses (a) the number of new fossil fuel generation

units to construct, and (b) a price per MWh for compensating customers who have their

demand curtailed, which we denote pc. The second stage is composed of a sequence of short-

run periods that span the lifetime of the generation units. In each second-stage period,

the planner chooses which generators to schedule for production and operating reserves,

and the level of demand curtailment. Because we endogenize the long-run choices of fossil

fuel capacity investment, our model provides a framework with which the welfare impact of

introducing significant amounts of renewable generation into the system can be numerically

evaluated. We then evaluate policies that mandate different minimum amounts of solar PV

capacity.

Each second-stage period corresponds to one particular hour, e.g. Jul. 15, 2008, 6PM,

and is denoted t.19 Periods are differentiated from each other, to account for the fact that

electricity demand and solar output vary based on the weather, time of day, day of the week,

and other available information, and that generators may be unavailable due to scheduled

maintenance. In each period, the planner first makes its decisions, and then actual demand,

solar generation, and generator breakdowns are realized. This then results in a level of utility

18It is possible to loosen this assumption to understand the relationship between real time pricing and the
equilibrium value of renewables, among other questions.

19Hansen [2008] finds that solar cost calculations may be sensitive to the length of the observation period
between a minute and an hour, suggesting the value of robustness analysis in our case.
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as consumers obtain surplus from using electricity. In the unlikely event that total available

generation (scheduled generation plus operating reserves) is less than the total demand, a

system collapse occurs, with zero consumer surplus for a set number of periods, dfail.

Part of the variation in demand and solar output is forecastable at the time that generation

and reserves are scheduled while a portion will not be forecastable. For each second-stage

period, we denote the state of the world as the set of variables that the planner uses when

making its decisions. The state has two components: a vector wt that represents information

that might affect the distribution of solar output and/or demand for period t and that is

observable at the time of production scheduling, and a vector mt that indicates the scheduled

maintenance status of each generation unit in t. Included in wt are weather forecasts, the

time of day, the day of the week, and the time since sunrise and sunset, all of which will

predict load and/or solar output. Each state (wt,mt) thus implies a joint distribution of

demand and solar generation for period t as well as a probability distribution for generator

failures, or forced outages. Each generator failure is assumed to be an independent event and

independent of (wt,mt).

3.2 Demand and Consumer Welfare

We specify demand for electricity to be a function of retail price p and forecast information

wt.20 We choose a very parsimonious specification for demand in order to minimize the

burden of identification of the demand parameters. Specifically, we assume that demand

has a constant price elasticity η for prices up to a reservation value, v. While the elasticity

of demand is constant across states, the level takes on a distribution that varies with wt,

D ∼ FD(·|wt). Demand in period t is then

QD(p,D) =

 0, p > v

Dp−η, p ≤ v.
(1)

We assume that FD(·|wt) has a lower bound D
min

(wt).

20Although we consider a fixed-price regime, allowing for price-responsive customers is necessary to under-
stand the welfare loss from system failure and hence to understand optimal decision-making.
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The term value of lost load (VOLL) is used in the electricity industry to describe the

average value of electricity per unit for customers; see Cramton and Lien [2000].

Lemma 3.1. With demand specified in (1) and retail price fixed at p, VOLL is constant
within and across states and satisfies:

V OLL =

(
1

1− η

)
v1−ηpη −

(
η

1− η

)
p (2)

Proof See appendix for derivation.

Lemma 3.1 implies that we can calculate the reservation value v using estimates of VOLL

and the price elasticity η.

Let Bt(Q) be the gross consumer benefit function (area under the inverse demand curve)

in period t as a function of quantity Q. If Q is equal to the quantity demanded at retail

price p then Bt(Q) = V OLL × Q. If there is a complete network collapse in period t then

the opportunity cost of the collapse is Bt(Q)× dfail.

Our demand model also allows for a system operator that offers interruptible power

contracts, as described in Baldick et al. [2006]. In the first stage, the system operator

chooses a curtailment price pc and offers contracts whereby users would agree to have their

power curtailed as necessary and be paid a per-unit price of pc as compensation. In the

first stage, all users with valuation below pc will sign up for interruptible power contracts.21

In each second stage period, knowing (wt,mt) (and hence knowing F (·|wt)), the planner

will choose the amount z of demand curtailment. When demand is curtailed, the planner

randomly selects customers for curtailment from the set of customers who have signed up for

interruptible power contracts and who are known to use power at that time.22 We assume

that the set of known users has mass D
min

(wt).

The amount by which the planner can curtail demand in any period is limited by D
min

,

curtailment price pc, and the price elasticity of demand. Specifically,

21Baldick et al. [2006] note that compensation per MWh for curtailed demand in interruptible power
contracts ranges from about 1.5 to 6 times higher than average retail price.

22We assume that it is not possible for the planner to curtail demand from the lowest valuation users. If
possible, this would result in more efficient rationing.
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Lemma 3.2. If pc < v, then curtailment z satisfies 0 ≤ z ≤ D
min

(wt) [p−η − p−ηc ], with
welfare loss of

WLC(z, pc) =
η(p1−η − p1−η

c )z

(η − 1)(p−η − p−ηc )
.

Proof See appendix for derivation.

The welfare loss function WLC(z, pc) indicates the loss in consumer benefits relative to the

amount of gross consumer benefit Bt(Q) when there is no curtailment. Note that there is

a tradeoff from increasing pc. An increase in pc implies that the planner can curtail more

demand, which increases expected welfare as it allows the planner to avoid system failure.

However, an increase in pc also implies an increase in the average valuation of the curtailed

user, which decreases welfare as it increases WLC(z).

3.3 Generation from Fossil Fuel and Solar PV

We assume that there is a set of existing generation units indexed by j ∈ {1, ..., J}. Each

unit has a maintenance status mt
j at time t, with mt

j = 1 implying that the unit is unavailable

for production. Each available unit can be scheduled for production at full capacity or no

production; let ontj denote a 0-1 indicator for scheduled production at time t. Note that

mt
j = 1 =⇒ ontj = 0.

Each unit uses a particular generation technology; coal, natural gas, etc. We use the

following notation:

• kj = production capacity in MW of unit j

• cj = operating cost per MWh (constant) of unit j

• Pmaint
j = probability of scheduled maintenance per period for unit j

• P fail
j = probability of sudden failure per period for unit j

• cs ratio of reserve costs to operating costs

The marginal costs (MC) of generation for unit j are cj. The MC of fossil fuel units depend

on fuel cost, unit heat rate and costs associated with emissions. Generators can also be
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used to provide operating reserves which allows them to produce electricity in the case of

the failure of another generator or load in excess of forecasted load. For any generator, we

assume that the marginal cost of reserves is a fraction cs of the cost of producing electricity

for whatever fraction of capacity of the generator is under reserve.

Potential output from (non-solar) generation unit j at time t is given by

xj(on
t
j) =

 kj, with prob (1− P Fail
j )ontj

0, otherwise
(3)

Our model of generation unit failures is based on the probabilities of losing discrete-sized

units which allows us to take the model to the data on generation unit outages. Although

generation unit start-up costs imply that operation decisions are dynamic [see Cullen, 2010a],

we abstract away from this concern and treat all operations costs as static.

We allow for the planner to invest in new fossil fuel generation capacity. Specifically,

we assume that there is a fixed capacity size kFF for new fossil fuel generation units, with

investment cost of FCFF per MW of capacity and operating costs of cFF per MWh. Knowing

these values, the planner chooses the number of new plants, nFF ∈ {0, 1, 2, . . .}. Each of the

new fossil fuel generation units have the same MC, maintenance probability, and failure

probability. We label the new fossil fuel units j = J + 1 through j = J + nFF .

Similarly, we assume that solar PV capacity costs FCsolar per MW of installed capacity.

Solar units have zero MC and maintenance and failure probabilities; scheduled maintenance

costs are included in FCsolar. Unlike gas plants, solar PV plants are continuously scalable.

We assume that the planner is faced with a fixed level of listed solar PV generation capacity

nsolar as specified by an RPS-type mandate. Production from solar PV generation will then

take on a state-contingent distribution nsolarSt, where St ∼ F S(·|wt). Let F (·|wt) denote the

joint distribution FD, F S of forecasted load and solar output. This formulation allows for

the possibility of correlation between forecast errors for demand and for solar generation.

Finally, we abstract from transmission constraints and treat the system as a single zone.

We assume a constant marginal cost of transmission and distribution (T&D) per MWh of

delivered electric service; denote this cost as cTD. One advantage of renewable energy is that

the generation is often locally distributed, minimizing T&D costs. We assume that a fraction
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dTD,solar of solar output is produced in a distributed environment and hence does not incur

T&D costs.

Even though TEP imports and exports power from the Western Interconnection, we

do not model this possibility.23 Removing access to this market will tend to imply that

the planner should construct more new generators than otherwise. However, we are not

concerned with evaluating the absolute level of new construction. Rather, we evaluate the

extent to which solar capacity changes the optimal number of new generators. We believe

that this number will be relatively robust to not specifying the import and export market.

3.4 Planner’s Problem

We seek to characterize the social planner’s problem of maximizing expected discounted total

surplus, subject to p and nsolar. In the first stage, the planner chooses nFF and pc. In each

second-stage period t, the planner makes two decisions conditional on the state (wt,mt) and

first-stage decisions: (1) generator scheduling decisions ont and (2) amount of demand to be

curtailed, zt.

We model the choice of spinning reserves as a simplified version of how reserves are

treated in unit commitment models.24 Upon learning the state (wt,mt), the planner chooses

ontj for each unit with mt
j = 0. Then, the time t random variables are realized. Possibly, a

complete system failure occurs, with no production. Otherwise, the planner will adjust actual

generation to be exactly equal to demand. Observing actual demand and generator failure,

the system operator can minimize costs by using the generators with the highest marginal

costs as reserves. Let PC(D,S, x) denote the ex-post minimized costs of power generation

and reserves for a given demand, solar output and actual generator output realization.

We illustrate the calculation of PC with a simple example. Consider a case with two

scheduled generators each with capacity 1, with c2 > c1, realized demand is 1.6 and no

23This assumption of not allowing imports or exports has been used in the literature that uses electric-
ity data from the Western U.S. An example is the analysis of real-time-pricing using California data; see
Borenstein and Holland [2005].

24A unit commitment model would specify the cost of generation as well as costs of several types of reserves
for each unit: spinning reserve up (to provide for an increased rate of generation), spinning reserve down (to
provide for a reduced rate of generation), and non-spinning reserves. Bouffard et al. [2005] formulate and
analyze a unit commitment model with stochastic demand. Our model is simplified in that we have a single
type of operating reserve, which can be thought of as a spinning reserve up.
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generator failures or solar production. Following the demand realization, the planner would

partially shut down generator 2 as it has higher costs. Thus, the total production plus reserve

costs would be PC(1.6, 0, (1, 1)) = c1 + 0.6× c2 + 0.4× c2 × cs.

A system failure occurs when total generation is less than demand, taking into account

both unit failures and demand curtailment. The probability of system failure, conditional on

the state and actions is then

SFP (z, on, w, nFF , nsolar) = Prob

nsolarS(w) +
J+nFF∑
j=1

xj(onj) < D(w)p−η − z

 .
The planner’s second-stage problem may now be defined as

W (w,m | nFF , nsolar, pc) = maxz,on{
E
[
(1− dFailSFP (z, on, w, nFF , nsolar))

(
B(Dp̄−η)−WLC(z, pc)

)
−cTD(D(w)p̄−η − z − nsolarS(w)dTD,solar)− PC

(
D(w), S(w), x(on)

)
| w
]}

such that mj = 1 =⇒ onj = 0.

(4)

From (4), the planner trades off the expected consumer welfare accounting for the possibility

of system failure and demand curtailment (the first line) against the transmission, distribu-

tion and production costs (the second line). Generators can only be operated if they are not

undergoing scheduled maintenance (the third line). The expected operating reserves associ-

ated with a decision are the difference between production plus reserves and net demand:

OR(w,m | nFF , nsolar, pc) = E

nsolarS(w) +
J+nFF∑
j=1

xj(onj)− (D(w)p−η − z) | w,m

 .
Extra generation in the form of operating reserves provides a “cushion” in the event that one

or more generation plants fail, load exceeds forecast load, and/or renewable generation falls

short of forecast renewable generation.

The planner rolls up the second-stage payoffs by taking the expected value of W in (4)

over all the periods in one year, and then discounting the expected annual welfare over the

life of generation plants. Specifically, we suppose there is a distribution over states (wt,mt)

over all the periods of a year. Using this distribution, define N to be the numer of hours in
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a year and define the annual expected welfare as

V (nFF , nsolar, pc) = N × E[Wt(w
t,mt) | nFF , nsolar, pc].

Then, expected total surplus is

TS(nFF , nsolar, pc) =
1− βT

1− β
V (nFF , nsolar, pc)− FCFFkFFnFF − FCsolarnsolar. (5)

In the first stage the planner chooses the number of new fossil fuel units nFF and compensa-

tion pc per unit for demand curtailment to maximize TS(nFF , nsolar, pc) in (5). The amount

of solar PV generating capacity, nsolar, is constrained via RPS regulations.

Although we have developed our model as the single-agent social optimum, it could

be generated by a market-based model, similar to ERCOT, under the condition that each

generator is run by a single firm. Specifically, we would model two auctions, one for the

wholesale generation market and one for the operating reserves market. The system operator

would submit hourly bid requests on the generation and operating reserves markets under

uniform-price auctions where every firm is paid the lowest rejected bid. In the generation

market, the planner would choose the total quantity of accepted bids to equal expected net

demand less solar generation. In the operating reserves market, the planner would choose the

quantity of accepted bids to equal the scheduled total quantity from the planner’s problem

in (4) minus the amount of generation from the generation market.

Under this system, single-generator firms would have the incentive to bid their marginal

costs for production and reserves and hence all information would be revealed to the system

operator. However, multi-unit oligopolistic firms will not bid their valuations in this type of

auction as they will have the incentive to increase their bids above marginal costs on marginal

units since this will benefit their infra-marginal units [see Ausubel and Cramton, 2002].

4 Data, Estimation, and Computation

4.1 Data

In order to estimate and calibrate the parameters of our model, we use data from a variety of

sources. These includes the Energy Information Administration (EIA), the Environmental

21



Protection Agency (EPA), ERCOT, TEP, FERC and NOAA. Our data pertain mostly to

the Tucson area in 2008.

We use 2008 hourly load data for the Tucson service area from a FERC Form 714 filing

by TEP. Summary statistics on load data are provided in Table 1. The peak month for

electricity demand was August, due to hot weather and high air conditioning use. March

was the month with the lowest electricity demand.

We create our data on generation units serving Tucson in 2008 by combining information

from several sources. The EIA maintains a database on all existing generation units in the

U.S. This database includes information about capacity, fuel source, and location. We obtain

information on heat rates from the Environmental Protection Agency (EPA) eGRID2007

report and from EIA Form 923. The EPA report provides heat rates at the plant level, where

a plant may have multiple generation units. We assume that each generation unit at a plant

site has the same heat rate. The EIA also has information about capacity investment cost

for new generation units and average retail electricity price.

The EPA eGRID2007 report also has average annual emission rates for CO2, SO2, and

NOx at the plant level. We apply the same emission rates for each generation unit at a plant.

TEP units are not subject to NOx permit fees. EPA’s NOx Budget Trading program, a cap

and trade program for NOx, applies to 20 eastern states, but does not apply to AZ [see EPA,

2011]. SO2 permit fees are from the EPA’s annual advance auctions for years 2011 - 2017.

Since our analysis is forward looking, we use information about projected future fuel costs.

EIA Form 423 contains information about the terms of multi-year fuel contracts for each of

the coal-fired generation plants. For natural gas we use NYMEX futures prices at Henry

Hub in Louisiana [see CME, 2011]. We collect the last settlement price for each month for

futures contracts in December 2010 for delivery from January 2011 through December 2015.

Our natural gas price is the average of these prices.

Actual hourly solar generation data for 2008 is from a solar PV test site near the Tucson

International Airport run jointly by TEP and the University of Arizona [see TEP, 2011].

This system has 24 solar PV modules with total rated capacity of 1.536 KW.25 The modules

25This is a relatively small facility, somewhat smaller than the size of a typical residential installation.
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Table 1: Summary Statistics for TEP Hourly Load (MWh), 2008
 

 
Month Average Standard deviation 
January 1,344 118 
February 1,314 123 
March 1,288 125 
April 1,345 182 
May 1,432 262 
June 2,041 477 
July 2,088 407 

August 2,101 408 
September 1,913 386 
October 1,597 281 

November 1,434 163 
December 1,506 144 

Number of observations: 8,784 
 

are at a fixed 30 degree tilt facing south. Summary statistics on solar output are given in

Table 2. Actual mean hourly output per month is never more than 0.393 kWh even though

the rated output of the system is 1.536 KW. No solar energy is generated between the hours

of 9PM and 6AM. The maximum solar generation occurs in April, 2008. Unlike electricity

demand, solar generation is relatively consistent throughout the year. If one assumes a 6%

discount rate and a 25 year life for solar panels (as we do in our computations) then these

data, coupled with our assumptions about the cost of solar panels, yield an average cost

of $193/MWh (19 cents/kWh) for solar PV generation. Note that the partially distributed

nature of solar generation saves some T&D costs – in our case $12/MWh as we discuss below

– savings that should be taken into account when comparing solar PV generation cost to

costs of other generation technologies. Also note that our average cost figure for solar PV

is based on generation data for a particular set of panels during 2008. There are now solar

PV panels available with higher efficiency, and hence lower average generation cost, than the

panels from which our data are drawn.

A novel aspect of this project is collection and use of weather forecast data which are

used to determine the day-ahead forecasts of load and solar generation. We collect weather

forecast data from the National Climatic Data Center of the National Oceanic and Atmo-

Solar PV panels generate electricity with roughly constant returns to scale, so we are able to use generation
data from this facility to make generation projections for a much larger facility.
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Table 2: Summary Statistics for Tucson Solar Test Site, 2008

Month Mean output (kWh) Hour Mean output (kWh) 
Jan. 2008 0.282 6 AM 0.0005 
Feb. 2008 0.325 7 AM 0.024 
Mar. 2008 0.279 8 AM 0.190 
Apr. 2008 0.393 9 AM 0.516 
May 2008 0.373 10 AM 0.816 
Jun. 2008 0.363 11 AM 1.026 
Jul. 2008 0.334 12 PM 1.127 
Aug. 2008 0.352 1 PM 1.141 
Sep. 2008 0.389 2 PM 1.082 
Oct. 2008 0.374 3 PM 0.931 
Nov. 2008 0.320 4 PM 0.690 
Dec. 2008 0.244 5 PM 0.380 

  6 PM 0.114 
  7 PM 0.013 

Rated capacity: 1.536 kW 8 PM 0.0002 
Average output: 0.344 kWh 9 PM – 5 AM 0 

 

spheric Administration (NOAA) [see NOAA, 2011]. The forecasts are generally at 3 a.m. for

the next day at windows of 3 hours. We interpolate to convert to hourly forecasts. Infor-

mation includes cloud cover, wind speed, temperature, relative humidity and dew point. All

information is reported as a continuous measure except for cloud cover, which is reported

as one of six discrete measures (“overcast” to “clear”) each corresponding to an interval in

terms of the numerical percent of sunlight passing through. We convert cloud cover to a

continuous measure using the midpoint of the interval. Our weather forecast data is from

the KTUS NOAA weather station, which is located at the Tucson International Airport. Our

data include most, but not all hours in 2008. Table 3 provides information on the variables

used in the weather forecast. We supplement the NOAA weather information with data on

sunrise and sunset times at the daily level [see Sunrise, 2011].

We do not have data for generator outages or for costs of operating reserves used by TEP,

and so we use information from ERCOT for these two measures. Specifically, to calculate the

failure probability of fossil fuel plants, we use data from ERCOT on generation unit outages

and resource plan data. Outages are relatively infrequent, so we compute average outage

probabilities for two broad classes of generators: coal and natural gas. The outage data

indicate which plants are unavailable both for scheduled maintenance and for unit failures
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Table 3: Summary Statistics for Information Used in Weather Forecasts, 2008 
 

Forecast Variable Average Standard deviation 
Cloud cover (%) 0.277 0.200 
Temperature (°F) 70.4 16.9 
Dew point (°F) 36.5 15.2 

Relative humidity (%) 34.3 19.1 
Wind speed (MPH) 8.53 4.06 

Number of observations: 8,448 
 
 

(termed “forced outages” in ERCOT) [see ERCOT, 2011b]. The resource plan data indicate

which plants are in operation at particular times. The ERCOT data on outages and resource

plans do not overlap. Our approach is to pair outage data for August 2008 with resource

plan data for August 2009. Our implicit assumption is that generator usage over the hours

of a single month will be similar from one year to the next.

Finally, we use information from ERCOT on procurement costs for operating reserves

and energy balancing market prices to provide a proxy for TEP operating reserve costs.

ERCOT maintains ancillary services auctions for each of the four types of reserves described

in Section 2.1. Market clearing prices for the four ERCOT operating reserves auctions for

each hour of each day in 2008 for these ancillary service auctions were obtained from ERCOT

[2011a]. We focus on up-regulation and responsive reserve services, as these are most like

the spinning reserve concept we use in our analysis. Market clearing prices for the energy

balancing market were collected for each hour of 2008. These prices should provide reasonable

estimates of the hourly marginal cost of generation in ERCOT.26

4.2 Estimation and Calibration of Parameters

Table 4 lists the demand parameters. Short-run electricity demand is typically estimated to

be quite price inelastic – see Espey and Espey [2004] for a survey and meta-analysis. Our

value of η = 0.1 is somewhat lower than the median estimate reported in Espey and Espey

[2004], but well within their range. Our value of p is based on EIA data for Arizona in 2008.

The reservation value can be recovered from (2) using numerical values for elasticity,

26See Hortacsu and Puller [2008] for a discussion of the extent to which exercise of market power by
generators may drive a wedge between these wholesale market prices and marginal generation cost.
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Table 4: Demand parameters

Parameter Interpretation Value Source
η Demand elasticity 0.1 Espey and Espey [2004]
p Retail price per MWh $95.6 EIA
v Demand reservation value per

MWh
$6,157 Computed so that VOLL

is $4,500/MWh
F ≡ (FD, F S) Forecastable distribution of de-

mand and solar output
Estimated

average price and VOLL. Using mostly customer surveys, Cramton and Lien [2000] report

estimates of VOLL that range from $1,500/MWh to $20,000/MWh. We choose a conservative

estimate of VOLL=$4,500/MWh which implies the listed reservation value. Note that a

higher VOLL estimate or a lower demand elasticity would imply that the planner would

want to prevent system failure more and hence maintain higher reserves. We can investigate

the impact of higher VOLL numbers and demand elasticity on our results.

We estimate FD, the relationship between day-ahead weather forecasts and load, jointly

with F S, the relationship between day-ahead weather forecasts and solar output. Specifi-

cally, we estimate a seemingly unrelated regression (SUR) specification with two dependent

variables, Tucson load and solar output. The unit of observation is the hour, for all daytime

hours (defined as the hours after sunrise until the hour past sunset) in 2008. As solar output

is zero outside these hours, we estimate a separate regression with just demand, for all the

other hours in 2008. For all regressions, the regressors include the day-ahead weather fore-

casts and other factors that might affect load or solar output such as the day-of-the-week.

The large number of observations allows for a flexible functional form for the regressors and

hence we use linear splines. For our simulations, we need to predict the joint density of

solar output and the demand constant D at any hour. Rather than parametrizing the joint

density of residuals, we directly simulate from this joint density in order to predict the joint

distribution of solar output and load at any hour. For each data element, we take 20 discrete

draws from this distribution for use in the simulation procedure. For a given load level, we

recover D by inverting the demand equation (1). For the minimum demand constant, D
min

,

we use the lowest D recovered from the 20 discrete draws. We trim the solar output at 0 and
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at the rated maximum of the system.

A large number of studies have constructed the marginal cost of operation for generation

units. We follow the approach outlined in Cullen [2010a]. We compute the marginal cost of

a fossil fuel generation unit as the product of the heat rate (MMBTU/MWh) and the cost of

fuel (in $/MMBTU). The costs of emission permits for SO2 also enter into MC of generation.

The SO2 emission rate for each unit is multiplied by the SO2 average emission permit price

for permits available for years 2011 - 2017.

Summary statistics for existing TEP generators are reported in Table 5. Except for a

small 5.1 MW solar PV facility in Springerville, AZ, all of TEP’s generation units are fossil

fuel based. We treat this solar unit as though it were producing constantly at its mean

output level of 0.756 MWh. We believe that the bias from not modeling the output of this

unit more accurately will be small, given its small size. Table 5 also lists characteristics of

potential new generators, which we discuss below.

Table 6 lists the remaining supply parameters. For natural gas units we use a relatively

small plant capacity size of kFF = 60 MW, as the small size is close to the average size of

51.3 MW for TEP’s gas generators and hence likely reflects the optimal generator size for a

relatively small market such as southeastern Arizona. The solar capacity cost includes the

expected discounted present value of costs for inverters over the life of the unit.

We compute the ratio of the hourly reserve marginal cost to the hourly generation

marginal cost, cs, using ERCOT data on the ratio of the average price in the auction mar-

kets for up-regulation and for responsive reserve services to the average price in the balancing

market. The average price is $65.41/MWh in the balancing market; $27.05 in the responsive

reserve market; and $22.71 in the up regulation market. The average of the ratio of the re-

sponsive reserve market to balancing market prices over all hours is 0.32, while the average of

the ratio of the up regulation to balancing market prices over all hours is 0.28. Our estimate

of the reserve costs is the average of these two numbers.

We use the same constant per-unit cost for cTD that is used in the real-time pricing sim-

ulations in Borenstein and Holland [2005]. The Arizona RPS states that 30% of solar energy

must be generated in a distributed environment which motivates our choice of dTD,solar. We
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Table 5: Summary Statistics for TEP Generators, 2008
 

 
Unit Type 

 
# 

Units 
Mean 
Size 

(MW) 
Mean MC 
$/MWh 

Mean NOx 
(lbs./MWh) 

Mean SO2 
(lbs./MWh) 

Mean CO2 
(lbs./MWh) 

Solar PV 1 0.756 
(--) 

0 
(--) 

0 
(--) 

0 
(--) 

0 
(--) 

Coal 10 155 
(138) 

20.57 
(1.24) 

3.92 
(1.08) 

2.35 
(1.87) 

2,163 
(128) 

Natural Gas – 
Combined Cycle 3 62 

(20.7) 
59.0 
(0) 

1.26 
(0) 

0.71 
(0) 

970 
(0) 

Natural Gas – 
Steam Turbine 3 59.3 

(0) 
89 

(13.9) 
3.90 
(0) 

6.44 
(0) 

1,955 
(0) 

Natural Gas – 
Gas Turbine 7 30.5 

(18.5) 
151.9 

(109.5) 
3.71 

(1.48) 
1.87 

(3.12) 
1,921 
(47.2) 

Potential New 
Natural Gas - 

Combined Cycle 
By 

eqm. 
60 
(0) 

38.5 
(0) 

1.26 
(0) 

0.71 
(0) 

970 
(0) 

Note: Standard deviations in parentheses. MC figures include emissions permits. 
 

 
estimate dfail by examining EIA reports on “Major Disturbances and Unusual Occurrences”

in the U.S.; see EIA [2010]. We identified outages due to equipment failure (not, for example,

weather driven outages) that impacted more than 50,000 customers. For 2008-09 there were

10 such outages with an average duration of 2.4 hours. Finally, our assumption of a real

discount rate of 6% and a lifespan of T = 25 for generation plants is equivalent to an annual

real discount rate of 8% and T =∞, in which case β = 0.926.

4.3 Computation of Planner’s Problem

We compute solutions to the planner’s problem using the estimated and calibrated model

parameters. We assume that the distribution of forecasted load for TEP remains constant

at its 2008 level over time. We proceed by maximizing the DPV of welfare over the first

stage decisions of the number of new gas plants and the curtailment price, taking as given

the retail price of electricity and the solar output level. For each first stage decision vector,

we compute the optimal policy for each second stage period, and the value that results from

this optimal policy. The computation of the first stage involves a grid search over nFF . For

each value of nFF , we search over pc using the simplex method.
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Table 6: Remaining supply parameters

Param. Interpretation Value Source
dFail Duration of system failure in

hours
2.4 EIA

cTD T&D costs per MWh $40 Borenstein and Holland [2005]
dTD,solar Fraction of solar generation that

is distributed
0.3 Arizona RPS

cFF New gas generator MC per MWh $38.44 EIA
FCFF New gas generator capital cost

per MW
$984,000 EIA

FCsolar Solar capital cost per rated MW $5,000,000 EIA
cs Ratio of MC for spinning re-

serves to production MC
0.3 Calculated from ERCOT data

Pmaint
j Scheduled maintenance prob. Estimated

P fail
j Scheduled failure prob. Estimated
kFF New gas generator capacity 60 MW TEP average generator size
β Discount factor 0.94
T Lifetime of generators in years 25

To compute the second stage optimal policy, we make two assumptions to ease the com-

putational burden that we believe will not significantly bias the results. First, we assume that

the planner schedules plants in ascending order of MC when computing optimal generation

for a second-stage period.27 Although this point is intuitively reasonable, because of size

differences across generators, it is possible that a planner would want to schedule a higher

MC plant and not a lower MC one. Second, we assume that the planner curtails demand

only if all available plants for which MC plus cTD is below the marginal cost of curtailment,

dWLC(z)/dz, are scheduled. Again, this point is intuitively reasonable but may not hold

exactly because generators come in discrete chunks.

We now discuss our computation of the second-stage policies. At each second-stage period,

we condition on the state (w,m), which encapsulates the coal units with planned outages;

the natural gas units with planned outages; and the joint forecastable distribution of load

and solar generation. We then choose the production and curtailment decisions, integrating

over three remaining sources of uncertainty: forced outages of coal units; forced outages of

natural gas units; and the realization of load and solar generation given the forecastable

27Coal plants have lower failure probabilities than gas plants, and thus this ordering will preserve the
effective MC that accounts for intermittency.
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distribution.

Given our above computational assumptions, we order generators by MC, and then loop

over the number of generators to schedule. For each scheduling choice, the planner must

choose the amount of demand to curtail, if the marginal generator has MC > dWLC(z)/dz.

In this case, we compute a grid search with 200 points over the level of demand curtailment.

If the marginal generator is sufficiently low, there is no further choice. Given the scheduling

and curtailment choice, we integrate over the three dimensions of uncertainty, and then solve

for the probability of failure and the associated expected welfare. We then maximize expected

welfare over these choices. Finally, we integrate over the three ex-ante decisions to obtain

the expected welfare associated with any first stage policy.

We perform the integration using simulation. Specifically, we integrate over the joint dis-

tribution of load and solar generation conditional on a forecast with 20 discrete draws. Note

that the planner’s problem also involves simulation of generator failures. Outage probabili-

ties for individual generation units are small, and probabilities of multiple outages – which

might cause a system collapse – are very small, but the adverse consequences of a system

collapse are very large. Thus, our computation is challenging because integration using a

direct simulation method would be very inefficient. Instead, for each type of generator, we

integrate over the probability of n failures given N operating generators,28 and then simulate

the identity of failed generators conditional on the number of failures. Similarly, at the first

stage, we need to integrate over the distribution (w,m). We integrate over the forecastable

weather distribution by simulating with replacement from the observed distribution and over

generator scheduled maintenance with an analogous method to our simulation for sudden

generator failure.

5 Results

5.1 Estimation Results

The estimated relationship from the SUR model of daytime load and solar output on weather

forecasts is reported in Table 7. We estimate splines for each regressor. For cloud coverage,

28If the probability of generator failure is p, then this probability is Bin(N, N − n)pn(1− p)N−n.
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the knots of the splines correspond to the categorical cloud cover variable in weather fore-

casts. For other forecast variables, we use 10 splines where the knots are the deciles of the

distribution. We report coefficients on the lowest, median and highest levels. We also in-

clude month, hour and day-of-week dummies, as well as interactions of cloud cover with other

variables.

We find a U-shaped relation between forecasted temperature and load, as electricity

is needed for both heating and cooling. Another important predictor for load is relative

humidity, where the relation is inverse U-shaped. On the other hand, the coefficients on

different temperature levels on solar output suggest that higher temperatures lower solar

output though not significantly. Forecasted cloud cover variables have negative signs and

of increasing absolute value on solar output, as expected. Hours since sunrise before noon

and hours until sunset after noon are also both strong positive predictors of solar output.

The R2 is 0.965 for load and 0.897 for output, suggesting that both levels are highly, though

not perfectly, forecastable. The correlation in the residuals between load and solar output is

0.136 and statistically significant (χ2(1) = 71.1, P < 0.01). The nighttime impact of weather

forecast on load is reported in Table 8. Temperature is an important predictor for nighttime

demand as are hourly dummies.

The outage probabilities for gas and coal generators are reported in Table 9. Note that gas

generators report a higher rate of sudden failure (0.235%) than do coal generators (0.0052%).

5.2 Equilibrium Costs of Solar RPS Policies

Table 10 reports equilibrium computational results using the estimated and calibrated pa-

rameters, gross of the benefit from reduced CO2 emissions (which we address below in Sec-

tion 5.4). The first column reports results with no solar PV investment and other columns

progressively adding higher RPS policies.

Without solar PV investment, the planner chooses 13 new natural gas generation units.

Demand curtailment accounts for 0.3% of operating reserves although at peak times such as

July at noon, the probability of some demand curtailment is over 10 percent. On average over
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Table 7: Estimation of Daytime Load and Solar Output Forecasts 
 Load (MWh) Solar output (Wh) 
 Slope for Slope for 
 1stdecile 5thdecile 10thdecile 1stdecile 5thdecile 10thdecile 

Temperature –18.091** 
(3.144) 

5.586* 
(2.629) 

48.832** 
(2.175) 

3.965  
(5.549) 

–3.390 
(4.640) 

–5.522 
(3.839) 

Dew point –4.863 
(2.989) 

2.148 
(3.527) 

–3.951 
(3.265) 

4.104  
(5.276) 

–13.22* 
(6.27) 

–1.234 
(5.763) 

Relative 
humidity  

29.483** 
(7.336) 

4.783 
(2.779) 

–4.039** 
(1.469) 

–10.440  
(12.948) 

–0.894 
(4.904) 

0.673  
(2.593) 

Wind –7.752 
(4.989) 

–10.129 
(5.988) 

–3.764** 
(0.965) 

45.56**  
(8.805) 

–5.753 
(10.568) 

5.752**  
(1.702) 

 2–15% 38–60% 78–94% 2–15% 38–60% 78–94% 

Cloud cover 48.124 
(130.21) 

–5.014 
(121.1) 

180.477 
(189.893) 

–776** 
(230) 

–1636** 
(213.8)  

–
2559.4** 
(335.149)  Slope for hour Slope for hour 

 1  4  6 1  4  6  
Hours since 
sunrise, AM 
AM 

–34.578* 
(17.291) 

3.499 
(12.612) 

21.55 
(15.068) 

65.87** 
(30.519) 

113.8** 
(22.2) 

123.94** 
(26.59) 

Hours till 
sunset, PM 

–30.110 
(43.876) 

44.793** 
(10.378) 

30.708** 
(12.021) 

95.796 
(77.439) 

138.1** 
(18.316) 

95.085** 
(21.218) 

Temp × cloud –0.378 (1.913) 9.195** (3.378)  
RH × cloud  3.313 (1.810) 8.582** (3.194) 
Wind × cloud   3.484* (1.541) –11.712** (2.721) 
Dew × cloud  –3.811 (2.222) 0.895 (3.922) 
6AM dummy 1674.5** (232.1) 55.460 (103.7) 
…   
12PM dummy  1921.79** (234.0)  570.275** (134.1) 
…   
6PM dummy 2088.988** (240.0) –167.96** (33.164) 

R–squared 0.965 0.897 

Correlation of 
residuals 0.136** 

Note: Model estimated with a SUR specification. Number of observations is 4,508. We include as 
regressors day–of–week and month–of–year indicators and full sets of spline coefficients.  
** Statistically significant at 1% level 
* Statistically significant at 5% level  
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Table 8: Estimation of Nighttime Load Forecast

 Nighttime Load Forecast  
 
 
 
 Load (MWh) 
 Slope for 
 1stdecile 5thdecile 10thdecile 
Temperature –13.194** 

(3.500) 
13.261** 
(3.251) 

59.729** 
(6.183) 

Dew point –4.898 
(4.079) 

–7.018 
(3.981) 

–4.547 
(3.396) 

Relative humidity  23.051* 
(10.033) 

5.651 
(3.327) 

–0.671 
(1.307) 

Wind –7.345* 
(3.340) 

–2.670 
(3.707) 

–7.665** 
(1.978) 

    
 2–15% 38–60% 78–94% 
Cloud cover 214.582* 

(103.611) 
127.557 
(97.937) 

–47.148 
(124.773) 

    
Temperature × cloud cover –6.333** (1.906) 
Relative humidity × cloud  –1.067 (1.229) 
Wind × cloud cover  7.495** (1.541) 
Dew point × cloud cover  4.846* (2.092) 
  
9PM dummy 268.24** (4.668) 
…  
3AM dummy  –56.271** (4.428) 
R–squared 0.956 
Note: Model estimated with OLS. Number of observations is 3,723. We include as 
regressors day–of–week and month–of–year indicators and full sets of spline coefficients.  
** Statistically significant at 1% level 
* Statistically significant at 5% level  
 

Table 9: Average Hourly Outage Probabilities

Table 6 
Average Hourly Outage Probabilities 

 
 Forced outage  

probability in % 
Planned outage  
probability in % 

Observations 

Natural gas generator 0.236**  (0.011)  0.124**  (0.008) 184,118 
Coal generator 0.0052*  (0.0029)  0.014**  (0.0047)  61,146 
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all hours, operating reserves are 18.9 percent of load. The 18.9 percent figure for operating

reserves appears to be higher than average actual reserves for many systems. There are

several factors that might account for this. First, there may be room for improvement in our

forecasting model for load and solar. A better forecasting model (with additional explanatory

variables and/or a different specification) could yield a lower variance for forecast errors and

lead to lower optimal operating reserves. Second, our estimate for plant outages may overstate

the expected failure probability, leading to relatively high operating reserves. Third, TEP

has a relatively small number of generation units and its largest units comprise a significant

fraction of load. TEP would need to have operating reserves amounting to 19% of average

load to replace the output of its two largest coal units.

The second column of numbers in Table 10 reports results for a solar RPS of 10% of

load. This output level would require 740 MW of solar PV capacity, with an investment cost

of $3.7 billion. The solar PV panels would yield roughly 1.5 million MWh per year, which

represents a capacity factor of 23%. Optimal investment in new fossil fuel capacity falls from

13 to 9 new generation units, reducing fossil fuel generation by 240 MW. This yields a capital

cost offset of $236 million (about 6% of solar investment cost).

Although solar generation offsets an equal amount of fossil fuel generation, optimal oper-

ating reserves rise compared to the no-solar case. Thus, the sum of production and reserves

does not fall on a one-to-one basis, but rather, the 1.497 million MWh of solar production

reduce scheduled fossil fuel production plus reserves by 1.255 million MWh. This represents

a ratio of 84%.

Interestingly, the probability of system failure falls slightly with the RPS but is very low

in both cases. The drop appears to be due to the combination of greater total generation

capacity (including solar capacity) and higher levels of operating reserves. The overall impact

of a 10% RPS standard is to reduce the expected DPV of welfare over the life of the units

by about $2.6 billion gross of the CO2 emissions reduction. Put differently, the net welfare

cost of the solar mandate is approximately 70 percent of the $3.7 billion investment cost for

solar PV capacity. These results factor in the value of SO2 and NOx reductions, based on

prices in EPA SO2 permit auctions and the fact that NOx harm is low enough that there are
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Table 10: Outcomes with Different RPS Levels

RPS Policy 0% 10% 15% 20% 30%
Solar PV capacity (MW) 0 740 1,110 1,480 2,220
Solar production (1000 MWh/year) 0 1,497 2,245 2,993 4,490
Load (1000 MWh / year) 14,193 14,193 14,193 14,193 14,193
New 60MW natural gas generators (#) 13 9 8 8 8
Scheduled non-solar prod. + res. (1000
MWh/year)

16,866 15,611 15,064 14,570 13,606

Realized non-solar prod. + reserves
(1000 MWh/year)

16,864 15,609 15,063 14,569 13,605

Reserves as % of production 18.9% 20.6% 22.1% 23.9% 27.6%
Average prob. of system failure 7.04e-5 6.80e-5 6.43e-5 5.39e-5 5.00e-5
Curtailment price pc ($/MWh) 334 464 722 729 729
Total curtailment quan. (MWh/year) 14,260 14,368 18,144 15,820 13,360
Prob. of some curtailment Jul. 12PM 10.2% 0.006% 0.001% 0.0003% –
Prob. of some curtailment Jul. 6PM 9.7% 25.9% 22.9% 19.7% 16.5%
Production costs (million $/year) 333.5 289.1 268.7 249.9 220.8
T&D costs (million $/year) 568.3 550.3 541.5 532.4 514.4
Reserve costs (million $/year) 29.7 29.4 30.5 31.3 32.1
Gas generator investment costs (mil. $) 768 531 472 472 472
Solar capacity investment costs (mil. $) 0 3,700 5,550 7,400 11,100
DPV of net surplus (million $) 849,559 846,945 845,518 844,054 840,998
DPV of future solar production (mil.
MWh)

0 20.22 30.34 40.45 60.67

Loss in surplus per unit solar production
($/MWh)

– 129.3 133.2 136.1 141.1

NOx emissions (1000 tons / year) 22.0 20.7 19.9 19.0 17.3
SO2 emissions (1000 tons / year) 20.9 19.2 18.2 17.1 15.4
CO2 emissions (million tons / year) 15.0 14.0 13.4 12.7 11.5
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no NOx permits in Tucson.

With the RPS, curtailment price also rises, as it is optimal to be able to curtail more

demand in the event of low solar output. Moreover, the most common curtailment times

shift from noon to 6PM, when solar output is low but load is still high.

Columns 3 through 5 in Table 10 report results for solar RPS policies of 15%, 20%, and

30% of load, respectively. There is little or no offset in fossil fuel capacity investment as the

RPS is increased above 10% but otherwise, the results move in the same direction as the

change from 0 to 10%. Because of the lack of fossil fuel capacity offset and the fact that

solar generation will increasingly substitute from low cost fossil fuel plants, the welfare loss

per MWh of solar generation rises monotonically from $129.3 to $141.1 as the RPS increases

from 10% to 30%.

Comparisons between solar PV and conventional generation are often based on average

cost over the life of the unit.29 As noted above, the average cost of solar PV generation net of

the T&D cost savings is $181/MWh. The average cost of generation for a new combined cycle

generation unit is $58/MWh.30 Thus, on the basis of a simple average cost comparison, solar

PV is about 3 times more expensive than conventional generation, with an additional per

unit cost of $123/MWh. Borenstein [2008] makes the point that valuing solar PV generation

using wholesale prices at the time of generation narrows the gap between solar PV and

conventional generation. Our analysis takes into account the value of solar generation at

different times of day and in different seasons, just as in Borenstein [2008]. However, we also

consider system-wide factors associated with large-scale renewable energy, such as changes in

operating reserves and changes in the amount of fossil fuel capacity. When these system-wide

factors are taken into account along with time of day and seasonal differences in the value

of solar generation, the equilibrium costs of solar actually exceed the $123 cost difference

although the costs imposed by intermittency are generally less than those reported in the

literature.31

29For average cost we employ the concept of the levelized cost over the lifetime of a generation unit. See
http://www.eia.doe.gov/oiaf/aeo/electricity_generation.html.

30This is the levelized cost of energy, as reported by EIA [2011].
31For 20% wind power penetration in Great Britain, Skea et al. [2008] calculate that the back-up generation

capacity required to address intermittency would add roughly 15% to the cost of wind generation. Hoff et al.
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5.3 Equilibrium Costs to Solar from Unforecastable Variation

We now evaluate the equilibrium costs to solar from the fact that solar output is only partially

forecastable and that the unforecastable part of solar correlates with demand. We present

the results in Table 11. Columns 1 and 2 repeat the 0% and 20% RPS policies from Table 10

while columns 3 and 4 present the results of two hypotheticals.

Column 3 examines the optimal policy for the hypothetical and infeasible case where

solar output at any time period was given by its forecastable mean value. We find that

eliminating the unforecastable component of solar output results in one less gas generator

under the optimal solution. Moreover, the costs of reserves drop by about 20%, to below their

costs in the absence of any solar power. Because of these differences, the equilibrium cost

of solar drops by $2.7/MWh, from $136.1 to $133.4. In spite of the gains from not having

any unforecastable variation, note that the drop is small compared to the overall additional

equilibrium cost of solar generation.

Column 4 examines the optimal policy for another hypothetical case, where the unfore-

castable component of solar output at any time period had the same marginal distribution as

estimated but where that distribution is not correlated with the unforecastable component

of demand. Because we estimate a positive correlation between the two residuals, we would

expect the value of solar capacity to be lower in the absence of a correlation. Indeed, we find

this to be the case, but we also find the impact to be small: in the uncorrelated case, the

cost of solar capacity is only $0.5/MWh higher than in the feasible, correlated case.

5.4 RPS Policies and Benefits from CO2 Reductions

Finally, we analyze whether RPS policies would increase or decrease social welfare, when one

accounts for the reduction in CO2 emissions that would be caused by the RPS. The policy

impact of an RPS depends crucially on two elements: first, on the environmental benefit per

unit reduction in CO2 emissions; and second, on the impact of ongoing R&D in reducing

the costs of renewable power generation. It is beyond the scope of this study to analyze

the environmental benefit or potential R&D outcomes. Thus, we proceed by choosing four

[2008] and Hansen [2008] evaluate similar costs for solar PV.
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Table 11: Costs to Solar from Unforecastable Variation and Correlation with Demand

RPS policy None 20%
Experiment Base No var. No corr.
Solar PV capacity (MW) 0 1,480 1,480 1,480
Solar production (1000 MWh/year) 0 2,993 2,993 2,992
Load (1000 MWh / year) 14,193 14,193 14,193 14,193
New 60MW natural gas generators (#) 13 8 7 8
Sched. non-solar prod. (1000 MWh/year) 16,866 14,570 14,002 14,654
Realized prod. + reserves (1000 MWh/year) 16,864 14,569 14,001 14,653
Reserves as % of production 18.9% 23.9% 19.9% 24.5%
Average prob. of system failure 7.04e-5 5.39e-5 5.78e-5 5.49e-5
Curtailment price pc ($/MWh) 334 729 789 693
Total curtailment quantity (MWh/year) 14,260 15,820 14,753 16,718
Prob. of some curtailment Jul. 12PM 10.2% 0.0003% 1.5e-12% 1.1e-6%
Prob. of some curtailment Jul. 6PM 9.7% 19.7% 22.8% 23.0%
Production costs (million $/year) 333.5 249.9 250.2 250.0
T&D costs (million $/year) 568.3 532.4 532.4 532.5
Reserve costs (million $/year) 29.7 31.3 26.5 32.3
Gas generator investment costs (million $) 768 472 413 472
Solar capacity investment costs (million $) 0 7,400 7,400 7,400
DPV of net surplus (million $) 849,559 844,054 844,166 844,035
DPV of future solar production (million MWh) 0 40.45 40.44 40.44
Loss in surplus per unit solar ($/MWh) – 136.1 133.4 136.6
NOx emissions (1000 tons / year) 22.0 19.0 18.9 19.0
SO2 emissions (1000 tons / year) 20.9 17.1 17.0 17.2
CO2 emissions (million tons / year) 15.0 12.7 12.6 12.7
“No var.” is a hypothetical solar facility without unforecastable variance.
“No corr.” is a hypothetical solar facility where FS is independent of FD but otherwise as estimated.
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levels for the cost of offset CO2 (or, environmental damages from CO2) that span the set of

values suggested by most industry observers,32 and by calculating the “target” cost of solar

capacity generation at which the RPS policy would be welfare neutral. The RPS will be

welfare increasing if and only if solar capacity costs are lower than the target costs.

Table 12 presents the results, which can be derived without recomputing the model, since

solar capital costs enter linearly into welfare. At the current cost of $5/W, any RPS would

reduce welfare even if CO2 emissions are valued at the highest reported figure of $100/ton.

At this emissions cost, solar capital costs would have to fall to $3.48 for the 10% RPS to

be welfare neutral, and $3.31 for the 30% RPS to be welfare neutral. As one would expect,

the target capital costs are decreasing in the value of offset CO2 emissions. For instance, the

30% RPS welfare neutrality capital costs drop from $3.31, to $2.23, $1.69 and $1.14, as CO2

emissions costs drop from $100 to $0.

Less evident is the impact of an increase of an RPS on the welfare neutral capacity

cost. On one hand, with a higher RPS, solar capacity will substitute more from lower cost

generation plants, which will decrease its equilibrium value. On the other hand, the lower

cost generation plants will tend to be coal instead of gas plants, and coal plants emit more

than double the CO2 per unit energy output than combined cycle natural gas units (see

Table 5), which will increase its value. Under the social optimum, the generation cost effect

dominates, but not by very much. For instance, for the $25 CO2 cost case, the welfare neutral

capacity costs fall from $1.97 to $1.69 from the 10% to 30% RPS cases.

32The $0 – 100/ton interval of CO2 prices is within the range of estimates of marginal damage cost of CO2

emissions surveyed by Tol [2005].

Table 12: Welfare Neutral Solar PV Capital Costs with Benefits from CO2 Reductions

RPS Policy 10% 15% 20% 30%
Benefit per ton of CO2 reduction
$0 1.47 1.36 1.28 1.14
$25 1.97 1.88 1.82 1.69
$50 2.47 2.41 2.36 2.23
$100 3.48 3.45 3.44 3.31
Note: solar capital costs are in millions of dollars per rated megawatt
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6 Conclusions

A variety of current and potential policies are intended to stimulate investment in renewable

energy generation. Intermittency of renewable generation may have a significant impact on

electric grid reliability, system operations, and requirements for back-up generation capacity.

Because a grid operator must make different long- and short-run decisions in response to

intermittent renewable output, we believe that the costs of intermittency can best be un-

derstood in the context an optimizing or equilibrium model. Thus, we develop an empirical

approach to estimate the equilibrium costs of renewable energy accounting for their inter-

mittent nature. Our approach has three parts: (1) a theoretical model that is based on the

work of Joskow and Tirole [2007]; (2) a process to estimate and calibrate the parameters

of this model using publicly-available data; and (3) a computational approach to compute

the impact of counterfactual RPS and other policies. We believe that the biggest limitations

of our approach are that we do not allow for dynamic linkages from period to period and

that we do not model firm market power. Moreover, other of our assumptions, notably our

assumed T&D costs and spinning reserve costs, are at best approximations of reality.

Using our approach, we examined the impact of a renewable portfolio standard (RPS)

on Tucson Electric Power, the public utility that serves southeastern Arizona. We find that

the equilibrium cost of a 20 percent solar PV RPS would be $136.1/MWh, out of which

unforecastable intermittency accounts for only $2.7/MWh and that if CO2 reductions are

valued at $25/ton, such an RPS would be welfare increasing if solar capacity costs dropped

below $1.82/W from their current level of $5/W.

We believe that our study has a number of broader implications beyond the results for

solar generation in Arizona. First, our finding that the costs of intermittency for solar energy

are lower than many industry observers believe may be important. Our approach calculates

the costs if utilities optimally schedule reserves, design demand curtailment contracts, and

build capacity in response to solar PV mandates. It is possible that utilities need to obtain

knowledge about how these decisions should change in the presence of substantial renewable

generation, and our study provides a framework that can be used to guide utilities along this
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dimension.

Second, we believe that our study has implications about the optimality of different

potential RPS policies. While we find that an immediate RPS with 2008 technology would

reduce welfare, we also find that once solar capacity costs drop below $2.50 or $2.00, solar

PV generation becomes welfare increasing. More surprisingly, at this point, capacity costs do

not have to drop much further before it is optimal for solar to account for a large proportion

of generation in Arizona.

Finally, we believe that our approach can be used to analyze a variety of other energy

policies many of which might also have important equilibrium impacts. These policies include

understanding the impact of real-time pricing on reducing GHG emissions and intermittency

costs; the relative costs of reducing emissions from an RPS versus a carbon tax; how geograph-

ically disparate wind or solar installations might lower intermittency costs; how technologies

such as battery storage and electric cars which change the effective time pattern of demand

can change the value of renewable mandates.

Appendix

Proof of Lemma 3.1

V OLL =

∫ v
p̄
D(p,D)dp+ pD(p,D)

D(p,D)
=
D( 1

1−η )(v(1−η) − p(1−η)) + pDp−η

Dp−η

=
D( 1

1−η )(v(1−η) − ηp(1−η))

Dp−η
.

Dividing through by Dp−η, we obtain the expression in the statement of the lemma.

Proof of Lemma 3.2

Let P (q,D) denote the inverse demand curve. Then, the welfare cost of z is

WLC(z, pc) =

(
z

D(p,D)−D(pc, D)

)∫ D(p,D)

D(pc,D)

P (q,D)dq

=
zη(p̄1−η − p1−η

c )

(η − 1)(p̄−η − p−ηc )
.
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Note that D drops out of the welfare cost, which depends on the state only through the

quantity z of rationing chosen at that state.
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