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Abstract. We show that the natural invariant state for Manneville–Pomeau maps can be
characterized as a weakly Gibbsian state. In this way we make a connection between the study
of intermittency via non-uniformly expanding maps and the thermodynamic formalism for non-
uniformly convergent interactions.

AMS classification scheme numbers: 37C40, 82B20

1. Introduction

In this paper we connect the notion of a weakly Gibbsian state, as has recently emerged from the
statistical mechanical study of certain lattice spin systems, with the concept of intermittency,
as modelled by Manneville–Pomeau maps.

Weakly Gibbsian states were introduced by Dobrushin in his last conference talk in
Renkum [6]. What was sought was a Gibbsian restoration of certain physically relevant
examples of non-Gibbsian states. A first part of the Dobrushin programme has been recently
completed in [22] where it is shown that essentially all restrictions to a sublattice of the low-
temperature phases in the realm of the Pirogov–Sinai theory for lattice spin systems are weakly
Gibbsian. The typical scenario is the occurrence of a ‘configuration-dependent range of the
interaction’. This implies that the relative energies are no longer uniformly bounded (as is
the case for the usual Gibbsian set-up) but can be unbounded as dictated by configuration-
dependent length scales. This divides the set of lattice spin configurations into two disjoint
sets: the ‘good’ ones for which the effective interaction is short range, and the ‘bad’ ones, for
which the total interaction is diverging. Instead of introducing the somewhat abstract formalism
defining weakly Gibbsian states, we refer to [23] for general definitions and properties and we
only underline the above via a concrete and, for our purposes, illustrative example.

1.1. Example of a weakly Gibbsian state

Consider the standard ferromagnetic Ising model on the square lattice Z
2 with the usual nearest-

neighbour interactions. The finite-volume Gibbs measureµβ,n on a box�n with plus boundary
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conditions is defined on the infinite-volume Ising configuration space � = {+1,−1}Z
2

via

µβ,n(σ ) = I [σ = 1̄ on �c
n]

Zn(β)
exp

[
β

∑
〈xy〉∩�n 	=∅

σxσy

]

where �n = [−n, n]2 ∩ Z
2 is a finite box, I [σ = 1̄ on �c

n] is the indicator of the event that
σz = +1 for all z ∈ �c

n = Z
2 \ �n, β > 0 denotes the inverse temperature, Zn(β) is the

normalizing partition function and the sum in the exponent is over all nearest-neighbour pairs
〈xy〉 at least one of which is in the box�n. It is well known that the weak limit limn µβ,n = µβ
exists for all β. This limit is a translation-invariant Gibbs measure at inverse temperature β
for the formal Hamiltonian

H(σ) = −
∑
〈xy〉

σxσy.

Of course, this sum is only well defined in terms of the corresponding relative energies

H(σ)−H(η) = H�(σ) = −
∑

〈xy〉∩� 	=∅
(σxσy − ηxηy)

defined for a finite region� ⊂ Z
2 andη = σ on�c (η coincides withσ outside a finite volume).

That µβ is a Gibbs measure for H means that its conditional probabilities are described via
these relative energies as, for example, in

µβ(σ0|σx, x 	= 0) = 1

1 + exp
[−2β

∑
〈x0〉 σ0σx

] .
In particular, the measure µβ admits a continuous version of its conditional probabilities.

We are interested in the restriction νβ of this infinite-volume probability measure µβ to
a lattice line (to be identified with Z), say one which contains the origin. It was proven in
[9, 30] that at low temperatures (β sufficiently large) νβ is not Gibbsian, i.e. does not admit a
continuous version of its conditional probabilities. It was, however, realized by Dobrushin that
νβ remains weakly Gibbsian. This means the following. There exists a translation-invariant
tail-set K ⊂ {+1,−1}Z of ‘good’ one-dimensional lattice spin configurations which has full
measure (νβ(K) = 1) and for which one can find a translation-invariant interaction potential
(UA), which is absolutely summable on K and is compatible with νβ , i.e. the interaction
potential is a collection of functions UA : {+1,−1}A → R parametrized by the finite subsets
A of Z, for which∑

A�0

|UA(ξ)| < ∞ ξ ∈ K

(absolute convergence) and for which the Dobrushin–Lanford–Ruelle (DLR) equations with
respect to νβ are satisfied:∫
f (ξ) dνβ(ξ) =

∫ ∑
ω∈{+1,−1}V

1

ZU
V (ξV c )

f (ωV ξV c ) exp

[
−

∑
A∩V 	=∅

UA(ωV ξV c )

]
dνβ(ξ) (1.1)

for all continuous functions f on {+1,−1}Z for all finite V ⊂ Z, and where ωV ξV c is a
configuration, which coincides with ω on V , and with ξ on V c.

In this sense, νβ is weakly Gibbsian for the formal Hamiltonian

H(ξ) =
∑
A

UA(ξ)
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but now, even the local Hamiltonians

HU
V (ξ) =

∑
A∩V 	=∅

UA(ξ)

are only well defined for ξ ∈ K .
The proof of this result (i.e. the existence of a tail-set K) was given in [6, 7, 24, 25] with

a more general version in [22]. It turns out that one can choose the potential (UA) so that it is
non-vanishing only for A a lattice interval. In particular, one shows that for every ξ ∈ K there
is a (configuration-dependent length) �(ξ) < +∞ for which

|U[0,k](ξ)| � c1I [k � �(ξ)] + c2 exp[−c3k]

for all k > 0 and where the finite constants c1, c2, c3 depend on β. In other words, the
potential starts decaying only after a ‘random’ distance which is itself a function of the
configuration. That is the meaning of saying that the interaction is effectively short ranged
with a ‘configuration-dependent interaction range’. In the model, this range �(ξ) measures
the distance to the right of the origin after which the proportion of +1-spins to the right of the
origin becomes forever larger than a given (large) amount. It is this structure of the interaction
that reminds us of the phenomenon of intermittency in the theory of dynamical systems.

1.2. Intermittency

Since the beginning of the 1980s intermittency has been widely studied as a common
phenomenon in the transition to turbulence [4]. While it is difficult to give a good definition,
its simplest manifestation is probably the occurrence of randomly spread bursts or fluctuations
happening between periods where the system undergoes a limit cycle or periodic motion.
While varying some control parameter, the average frequency of these fluctuations becomes
larger and larger. Here we will not discuss the nature of this intermittent regime except to
investigate some Gibbsian aspects of the steady state for some model systems.

To see what we have in mind, it is best to start from so-called (uniformly) expanding interval
maps. Under some additional smoothness conditions, there is a unique ergodic absolutely
continuous time-invariant measure. Its density is a continuous function bounded away from
zero. The standard Gibbs formalism can be applied and an exponentially decaying interaction
can be identified with which this invariant measure is compatible. Imagine now what happens
if an indifferent fixed point appears. In the neighbourhood of this point the expansion of the
map shrinks to zero, because the derivative in the indifferent fixed point is equal to one. This
non-uniformity in the expansion has as a consequence that the system can stay for longer times
in the neighbourhood of this fixed point before it is expelled to a region where the map is again
truly expanding. These fluctuations are rare but are nevertheless responsible for breaking the
uniform convergence of an associated interaction potential. It is this feature that we study here.

We start in the next section with the introduction of the simplest models. Section 3 is
devoted to the presentation of our main result: the weakly Gibbsian character of the absolutely
continuous invariant measure.

2. Model. Interval maps with indifferent fixed points

2.1. Model

We study the following class of non-uniformly expanding interval maps.

Definition 2.1. We say that T : [0, 1] → [0, 1] is a Manneville–Pomeau-type map (an MP
map) if:
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Figure 1. A Manneville–Pomeau-type map.

(a) T is piecewise monotonic with two full branches, i.e. there exists a p > 0 such that T |(0,p)
and T |(p,1) are strictly monotonic, continuous and T (0, p) = T (p, 1) = (0, 1);

(b) the branches T |(0,p) and T |(p,1] are C2;
(c) T ′(x) > 1 for all x > 0 and T ′(x) � λ > 1 for x ∈ (p, 1).
(d) T has the following asymptotic behaviour when x → 0+:

T (x) = x + Cx1+α(1 + u(x))

for some constants C > 0, α ∈ (0, 1), and u is a C2 function such that

lim
x→0+

u′(x) = lim
x→0+

u′′(x) = 0.

As an example we can consider the original Manneville–Pomeau map itself (see figure 1),
defined as follows:

T (x) = x + x1+α mod 1.

It is easy to see that (c) and (d) imply that 0 is a unique indifferent fixed point.

2.2. Absolutely continuous invariant measure, ergodic properties

Pianigiani [26], using the first return map, established the existence of absolutely continuous
invariant measures for MP maps.
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The constructed absolutely continuous T -invariant measureµ for the MP maps is a Sinai–
Ruelle–Bowen measure: for almost every x ∈ [0, 1] with respect to the Lebesgue measure
one has the weak convergence

1

n

n−1∑
i=0

δT i(x) → µ

where δy is the Dirac measure at y.
Thaler [31, 32] has proven the following estimates on the density h(x) = dµ/dx for MP

maps: there exist constants C∗, C∗ ∈ (0,∞) such that

C∗
xα

< h(x) <
C∗

xα
for all x > 0. (2.1)

It is also not very difficult to see that the dynamical system ([0, 1], µ, T ) is exact:

lim
n→∞µ(T n(A)) = 1

for all measurable sets A with µ(A) > 0, implying ergodicity and mixing.
Determining a rate of mixing (or decay of correlations) for the MP-type maps attracted

a lot of attention. This problem has been studied in [14, 15, 21, 36]. It turns out that for the
Manneville–Pomeau-type maps one has a polynomial decay of correlations: for sufficiently
smooth f, g (say, Hölder continuous)

|ρ(n)| =
∣∣∣∣
∫
f (x)g(T n(x)) dµ−

∫
f (x) dµ

∫
g(x) dµ

∣∣∣∣ = O(n−1/α+1).

It should be mentioned that there are several other possibilities for piecewise-monotonic interval
maps with indifferent fixed points to have a finite absolutely continuous invariant measure even
with bounded density, e.g. [17, 38]. What is important is that the presence of an indifferent
periodic point (i.e. T p(x) = x and |(T p)′(x)| = 1 for some x ∈ [0, 1] and p � 1) should be
compensated by some singularities of the first or second derivative of T , because if the map is
C2, only infinite absolutely continuous T -invariant measures exist, see [3].

2.3. Thermodynamic formalism

Formally, an MP map T is not a continuous transformation of a compact metric space (the
interval [0, 1]). However, we can make one from T . This is done by doubling the point
of discontinuity p, i.e. substituting it by two points p− and p+, such that p− < p+, and
putting T (p−) = limx↑p T (x) and T (p+) = limx↓p T (x). We repeat the procedure with all
the preimages of p− and p+. In this way we obtain an ‘enlarged’ space X, which is totally
ordered and order complete. Moreover, X is a compact space. In this new space X, the
intervals Īi form a partition. X has points which are isolated from one side, but there are no
completely isolated points. Since at most a countable number of points are affected by this
operation, and since we are studying measures that are absolutely continuous with respect
to the Lebesgue measure, the described modifications take place on a set of measure 0, and
are therefore irrelevant from a measure-theoretic point of view. Note also, that this operation
makes the coding map π : {0, 1}Z+ → X, given by

π(ω0ω1ω2 . . .) = Īω0 ∩ T −1Īω1 ∩ T −2Īω2 ∩ . . .

a homeomorphism. The coding π conjugates T with the left shift σ on - = {0, 1}Z+ , i.e.
T ◦ π = π ◦ σ . For details see [13] and [17, appendix A.5].
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Consider the function ϕ = − log |T ′|, where T ′(x) is the left or right derivative of T at x
if x is isolated from the right or left, respectively). The topological pressure of ϕ is

P(ϕ) = sup
ν

(
hν(T ) +

∫
ϕ dν

)
,

where the supremum is taken over all T -invariant measures and hν(T ) is the measure-theoretic
entropy (Kolmogorov–Sinai entropy) (see, for example, the variational principle in [34]).

The absolutely continuous invariant measure µ is an equilibrium state for ϕ, i.e.

P(ϕ) = hµ(T ) +
∫
ϕ dµ. (2.2)

Since µ is an absolutely continuous invariant measure, the measure-theoretic entropy
(Kolmogorov–Sinai entropy) is given by Rokhlin’s formula [20]:

hµ(T ) =
∫

log |T ′| dµ = −
∫
ϕ dµ

and hence, P(ϕ) = 0. However, µ is not the only equilibrium state. The Dirac measure at 0,
which we denote by δ0, satisfies (2.2) as well. Hence, every measure from the convex hull of
µ and δ0

A = {
tµ + (1 − t)δ0| t ∈ [0, 1]

}
is an equilibrium state. There are no other equilibrium states for ϕ.

Non-uniqueness of the equilibrium states for ϕ results in a singular behaviour of the
pressure function P(qϕ), q ∈ R. Combining the results from [27, p 511] and [33, theorem 3.6]
we obtain the following statement on the type of phase transition.

Theorem 2.2. Let T be an MP map. The pressure function P(qϕ) is continuous, convex and
non-increasing. Moreover, P(qϕ) = 0 for q � 1, P(qϕ) > 0 for q < 1, and P(qϕ) is a
real-analytic function of q for q < 1. At the critical point one has the following asymptotics:

P(qϕ)

1 − q
→ hµ(T ) as q ↗ 1.

3. Main results: Gibbs properties of MP maps

3.1. Unbounded distortion

Consider a piecewise-monotonic map T of the unit interval I . Denote by {Ik} the intervals
of monotonicity of T . Assume that T can be continued up to a C2 diffeomorphism Tk on the
closure of Ik , and Tk(Īk) = [0, 1]. Assume also that T is expanding, i.e. there exists λ > 1
such that |T ′(x)| � λ for all x ∈ Ik .

Such a map T admits an absolutely continuous invariant measure µ, whose density h is a
continuous function bounded away from 0, see [2]. This measure µ has the following useful
property: there exists a constant C > 1 such that for all x ∈ [0, 1] and every n � 1 one has

1

C
�

µ
(
Ii1,...,in (x)

)
exp

(∑n−1
k=0 ϕ

(
T k(x)

) ) � C (3.1)

where ϕ = − log |T ′| and Ii1,...,in (x) = Ii1 ∩ T −1I2 ∩ . . . ∩ T −n+1Iin is that interval of
monotonicity for T n, which contains x.
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This property (3.1), which we call Bowen’s boundness property, is often taken as a
definition of a Gibbs state in dynamical systems. Indeed, the inequalities in (3.1) can be
derived from standard definitions of the Gibbs state (see [17] for details). We can also obtain
these inequalities from the properties of expanding maps and absolutely continuous measures
directly.

First of all, expanding interval maps have the so-called bounded distortion property: there
exists some constant C > 0 such that for the Lebesgue measure m

1

C
� |(T n)′(x)|

|(T n)′(y)| � C (3.2)

for all x, y ∈ Ii1,...,in . Secondly, T n
(
Ii1,...,in

) = (0, 1). Thus, from the mean value theorem we
conclude that there exists a point x∗ ∈ Ii1,...,in such that

1 = m
(
T nIi1,...,in

) = |(T n)′(x∗)|m(Ii1,...,in ).
Now, taking into account (3.2) and the fact that the density h is a continuous function bounded
away from 0 we obtain (3.1).

Manneville–Pomeau maps do not have the bounded distortion property. This is most
clearly seen on the leftmost interval of monotonicity of T n. This interval contains zero,
therefore infx∈I0,...,0 |(T n)′(x)| = 1. On the other hand, supx∈I0,...,0

|(T n)′(x)| � 1/m(I0,...,0) →
∞ as n → ∞. As a result the ratio

µ
(
Ii1,...,in (x)

)
exp

(∑n−1
i=0 ϕ

(
T k(x)

) )
is not uniformly bounded in x and n. However, one can find bounds from above and below,
which are polynomial in n and uniform in x. This observation (i.e. the violation of (3.1) for the
absolutely continuous measure in the case of MP maps) motivated Yuri [37] to call µ weakly
Gibbs. We wish to show that µ is indeed a weakly Gibbs measure in the sense of [22, 23].

3.2. Weakly Gibbsian measures for MP maps

Often the natural invariant measures for dynamical systems (such as SRB measures) can be
connected with the Gibbs states as they appear in mathematical statistical mechanics. There are
two possible ways to do so. The first approach is to follow the prescription of Capocaccia which
requires the existence of a well defined relative energy under ‘local’ transformations. This
approach is quite general; it, for example, allows us to establish a thermodynamic formalism
even for some systems without Markov partitions, e.g. expansive homeomorphisms with the
specification property [12, 29]. We will follow this approach in section 3.2.1.

The second and more traditional way is to use an appropriate (Markov) partition and the
symbolic dynamics, and discuss the Gibbsian aspects of the image measure as is usual for
lattice spin systems. This approach, for example, allows us to study the properties of the
conditional probabilities on finite sets (boxes), given the configuration outside. This will be
done in section 3.2.2. In particular, in theorem 3.6 we will construct a symbolic interaction
potential for MP maps and show that it is not absolutely convergent, but is convergent on a set of
measure 1. Moreover, similar to the projection of the Ising model discussed in the introduction,
we will establish that for almost every configuration ω one can find a configuration-dependent
length l(ω) after which the interaction potential decays exponentially. Finally, in theorem 3.7
we will relate the distribution of this length l(ω) with the decay of correlations for the MP
maps.
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3.2.1. Gibbs property and multipliers. We will use a definition of a Gibbs state introduced by
Capocaccia in [5], see also [10, 11, 17, 29]. According to this definition, a measure µ is called
Gibbs if the result τ∗µ of an action by an arbitrary conjugating homeomorphism (defined
below) is absolutely continuous with respect to µ and the corresponding Radon–Nykodim
derivative, which depends on τ and is called a multiplier for τ , has certain properties. The
DLR equations (1.1) can then be rewritten in terms of these multipliers. We recall some
definitions from [5, 12, 29].

Definition 3.1. A continuous transformation T of a compact metric space (X, d) is called
expansive if there exists γ > 0 such that if d(T k(x), T k(y)) < γ for all k � 0, then x = y.
Two points x, y ∈ X are called conjugated if d(T k(x), T k(y)) → 0 as k → ∞. Two points
x, y ∈ X are called n-conjugated if T n(x) = T n(y).

Clearly, MP maps are expansive. Also, it is easy to see that if T is an expansive
endomorphism, and two points x, y ∈ X are conjugated, then they are n-conjugated for some
n ∈ N. Therefore, points x and y are conjugated if and only if their symbolic representations
ω = (ω0, ω1, . . .), ω′ = (ω′

0, ω
′
1, . . .), coincide starting from a certain place, i.e. there exists

n ∈ N such that

ωk = ω′
k for k � n.

Definition 3.2. A homeomorphism τ : U → X, defined on a closed set U , U ⊆ X, is called
conjugating, if x and τ(x) are conjugated for every x ∈ U .

Remark. Generally conjugating homeomorphisms do not form a group, but a pseudogroup:
composition of two conjugating homomorphisms τ ′, τ ′′, defined on U ′ and U ′′, respectively,
can be defined provided U = (τ ′)−1(U ′′ ∩ τ ′(U ′)) is not empty. In this case τ = τ ′′ ◦ τ ′ is
a conjugating homeomorphism defined on U . We will use this observation later, when we
discuss the cocycle property of multipliers.

If two points x and y are conjugated, then there is a unique germ of a conjugating
homeomorphism mapping a neighbourhood of x into a neighbourhood of y [5, 11]. Those
germs form a groupoid [35].

We are going to describe a set of conjugating homeomorphisms E [17], for MP maps T ,
using the fact that T : X → X is topologically conjugated to a one-sided shift σ : - → -,
- = {0, 1}Z+ , by a coding map π : - → X. By definition E = ∪nEn, where En is defined as
follows. We say that τ ∈ En, n � 1, if and only if

(a) there exist (i0, . . . , in−1), (j0, . . . , jn−1) ∈ {0, 1}n such that

τ : Īi0,...,in−1 → Īj0,...,jn−1

(b) for every point x ∈ Īi0,...,in−1 with the symbolic representation

ω = π−1(x) = (i0, . . . , in−1, ωn, ωn+1, . . .)

the image τ(x) = y has a symbolic representation

ω′ = π−1(y) = (j0, . . . , jn−1, ωn, ωn+1, . . .).

This means, that τ alters the first n symbols in the symbolic representation of x. In a compact
form τ can be written as follows:

τ(x) = π
(
(j0, . . . , jn−1) ∨ σn(π−1(x))

)
where (j0, . . . , jn−1) ∨ σn(π−1(x)) is the concatenation of strings (j0, . . . , jn−1) and
σn(π−1(x)).

Now, we give the definition of (weakly) Gibbs states.
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Definition 3.3. Suppose (X, d) is a compact metric space, T : X → X is a continuous
expansive transformation.

(a) A family of non-negative functions {Rτ }, indexed by all conjugating homeomorphisms
{τ | τ : U → τ(U)}, is called a family of multipliers if the following cocycle relation

Rτ ′′
(
Rτ ′ ◦ τ ′′−1) = Rτ ′′◦τ ′ (3.3)

holds on U = (τ ′)−1(τ ′(U ′) ∩ U ′′), whenever U is not empty.
(b) A measure µ is called weakly Gibbs for the family of multipliers {Rτ } if for every

conjugating homeomorphism τ : U → τ(U), the push-forward τ∗(µ|U) is absolutely
continuous with respect to µ|τ(U) and

dτ∗(µ|U)
dµ|τ(U) = Rτ . (3.4)

(c) A measureµ is called Gibbs if it is weakly Gibbs for some family of positive and continuous
multipliers {Rτ }.

(d) A function ϕ : X → R is called a dynamical potential for the measure µ if µ is (weakly)
Gibbs and

Rτ = exp

( ∞∑
k=0

ϕ(T k ◦ τ−1(x))− ϕ(T k(x))

)
. (3.5)

Remark.

(a) Condition (3.4) is equivalent to the requirement∫
f ◦ τ dµ =

∫
fRτ dµ

for all continuous f supported on τ(U).
(b) If τ is a conjugating homeomorphism, so is τ−1. It is easy to see that due to expansiveness

of T two conjugated points x and y are n-conjugated for some n � 0, i.e. T n(x) = T n(y).
Therefore, the sum in (3.5) is actually finite.

(c) It is also easy to check that any family of functions Rτ obtained from (3.5) is a family of
multipliers in the sense of (3.3).

Therefore, in order to decide if a given measure ν is Gibbs or not, we have to understand
what happens to ν under the action of all possible conjugating homeomorphisms from E . This
seems to be an enormous task. Nevertheless, the problem becomes much easier, if we can
relate the measure ν to some transfer operator.

Suppose we are given some Borel bounded and non-negative function ψ : X → R.
Define the corresponding (Ruelle’s) transfer operator Lψ , acting on bounded Borel measurable
functions, as follows:

Lψf (x) =
∑

y:T (y)=x
ψ(y)f (y).

By induction,

Ln
ψf (x) =

∑
y:T n(y)=x

ψ
(
y
)
ψ
(
T (y)

)
. . . ψ

(
T n−1(y)

)
f (y).

Also define an adjoint operator L∗
ψ , acting on Borel measures, by requiring that the equality∫

Lψf dν =
∫
f dL∗

ψ ν

holds for all f . The following is a corollary of a theorem by Ruelle [29].
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Theorem 3.4. Suppose T : X → X is a Manneville–Pomeau map, and ν is a Borel measure
(not necessarily T -invariant) such that

L∗
ψν = ν

and ψ is positive ν-a.s. Then for every τ ∈ E the following holds:

τ∗(ν|U) � ν|τ(U) and Rτ := dτ∗ ν
dν

=
∏∞

k=0 ψ
(
T k ◦ τ−1(x)

)
∏∞

k=0 ψ
(
T k(x)

) . (3.6)

Proof. Let τ ∈ E . Then there exists n � 1 and (i0, . . . , in−1), (j0, . . . , jn−1) such that

τ : Īi0,...,in−1 → Īj0,...,jn−1 .

Consider an arbitrary bounded Borel function f , vanishing outside Īj0,...,jn−1 . Then

Ln
ψ(f ◦ τ)(x) =

n−1∏
k=0

ψ
(
T k(y)

)
f (τ(y))

where y ∈ Īi0,...,in−1 is such that T n(y) = x. Or, equivalently,

Ln
ψ(f ◦ τ)(x) =

n−1∏
k=0

ψ
(
T k(τ−1(z))

)
f (z)

where z ∈ Īj0,...,jn−1 is such that T n(z) = x. Therefore,

Ln
ψ

(
f ◦ τ)(x) =

n−1∏
k=0

ψ
(
T k(z)

)∏n−1
k=0 ψ

(
T k ◦ τ−1(z)

)
∏n−1

k=0 ψ
(
T k(z)

) f (z)

=
(

Ln
ψ

(∏n−1
k=0 ψ ◦ T k ◦ τ−1∏n−1

k=0 ψ ◦ T k
f

))
(x).

Since L∗
ψν = ν, one finds that∫

f ◦ τ dν =
∫ ∏n−1

k=0 ψ ◦ T k ◦ τ−1∏n−1
k=0 ψ ◦ T k

f dν.

Moreover, since f is arbitrary, we conclude that

τ∗ν|τ(U) � ν|τ(U)
and

dτ∗ ν|τ(U)
dν|τ(U) =

∏n−1
k=0 ψ ◦ T k ◦ τ−1∏n−1

k=0 ψ ◦ T k
=
∏∞

k=0 ψ ◦ T k ◦ τ−1∏∞
k=0 ψ ◦ T k

since T kτ−1(x) = T k(x) for all k � n. �

Remark. The above theorem immediately checks the requirements in definition 3.3 of weakly
Gibbs states: it establishes the absolute continuity of τ∗µ with respect to µ and gives a
corresponding family of multipliers

Rτ =
∏∞

k=0 ψ
(
T k ◦ τ−1(x)

)
∏∞

k=0 ψ
(
T k(x)

) . (3.7)

Thus our problem consists in establishing the properties of the product in the right-hand side
of (3.7).
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Theorem 3.5. Let T be a Manneville–Pomeau-type map. Let µ be the absolutely continuous
invariant measure for T . Then µ is not a Gibbs, but is a weakly Gibbsian measure: the
multipliers Rτ , given by (3.4), are well defined non-negative integrable functions, but not all
of them are positive and continuous.

Proof. Let h be the density of µ, and let us introduce a normalized transfer operator L0,
corresponding to ψ0, which is given by

ψ0(x) =



h(x)

h(T (x))

1

|T ′(x)| for x > 0

1 for x = 0.
(3.8)

Hu in [14] showed thatψ0 is a continuous function onX, satisfying 0 � ψ0(x) � 1,ψ0(x) = 1
iff x = 0, and the only zero of ψ0 at p+, which was obtained by doubling the point p. Note,
that T (p+) = 0.

Consider also the transfer operator L corresponding to ψ = 1/|T ′|. It is well known [19]
that the transfer operator maps L1(m) to itself (m denotes the Lebesgue measure), the density
h = dµ/dm satisfies Lh = h, and∫

Lf dm =
∫
f dm (3.9)

for all f ∈ L1(m) and thus, L∗m = m.
The normalized transfer operator L0 has the following properties:

(a) L0I = I, where I(x) = 1 for all x;
(b) operators L and L0 are related by the following formula:

L0f = 1

h
L(hf ) for all f

(c) for every f ∈ L1(µ)∫
L0f dµ =

∫
f dµ

and hence L∗
0µ = µ.

The last property of L0 follows easily from the corresponding property of L. Indeed,∫
L0(f ) dµ =

∫
1

h
L(hf )h dm =

∫
L(hf ) dm =

∫
hf dL∗ m =

∫
f h dm =

∫
f dµ.

Therefore, we can apply theorem 3.4 to µ: substitute the expression (3.8) for ψ0 into the
corresponding expression (3.6) for Rτ . Let τ ∈ En and assume that none of the points
{T k ◦ τ i(x)| k = 0, . . . , n − 1, i = −1, 0} is equal to 0. Then, taking into account that
T nτ−1(x) = T n(x), we obtain

Rτ (x) = h(τ−1(x))

h(x)

|(T n)′(x)|
|(T n)′(τ−1(x))| .

The part of the previous formula involving the derivative of T n depends continuously on x and
is positive. The ratio h(τ−1(x))/h(x) can be arbitrary large (small). Indeed, suppose τ ∈ En
and τ : Ī0,...,0 → Ii0,...,in−1 , where i0 = 1. The density h(x) is bounded on Ii0,...,in−1 , on the
other hand, since h(t) is singular at t = 0 one has that Rτ is singular as well.
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It is also clear that any other family of multipliers {R̃τ }, satisfying (3.4) of definition 3.3,
can differ from the obtained densities only on a set of measure 0. Thus, they cannot be positive
and continuous. Hence µ is not a Gibbs state, but is weakly Gibbsian. �

In the following section we study the absolutely continuous invariant measure µ in the
symbolic representation. We prove that there exists an almost surely absolutely convergent
potentialU such that the conditional probabilities ofµ can be represented in a standard Gibbsian
way. This strengthens the result of theorem 3.5, and establishes a relation between the notions
of weakly Gibbsian measures commonly used in statistical mechanics and definition 3.3.
Moreover, certain properties of the measureµ can be understood from the decay of the potential
U .

3.2.2. Symbolic dynamics: the potential. Consider again the coding π : {0, 1}Z+ → X.
The question we want to deal with here is to see which kind of a potential (in the sense of
equilibrium statistical mechanics) is associated with ν = π∗µ and how the properties of this
potential can be related to the decay of correlations.

Let us introduce some notation: put � = {0, 1}Z+ = {ω = (ωi) : ωi ∈ {0, 1}, i ∈ Z+},
[ω0, . . . , ωn−1] is the cylinder with first coordinates ω0, . . . , ωn−1. If ω ∈ � and � ⊂ Z+

then ω� is a projection of ω to {0, 1}�, so ω{i} = ωi . For �,�′ ⊆ Z+, � ∩ �′ = ∅, and
ξ ∈ {0, 1}�, η ∈ {0, 1}�′

, we let ζ = ξη ∈ {0, 1}�∪�′
be such that ζ |� = ξ and ζ |�′ = η. For

any � ⊆ Z+ denote by �c the complement of � in Z+. For any ξ ∈ {0, 1}�, η ∈ {0, 1}�c

, the
conditional probability of observing ξ on � given η on the complement will be denoted by
ν
(
ω|� = ξ

∣∣ω|�c = η
)
, or, shortly, ν(ξ |η). Finally, 0̄ and 1̄ are the configurations consisting

entirely of 0’s and 1’s.
We start by observing that ν is certainly not Gibbsian in the usual sense. The reason is that

the ν-probability of the cylinder {ω : ω0 = ω1 = · · · = ωn = 0} only decays polynomially,
see (3.28). As a result the relative entropy density i(δ0̄|ν) between the Dirac measure on the
configuration of all zeros δ0̄ and ν vanishes:

i(δ0̄|ν) = lim
n→∞

1

n
In(δ0̄|ν) = 0

where

In(λ|ρ) = I (λn|ρn) =
∫

log
dλn
dρn

dλn =
∫

dλn
dρn

log
dλn
dρn

dρn

is the Kullback–Liebler information between the projections λn, ρn of the measures λ, ρ onto
cylinders of length n+1, i.e.�n = {0, 1}n+1. However, by the variational principle of statistical
mechanics, see, e.g., [9], this means that ν cannot be Gibbsian (since then δ0̄ would be Gibbsian
with the same potential which is absurd).

Using (3.4), the conditional probabilities for ν can be written [17, 28] as

ν(ω0, . . . , ωn|ωn+1, ωn+2, . . .) = Rτ[ω0 ,...,ωn ]

(
π−1(ω0 . . . ωnωn+1 . . .)

)
∑

ω′
0,...,ω

′
n
Rτ[ω′

0 ,...,ω
′
n ]

(
π−1(ω′

0 . . . ω
′
nωn+1 . . .)

) (3.10)

where τ[ω0,...,ωn] ∈ En+1 is a conjugating homeomorphism, mapping Īω0,...,ωn to Ī1,...,1. Note,
that here we have chosen 1̄ as a reference state. It is easy to see that actually (3.10) does not
depend on the choice of the reference state.
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In particular, for n = 0 we find that the conditional probability to find ω0 ∈ {0, 1} at the
origin while the rest of the configuration on {1, 2, . . .} is ω0c = (ω1, ω2, . . .), is simply given
by

ν(ω0|ω1, ω2, . . .) = ψ0(π
−1(ω))

ψ0(π−1(ω0)) + ψ0(π−1(ω))
(3.11)

where ω = (ω0, ω1, . . .) and ω0 is ω ‘flipped’ at the origin, i.e. ω0
0 = 1 − ω0 and ω0

i = ωi for
i 	= 0. Since ψ0 is continuous, we immediately conclude that the non-Gibbsian character of ν
is not related to the presence of essential discontinuities in the conditional probabilities (as in
the case of the restricted Ising model of the introduction). However, ν(ω0|ω0c ) is not uniformly
non-null: it is easily seen that for the continuous version of the conditional probabilities one
has

ν(ω0 = 1|ω0c = 0̄) = 0

ν(ω0 = 0|ω0c = 0̄) = 1
(3.12)

where 0̄ denotes the configuration of all zeros. Therefore, we expect to find a potentialU(�,ω)
for which the sums that form the local Hamiltonian

HU
� (ω) =

∑
A∩� 	=∅

U(A,ω) (3.13)

will diverge at ω = 0̄. More precisely we have the following.

Theorem 3.6. There exists a translation-invariant potential U(�,ω) with the following
properties:

(a) U(�,ω) = 0 unless � = [i, j ];
(b) ∃δ > 0, ∃l : � → R+ ∪ {∞} such that on the set K := {ω : l(ω) < ∞} we have the

estimate

|U([0, n], ω)| �
{
C2(ω) n < l(ω)

C1(ω) exp(−δn) n � l(ω)

for some Ci(ω) < ∞, ω ∈ K .
(c) ν is weakly Gibbsian with potential U , see (3.27).

Proof. We consider the Kozlov potential [18] with reference state ω = 1̄:

U([i, j ], ω) = log
ν(1{i}ω(i,j ]|1[i,j ]c )ν(ω[i,j)1{j}|1[i,j ]c )

ν(ω[i,j ]|1[i,j ]c )ν(1{i}ω(i,j)1{j}|1[i,j ]c )
. (3.14)

From the inequality | log a − log b| � |a − b|/min{a, b}, we have the estimate

|U([0, n], ω)| � c(ω)ϕn(ω) (3.15)

where

c(ω)−1 = 1
2 min

n
min
a,b

ν(a|ω(0,n−1)bn1(n,∞)) � 0 (3.16)

with equality only for ω = 0̄, and where

ϕn(ω) = sup
ξ,ξ ′

∣∣ν(ω0|ω[1,n−1]ξ[n,∞))− ν(ω0|ω[1,n−1]ξ
′
[n,∞))

∣∣. (3.17)



1694 C Maes et al

Using expression (3.11) for the conditional probabilities, we obtain

ϕn(ω) = sup
ξ,ξ ′

∣∣∣∣∣ ψ0 ◦ π(ω[0,n−1]ξ[n,∞))

ψ0 ◦ π(ω0
[0,n−1]ξ[n,∞)) + ψ0 ◦ π(ω[0,n−1]ξ[n,∞))

− ψ0 ◦ π(ω[0,n−1]ξ
′
[n,∞))

ψ0 ◦ π(ω0
[0,n−1]ξ

′
[n,∞)) + ψ0 ◦ π(ω[0,n−1]ξ

′
[n,∞))

∣∣∣∣∣
� C3


 sup
x,y∈Iω0ω1 ...ωn−1

|ψ0(x)− ψ(y)| + sup
x,y∈I

ω0
0ω1 ...ωn−1

|ψ0(x)− ψ0(y)|

 (3.18)

with

C3 = 2 sup
ξ

1

ψ0 ◦ π(ξ) + ψ0 ◦ π(ξ 0)
< ∞.

Estimating (3.18) is only problematic in the case where x or y are very close to zero. Since h
is bounded and Lipschitz on (ε, 1] for any ε > 0 (see [14]), we know that if ε < x � y for
some ε > 0, then there exists a constant C4 = C4(ε) such that

|ψ0(x)− ψ0(y)| � C4|x − y|. (3.19)

Of course, things remain bad for x = 0 and we must therefore restrict ourselves to ‘good’
configurations. We first define what we mean by this. Put β = ∫

ν(dω)ω0 = µ(I1) > 0 and
define

�(ω) = inf

{
n ∈ N0 :

1

k

k−1∑
i=0

ωi >
1
2β for all k � n

}
. (3.20)

We say that ω is ‘good’ if �(ω) < ∞ and we collect them in the set

K = {ω : �(ω) < ∞}. (3.21)

Note that K is a set in the tail field. Indeed, if two configurations ω and ω′ are such that{
i ∈ N0 : ωi 	= ω′

i

}
is a finite set, then �(ω) < ∞ if and only if �(ω′) < ∞. Thus, if ω ∈ K , then ω0 ∈ K as well.
For ω ∈ K , we define

ε = ε(ω) = 1
2 inf

{
x ∈ Iω0...ω�(ω)−1 ∪ Iω0

0 ...ω�(ω0)−1

}
. (3.22)

By the definition of �(ω) and K , ε(ω) > 0 for every ω ∈ K . Moreover, for every n � �(ω),
if x ∈ Iω0...ωn−1 ∪ Iω0

0 ...ωn−1
then x > ε(ω).

Combining (3.18) and (3.19), we have that

ϕn(ω) � C(ω)
(|Iω0,...,ωn−1 | + |Iω0

0 ...ωn−1
|). (3.23)

Now use that 1/|T ′(x)| � e−δ′
for x ∈ [p, 1] and δ′ = log λ > 0; this gives the estimate

m(Iω0ω1...ωn−1) � exp

(
−δ′

n−1∑
i=0

ωi

)
. (3.24)

Therefore, for ω ∈ K and n � �(ω) we have

ϕn(ω) � C(ω) e−δn (3.25)
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with δ = 1
2βδ

′. For ω ∈ K and n � l(ω) we have the trivial bound

ϕn(ω) � 2. (3.26)

Together with (3.14)–(3.16), this finishes the proof of claims (a) and (b) of the theorem and
shows that the potential is absolutely convergent on the set K .

In order to prove that ν is weakly Gibbsian with potential U we still have to establish two
facts:

(a) the potential U is absolutely convergent on a set of ν-measure one;
(b) ν is consistent with the potential, i.e.

ν(ω0|ω) = exp (−H{0}(ω))
exp(−H{0}(ω)) + exp(−H{0}(ω0))

ν − a.s. (3.27)

where H{0} is the local Hamiltonian defined in (3.13).

The second point follows from the first one and from the continuity of the conditional
probabilities (see, e.g., [23, 24]). The first fact is a simple consequence of the ergodic theorem:

ν(Kc) � ν

({
ω : lim inf

n↑∞
1

n

n−1∑
i=0

ωi � 1
2β

})
= 0. �

Theorem 3.6 states that the potential U([0, n], ω) decays exponentially for n larger
than some configuration-dependent ‘correlation length’ �(ω). As we have seen above, the
correlations for the MP maps decay polynomially: ρn = O(n−1/α+1), where α ∈ (0, 1) is
the parameter of the MP map. It turns out that the ‘distribution’ of the correlation length
�(ω) is closely related to the above decay of correlations. This is the content of the following
proposition.

Theorem 3.7. One has the following estimates of ν({ω : �(ω) � n}) depending on the
parameter α:

(a) for α ∈ ( 1
2 , 1) there exist constants C1, C2 > 0 such that

C1n
−1/α+1 � ν({ω : �(ω) � n}) � C2n

−1/α+1

(b) for α = 1
2 there exist constants C1, C2 > 0 such that we have

C1n
−1 � ν({ω : �(ω) � n}) � C2n

−1 log n

(c) for α ∈ (0, 1
2 ) and any δ > 0 there exist constants C1, C2 > 0 such that

C1n
−1/α+1 � ν({ω : �(ω) � n}) � C2n

−1/α+1+δ.

We are going to use the following result in the proof of the above statement.

Theorem 3.8. Let - = AZ+ , where A = {1, . . . , N}, and let ν be a shift-invariant probability
measure on -. For a bounded function f : A → R with

∫
f dν = 0, denote

ρk(f ) =
∣∣∣∣
∫
f (ω0)f (ωk) dν

∣∣∣∣ k ∈ N.

Suppose, that for some m � 1 one has

ζm :=
∞∑
k=1

ρ
1/m
k < ∞.
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Then there exists a constant C > 0 such that∫ ∣∣∣∣
n−1∑
k=0

f (ωk)

∣∣∣∣
2m

dν � C
(
ζm
)m
nm.

for all n � 1.

Proof. The casesm = 1 and 2 are, in fact, lemmas 2 and 4 in [1, chapter 4, p 172]. The statement
can be easily generalized for any other integer m > 2. The remaining case m = k + δ, where
k is an integer and δ ∈ (0, 1) can be proved along the lines of lemma 7.4 [8, p 225]. One has
to stress, that though lemma 7.4 in [8] is proved under very different assumptions, discrete
Markov chains with exponential mixing, its proof can be adopted to our purposes with minor
modifications. �

Proof of theorem 3.7. The lower bound is easy:

ν({ω : �(ω) � n}) � µ(I00...0).

Since h(x) � C3x
−α and m(I00...0) � C4n

−1/α:

µ(I00...0) �
∫ C4n

−1/α

0
C3x

−αdx = C1n
1−1/α. (3.28)

The upper bound is more difficult: put Sn(ω) := ∑n−1
i=0 (ωi − β), where we recall that

β = ∫
ω0 dν > 0.

We have to estimate ν({ω : �(ω) � n}), i.e.

ν

({
ω : ∃k � n such that

∣∣∣∣Skk
∣∣∣∣ > 1

2β

})
= ν

({
ω : sup

k�n

∣∣∣∣Skk
∣∣∣∣ > 1

2β

})
. (3.29)

According to theorem 12 in [16] the following conditions are equivalent:

(a) ν

({
ω : sup

k�n

∣∣∣∣Skk
∣∣∣∣ > β

2

})
= O(n−γ ) as n → ∞

(b) ν

({
ω :

∣∣∣∣Snn
∣∣∣∣ > β

2

})
= O(n−γ ) as n → ∞.

Therefore, these two probabilities have similar asymptotic behaviour, however, the second
quantity is much easier to deal with.

Let us start with the case α ∈ [ 1
2 , 1

)
. By the Chebyshev inequality

ν

({
ω :

∣∣∣∣Snn
∣∣∣∣ > 1

2β

})
� 4

∫ |Sn|2 dν

n2β2
� C

1

n

n−1∑
k=0

ρk.

Taking into account that ρk = O(k−1/α+1) for k � 1, we conclude that for some C2

ν

({
ω :

∣∣∣∣Snn
∣∣∣∣ > 1

2β

})
� C2n

−1/α+1 for α ∈ ( 1
2 , 1

)
and

ν

({
ω :

∣∣∣∣Snn
∣∣∣∣ > 1

2β

})
� C2n

−1 log n for α = 1
2 .



Intermittency and weak Gibbs states 1697

The above argument cannot produce an estimate which decays faster than 1/n. Therefore, for
α ∈ (0, 1

2

)
we have to use higher moments of Sn in order to obtain better estimates.

Consider α ∈ (0, 1
2

)
and take any sufficiently small δ ∈ (0, 1) such thatm = 1−α

α
(1−δ) �

1. Since ρk = O(k−1/α+1) one has

ζm =
∞∑
k=1

ρ
1/m
k � C

∞∑
k=1

k−1/(1−δ) < +∞.

Using the Chebyshev inequality and the estimate from theorem 3.8 we conclude that there
exists a constant C2 such that

ν

({
ω :

∣∣∣∣Snn
∣∣∣∣ > 1

2β

})
� C2n

−m = C2n
−1/α+1+δ′

where δ′ = (1/α − 1)δ. This finishes the proof of the upper bound. �
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