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Orthonormal wavelet expansions are applied to atmospheric surface layer velocity and temperature 

measurements above a uniform bare soil· surface that exhibit a long inertial subrange energy 

spectrum. In order to investigate intermittency effects on Kolmogorov's theory, a direct relation 

between the nth-order structure function and the wavelet coefficients is derived. This relation is used 

to examine deviations from the classical Kolmogorov theory for velocity and temperature in the 

inertial subrange. The local nature of the orthonormal wavelet transform in physical space aided the 

identification of events directly contributing to intermittency buildup at inertial subrange scales. 

These events occur at edges of large eddies and contaminate the Kolmogorov inertial sub range 

scaling. By suppressing these events, the statistical structure of the inertial subrange for the velocity 

and temperature, as described by Kolmogorov's theory, is recovered. The suppression of 

intermittency on the nth-order structure function is carried out via a conditional wavelet sampling 

scheme. The conditioned wavelet statistics reproduced the Kolmogorov scaling (up to n = 6) in the 

inertial subrange and result in a zero intermittency factor. The conditional wavelet statistics for the 

mixed velocity temperature structure functions are also presented. It was found that the conditional 

wavelet statistics for these mixed moments result in a thermal intermittency parameter consistent 

with other laboratory and field measurements. The relationship between Kolmogorov's theory and 

near-Gaussian statistics for velocity and temperature gradients is also considered. 

I. INTRODUCTION 

From Kolmogorov1 theory (K41), the ensemble average 

of the nth order velocity difference (AUi) between two 

points separated by spatial distance (r), in the inertial sub­

range, can be computed using 

(1) 

where E is the turbulent energy dissipation rate 

E=!:.. (aUi + aUj) 
2 

2 aXj JXi 
(2) 

and Ui are the velocity components (i = 1,2,3), p is the ki­

nematic viscosity, Kn is a universal constant independent of 

the flow but depends on n, n is the order-of-the-structure 

function, r is the separation distance that is much smaller 

than the integral length scale (L) but much larger than the 

Kolmogorov microscale 1]( = [,}/(E)] 1/4) , and (-) is the en­

semble averaging operator. 

The scaling laws in (1) have been applied to scalars such 

as temperature, humidity, carbon dioxide concentrations, as 

well as many other flow variables, and (1) was found to hold 

by many experiments for n = 2 (see Ref. 2, pp. 453-527). 

However, (1) appears to be less accurate for n>2 as evi­

denced by many other laboratory experiments? Deviations 

from (1) have been attributed to intermittency buildup within 

the inertial subrange, as originally noted by Landau and Lif­

shitz (see Refs. 4 and 5 for a different interpretation). As a 

result, many phenomenological models and intermittency 

corrections to K41 have been proposed. These corrections 

include intermittency effects intrinsic to the dissipation rate 

or fractal-like buildup of intermittency during the energy cas­

cade process.6 Examples of these phenomenological models 

include the f3 model,1 the lognormal model,8 and other mul­

tifractal models.9
,lO,1l Kuznetsov12 classified the intermit­

tency from these types of models as "internal," since the 

variability in the instantaneous dissipation rate is only con­

sidered. Using high Reynolds number turbulent velocity 

measured in a wind tunnel, they showed that "external" in­

termittency plays a key role in the energy cascade. External 

intermittency arises due to the direct correlation between the 

large-scale motion and the inertial subrange scales. It is not 

yet established whether external intermittency is a property 

of the Navier-Stokes equations or the result of boundary 

conditions. However, we should note that the large-scale 

eddy motion cannot be independent of the boundary 

conditions. 

Many atmospheric surface layer (ASL) flow spectra ex­

hibit an inertial subrange that extends over many decades so 

that intermittency effects on K41 and the energy cascade 

become important.13
.
2 The turbulence in the ASL is ideal for 

investigating K41 and intermittency effects on K41, since the 

Reynolds number is very high, and the scale separation be­

tween Land T/ is large (LI T/= 106 for ASL turbulent floWS). 

Intermittency studies in the natural environment can encoun­

ter difficulties due to (i) the limited sampling period over 
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which steady state mean meteorological conditions exist, (ii) 

the need for instrumentation that is free of atmospheric con­

tamination and possible temperature and humidity calibra­

tion drifts, and (iii) the requirement for instrumentation that 

is field robust and capable of providing all three velocity 

components since changes in wind direction are inevitable. 

As discussed in Katul,14 the first difficulty limits the 

number of data points that can be. used to evaluate the en­

semble average in (1). Typically, the ergodic hypothesis is 

used to evaluate the ensemble average in (1) from measured 

time averages. IS The convergence of time averages to en­

semble averages requires a very large number of measure­

ments, especially as the power n increases. The large number 

of measurements may not always be attainable in many field 

studies primarily due to unsteadiness in the mean meteoro­

logical conditions. The second and third difficulties limit the 

use of many fast response sensors that can resolve scales as 

small as 17, such as hot wire probes. 

The development of analyzing tools that allow the study 

of intermittency effects in the ASL from limited number of 

field measurements is therefore necessary. The purpose of 

this paper is to investigate the usefulness of orthonormal 

wavelet transforms in quantifying intermittency effects on 

K41 using ASL velocity and temperature measurements. The 

wavelet transform is applied to 21 Hz triaxial ultrasonic an­

emometer velocity and temperature measurements above a 

large and uniform bare soil surface. Since intermittency in­

vestigations typically utilize Fourier power spectra and struc­

ture functions, we establish a relation between the wavelet 

coefficients and these statistical measures. We also use con­

ditional wavelet statistics that are developed to isolate events 

directly causing intermittency buildup in the inertial sub­

range. A brief review of wavelet transforms with emphasis 

on applications to turbulence measurements is presented. 

II. ANALYSIS OF TURBULENCE MEASUREMENTS 
USING WAVELET TRANSFORMS 

In this section, a brief review of wavelet transform 

theory that is relevent to this study is presented. Wavelet 

transforms are recent mathematical tools based on group 

theory and square integrable functions that unfold turbulence 

signals into space and scale. Continuous wavelet transforms 

have been applied to many turbulence measurements and 

proved to be successful in identifying local scaling 
exponents,16-2O intermittency visualization,21 identification 

of ensemble coherent events for proper orthogonal decompo­

sition investigations,22 and identification of coherent struc­

tures above and within canopies.23 Orthonormal wavelets are 

the discrete counterpart of continuous wavelets; however, 

they have the added feature of forming a complete basis with 

analyzing wavelet functions orthogonal to their 
translates.24,25,26 The application of orthonormal wavelets has 

added an important new techniques in the study and analysis 

of turbulence measurements.27- 32,14 For completeness, a brief 

review of continuous and orthonormal wavelet transforms is 

given. 

Analogous to Fourier transforms, wavelet transforms can 

be classified as either continuous or discrete. The continuous 
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wavelet transform is first considered followed by a motiva­

tion for using discrete wavelet transform. 

A. Continuous wavelet transforms 

As shown by Grossmann,33 the continuous wavelet 

transform W(b,a) of a real-square integrable signal f(x) 

[i.e., f~: f(x)2 dx<oo] with respect to a real integrable ana­

lyzing wavelet 1/J(x) can be defined as 

1 f+oo (t-b) 
W(b,a)=C;1I2 Ta -00 1/J.-a- f(t)dt, (3) 

where a is a scale dilation, b is a position translation, and C g 

is defined by 

Cg = f::IKI-
1
11/J*(K)1

2
dK <00, (4) 

where K is the wave number and 1/J* is the Fourier transform 

of 1/J(x) given by 

f
+OO 

1/J*(K)= -00 1/J(t)e-
iKt 

dt. (5) 

The continuous wavelet transform is commonly viewed 

as a numerical microscope whose optics, magnification, and 

position are given by 1/J(x), a, and b, respectively.21 In order 

to classify as a wavelet, the function 1/J(x) has to satisfy the 

following conditions: (1) The admissibility condition, which 

requires that 

f
+OO 

~OO 1/J(y)dy=O. (6) 

Simply stated, (6) requires that the average of 1/J(x) be zero. 

(2) The similarity condition, which requires the scale decom­

position to be obtained by translation and dilation of one 

analyzing function. (3) The invertibility condition, which re­

quires at least one reconstruction formula for recovering f(x) 

from its wavelet coefficients. The function f(x) may be re­

trieved from the wavelet coefficients by 

f +oof +00 (X-b) db da 
f(X)=C- 1I2 a-1I2 1/J -- W(a,b) --2-' 

g 0 -00 a a 

(7) 

Further details regarding the wavelet transform theory can be 

found in many references (see, e.g., Refs. 25, 26, and 34-

36). 

B. Orthonormal wavelet expansions 

For the analysis of turbulence measurements, discrete 

wavelet transforms are preferred, since f(x) is typically 

known at only discrete points Xj (whose spacing depends on 

the resolution of the sensor and the sampling frequency). 

Therefore, it becomes necessary to discretize the scale (a) 

and the space (b) domain of (3). If f(xj) is defined by N 

discrete points, one may consider simply discretizing the 

space domain of (3) by N nodes and the scale domain of (3) 

by N nodes (i.e., discretized by a series of Dirac-delta func­

tions). In this manner, the wavelet transform of f(xj) re-
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quires N 2 wavelet coefficients. This discretization forms an 

over-complete description of [(Xj) in the wavelet domain. 

Therefore, redundant information is injected by the wavelet 

transform of [(x;) that may or may not be advantageous 

depending on the specific application or purpose. For ex­

ample, if some statistical analysis is to be performed on the 

wavelet coefficients, then some correlation may exist be­

tween the wavelet coefficients because of the transformation 

rather than the turbulence mechanism under consideration. 

To eliminate this redundancy, it is necessary to construct a 

complete and orthogonal wavelet basis. In this case, N wave­

let coefficients are necessary to describe [(Xj) in the wavelet 

domain rather than N
2

• Therefore, orthonormal wavelet 

transforms are suited for this purpose, since the basis func­

tions are orthogonal and the mutual independence of the 

wavelet coefficients is guaranteed. As shown by 
Daubechies,35 Mallat,37,38 and Meyer24 using a logarithmic 

uniform spacing for the scale discretization with increasingly 

coarser spatial resolution at larger scales, a complete or­

thogonal wavelet basis can be constructed that allows the 

decomposition of [(Xj) from N wavelet coefficients. Note, 

unlike Fourier transforms, many wavelet basis functions are 

available for this decomposition. We choose the Haar wave­

let basis for its differencing characteristics, since we are in­

terested in developing explicit relations between the nth­

order structure function in (1) and the wavelet coefficients. 

The Haar basis !ft(x)=(a- 1/2)!ft[(x-b)/a], where a=2m 

and b=2mi for i,m EZ, is given by 

for 0<X<1I2] 
for l/2~x< 1 , 

elsewhere 

(8) 

where i and m are position and scale indices, respectively. As 

shown by Beylkin,39,4D for the Haar basis function, the wave­

let coefficients wrtm +1)(k) and the coarse grained signal 

S(m+l)(k) (Le., a low pass filtered signal) at scale m+ 1 can 

be determined from the signal SCm) at scale musing 

1 
WT(m+ 1)(i) =12 [s(m\2i -1) -s(m)(2i)], (9) 

1 
s(m+ O(i) =72 [s(m)(2i -1) +s(m)(2i)] (10) 

for m=O to M -1, i=O to 2M
-

m -!-I, and M=log2(N), N 

is the number of samples (integer power of 2). For the Haar 

wavelet, the coarse grained signal defined by (10) is a low­

pass filtered function obtained by a simple block average 

(see Daubechies35 for other types of filters). Hence, from (9) 

and (10), the wavelet coefficients and coarse grained signal 

may be calculated using the following pyramidal algorithm 

for a signal stored in vector S(D). 

(1) Beginning with m = 0, use (9) and (10) to calculate 

S(I) and the wavelet coefficients WT(l) at the first scale 

by looping over i from 0 to 2 M - I - 1. This results in S 

and WT vectors each of length N/2. 

(2) Repeat step 1 with m = 1 to calculate the next 

coarser scale's pair of vectors S(2) and WT(2) (each 

of length N/4) from S(l). 
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(3) Repeat for larger scale m up to M - 1 to produce a 

series of Sand WT vectors of progressively decreas­

ing length. Note that at m = M - 1 the coarse grained 

signal converges to a point. This algorithm will yield 

N - 1 wavelet coefficients defining the orthonormal 

Haar wavelet transform of the measured turbulence 

signal. The above pyramidal procedure, which is 

known as fast wavelet transforms (FWT), requires 

about N computations vis-a-vis the N log2 N compu­

tational steps for fast Fourier transforms (FFT). The 

N - 1 discrete Haar wavelet coefficients also satisfy 

the conservation of energy condition 

j=N-l m=Mi=(2M - m "1l 

~ [(j)2= ~ ~ [WT(ml(i)f. (11) 

1=0 m=! ;=0 

Equation (11) states that the sum of the square of the wavelet 

coefficients for all scales and positions conserves the norm of 

the signal.14
,32 This is similar to Parseval's identity in Fourier 

expansions.26 

III. EXPERIMENT 

The data presented here were collected during an experi­

ment in 22 August 1993 at 1:55 pm over a uniform bare soil 

surface at the University of California, Davis Campbell Tract 

facility. The field site is a Yolo clay loam soil contained 

within a larger site that extends uniformly some 250 m in all 

directions. The longitudinal (U), lateral (V), and vertical 

(W) velocity components were measured at z = 2.0 musing 

a triaxial ultrasonic anemometer (Gill Instruments/1012R2) 

to an accuracy of ± 1 %. Sonic anemometers achieve their 

frequency response by sensing the effect of wind on transit 

times of sound pulses traveling in opposite directions across 

a known path length d s!(=0.149 m for the Gill sonic an­

emometer). The sonic anemometer is suited for these experi­

ments since it is free of calibration nonlinearities and atmo­

spheric contamination drifts. The main disadvantage of sonic 

anemometers is typically attributed to the wave-number dis­

tortion due to averaging over dsl ' This distortion is generally 

restricted to wave numbers larger than 2 7T/ d s\( =42.2 m --I) 

as discussed in Wyngaard41 and Friehe.42 

The absolute air temperature (T) was determined from 

the measured speed of sound (c) fluctuations using 

T=ac
2
/Rd' where a=Cp/CvC-1.4), Cp and Cv are the 

specific heat capacities of dry air under constant pressure and 

volume, respectively, and Rd is the gas constant for dry 

air.41 ,43 The influence of humidity variation on temperature 

was neglected. A comparison between the temperature deter­

mined from the triaxial sonic anemometer and temperature 

fluctuation measured from a fine wire chromel constantan 

thermocouple (0.0127 mm) is shown in Fig. l(a). The ther­

mocouple (TC) of Fig. lea) was placed at the same height as 

the sonic anemometer (z=2.4 m) but 60 cm away. The sam­

pling frequency used in this comparison was 10 Hz and the 

sampling period was 13.65 min. The main temperature struc­

tures are well captured by both instruments. The observed 

standard deviations of the thermocouple and sonic anemom­

eter temperature measurements were nearly identical (0.84 

and 0.82°C, respectively). In Fig. l(b), a comparison be-
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FIG. 1. (a) Comparison between thermocouple (TC) and triaxial sonic an­

emometer temperature measurements. The TC time series is shifted by 

7.S °C to permit comparison. (b) Comparison between the thermocouple 

(TC) and triaxial sonic anemometer temperature spectra. The TC power 

spectrum is shifted by two decades to permit comparison at the high wave­

number end. 

tween the power spectra of the two temperature time series is 

shown. The TC spectrum is shifted by two decades along the 

ordinate axis to permit comparison at the high wave-number 

end. At the low wave-number end of the spectra, the two 

sensors are in excellent agreement. The temperature spec­

trum from the thermocouple appears to "level off" at high 

wave numbers due to the limited resolution of the 

thermocouple.44 This suggests that the sonic anemometer has 

better fine-scale resolution than the TC for temperature mea­

surements. 

The sampling frequency (fs) of the sonic anemometer 

was 21 Hz and the sampling period (Tp) was 26 min. The 

short sampling period was necessary for steady state in the 

mean meteorological conditions. For Is = 21 Hz and T p = 26 

min, 32768 points, for each velocity component and speed 

of sound, were obtained (i.e., N=32 768). A summary of 

the mean meteorological and turbulence conditions is pre­

sented in Table I. From Table I, the stability parameter z/L MO 

is -0.44 indicating that buoyant and mechanical turbulent 

production are equally important for this study. We assume 

in this study that the velocity and temperature measurements 

can be decomposed, without ambiguity, into a mean and a 

fluctuating part. 

The ratio of the root-mean-square (RMS) velocity 

Phys. Fluids, Vol. 6, No.7, July 1994 

TABLE I. Summary of meteorological, turbulence, and surface roughness 

conditions during the experiment. The friction velocity was measured by the 

triaxial sonic anemometer. The momentum roughness length was deter­

mined in Ref. 32. 

Meteorological conditions 

Mean horizontal wind speed «Ul) 
Mean air temperature (T.) 

Friction Velocity (u*) 

Sensible heat flux 

RMS temperature (O'r) 

RMS velocity (0' w) 

RMS velocity (0' u) 

Turbulence conditions 

2.44ms'! 

36.68°C 

0.16 m s ! 

97 Wm-2 

0.67°C 

0.29 

1.20 m S-1 

Atmospheric stability conditions 

Height above ground surface (z) 

Obukhov length (Lmo) 

Surface roughness 

Momentum roughness length (zo) 

2.0m 

~4.56 m 

2mm 

O'uC=(U'2)1/2) to the mean horizontal wind speed (U) is 

1.20/2.44=0.49 which is not very small (see Table I). How­

ever, we employ Taylor's hypothesis assuming that it is valid 

at least for inertial subrange scales. Therefore, the mean hori­

zontal wind speed is used to convert time increments to 

space increments.45
-

48 We also apply Taylor's hypothesis to 

the vertical velocity fluctuation so as to convert time to lon­

gitudinal distance increments; that is an observer moving in a 

frame of reference in the longitudinal direction at a speed 

(U) will note the measured time series vertical velocity fluc­

tuations. In this case, the ratio CTw(=(w'2)1/2) to the mean 

horizontal wind speed (U) is 0.1 which is small. The resolv­

able wave number KNY[=21T/C(U)(fs/2)-1)] correspond­

ing to the Nyquist frequency (= Is/2) is 27.04 m-I, which is 

smaller than 42.2 m -1. Hence, wave-number distortions, dis­

cussed in Wyngaard,41 are not expected for these turbulence 

conditions and sampling frequency. For the temperature mea­

surements, we note that the Prandtl number is about 0.7 and 

the inertial-convective range is considered rather than the 

inertial subrange. 

IV. WAVELET STATISTICS 

In this section, relations between the Haar wavelet coef­

ficients, the Fourier power spectrum, and the structure func­

tion are developed. We show how the orthonormal wavelet 

transform can be used to investigate intermittency effects on 

inertial sub range scaling. 

A. Relation between wavelet coefficients and Fourier 
power spectrum 

In Fourier analysis, the fundamental tool used to charac­

terize turbulence is the power spectral density function 

E(K). The function E(K) represents the energy density con­

tained in each wave-number band dK, and thus provides in­

formation regarding the importance of each scale of motion 

to the overall variance. However, important spatial inform a-
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tion regarding location of events becomes implicit in the 

phase angle due to the global space-filling nature of Fourier 

transform.3D In this section, we relate the Haar wavelet coef­

ficients to the Fourier power spectrum and show how spatial 

information can be expressed in an explicit manner using the 

wavelet coefficients. 

The variance of the turbulence measurements, in terms 

of the wavelet coefficients, can be deduced from the conser­

vation of energy in (11) 

m=M i=(~-m-l) 

cr2=N- 1 ~ ~ (WT(m)[i])2. (12) 
m=l i=D 

The total energy TE contained in scale Rm(=2m
dy) can be 

computed from the sum of the squared wavelet coefficients 

at scale index (m) using 

i=(2M - m-l) 

TE=N- 1 ~ (WT(m)[i])2, 

i=O 

(13) 

where dy(=j";l(U) from Taylor's hypothesis) is the mea­

surement spacing in physical space. In order to compare the 

wavelet power spectrum to the Fourier power spectrum, we 

define a wave number Km corresponding to scale Rm as 

(14) 

Hence, the power spectral density function E(Km) is com­

puted by dividing T E by the change in wave number 

aKm( = 2'1T2 -m dy -1 In 2) so that 

(15) 

where (. > is averaging in space over all values of (i) for 

scale index (m) (see Ref. 30). Hence, (15) demonstrates that 

the wavelet power spectrum at wave number Km is directly 

proportional to the average of the squared wavelet coeffi­

cients at that scale. Because the power at wave number Km is 

determined by averaging many squared wavelet coefficients, 

we expect the wavelet power spectrum to be smoother than 

its Fourier counterpart. This is apparent in Figs. 2(a) and 2(b) 

which display good agreement between Fourier and wavelet 

power spectra for velocity and temperature, respectively. The 

Fourier power spectrum was computed by square windowing 

8192 points, cosine tapering 5% on each window edge, and 

averaging the resultant 4 power spectra (N=32,768). The 

wavelet power spectrum was computed by (i) using the py­

ramidal algorithm defined by Eqs. (9) and (10) to obtain the 

wavelet coefficients over position index (i) and scale index 

(m), and (ii) using Eq. (15) in conjunction with computed 

wavelet coefficients from step (1) to obtain the wavelet 

power spectrum. Windowing is unnecessary for the wavelet 

power spectrum. An inertial sub range, whose signature is the 

- 5/3 power law in the energy spectrum, was observed for 

three decades in the U measurements [see Fig. 2(a)] and for 

about 1.5 decades in the Wand T spectra [see Figs. 2ea) and 

2(b)]. 
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FIG. 2. (a) Comparison between the Fourier (solid line) and Haar wavelet 

(closed circle) power spectra for the longitudinal (U) and vertical velocity 

(W). The U spectrum is shifted by two decades to permit comparison with 

W spectrum at small wave number. Taylor's hypothesis is used to convert 

the time domain to wave-number domain. The -5/3 power law (dotted line) 

predicted by K41 is also shown. (b) Same as (a) but for temperature. 

Since the wavelet power spectrum is directly propor­

tional to the average of the squared wavelet coefficients, we 

can also determine the spatial standard deviation around that 

average using 

SDE(Km) = [dy/27T In(2)][ (WT(m)[i]4) 

_«WT(m)uf»2]1/2. (16) 

A plot of E(Km) and E(Km)+SD E gives a compact repre­

sentation of the energy and its spatial variability at each 

scale, which is referred to as the "dual spectrum.,,30,31 A 

better dimensionless indicator for the spatial energy variance 

is given by the coefficient of variation eVE defined as14,32 

(17) 

An example of the variation of eVE is shown in Fig. 3(a) for 

velocity and temperature. Notice in Fig. 3(a) that eVE in­

creases as the wave number increases, indicating increased 

turbulent energy activity at smaller scales. The increased en­

ergy activity at smaller scales has classically been attributed 

to intermittency.49,5o A formal relation between eVE and the 

variance of the dissipation rate is given in Ref. 14 and will 

not be considered here. Hence, from a turbulent energy point 

of view, a key difference between wavelet and Fourier trans­

forms is that Fourier transforms are nonlocal and therefore 
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FIG. 3. (a) The coefficient of variation (ev) as a function of wave number for longitudinal and vertical velocity, as well as temperature. The dotted line is 

the ev assumed by Fourier analysis. (b) The evolution of the magnitude of the wavelet skewness as a function of wave number for velocity and temperature. 

The dotted line is for locally isotropic turbulence, (c) Comparison between the wavelet predicted temperature gradient skewness and other temperature 

gradient skewness from experiments reported by Sreenivasan (1991). The solid triangles are the wavelet skewness for the inertial subrange. Cd) Same as (b) 

but for the wavelet flatness factor. The dotted corresponds to a Gaussian distribution. 

distribute the energy uniformly in space [i.e., eVECK) = OJ. 

Another interesting point in Fig. 3(a) is that eVE for T is 

much larger than eVE for U or W. This may demonstrate that 

temperature is not simply advected by the velocity field, 

even at the small scales. 

B. Other wavelet statistical measures 

Two other useful statistical measures can be defined us­

ing the wavelet coefficients. The wavelet skewness (SK) and 

the wavelet flatness factor (F F) at scale index (m) are de­

fined as 

SF(Km) ~ «( WT(m)[i])3)/( (WT(m)[i])2)312, (18) 

FF(Km) =(CWT(m)[i])4)/( (WT(m)[i])2)412. (19) 

We note that the wavelet skewness and flatness factors in 

(18) and (19) can also be interpreted as the velocity and 

temperature horizontal gradients statistics if the following 

arguments are adopted. 

(1) The differencing nature of the Haar wavelet trans­

form, as can be noted from Eq. (9), results in direct 

proportionality between wavelet coefficients and ve­

locity and temperature differences. 

Phys. Fluids, Vol. 6, No.7, July 1994 

(2) The dimensionless ratios in Eqs. (18) and (19) are 

the same for differences and gradients, since the di­

vision by the wavelet width or separation distance 

required to convert differences to gradients in the 

numerator and the denominator cancel out. Thus, us­

ing these two arguments, SK(Km) and FF(Km) can 

be interpreted as gradient skewness and flatness fac­

tors at wave numbers Km (see, also, Refs. 14 and 

22). 

Figure 3(b) displays the magnitude of SF (iSF\) as a 

function of wave number for the U, W, and T measurements, 

respectively. For the U measurements, ISF ui is about 0.4 

within the inertial subrange and is consistent with the con­

stant skewness hypbthesis.2,4 A slightly higher value 

(iSF ui = 0.5) was reported from numerical simulations by 

Kerr.51 We iterate again that these measurements invoke Tay­

lor's hypothesis, but this may not affect our conclusions se­

riously since these wave numbers are large. We also com­

pared our wavelet temperature skewness for inertial sub range 

scales with other temferature gradient measurements re­

ported by Sreenivasan5 for the inertial subrange. These mea­

surements are shown in Fig. 3(c). The dotted line in Fig. 3(c) 

is discussed in Ref. 52. The Taylor microscale x.(=0.31 m) in 

Fig. 3(c) was estimated from 
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/( ( 
aU')2) 1/2 

A. = fTu(U) -;-
(It 

(20) 

assuming locally isotropic turbulence. We note that large un­

certainty is involved in the A. estimate; however, for compari­

son with the reported temperature gradient data,52 this esti­

mate is necessary. Figure 3(c) did not indicate a significant 

drop in the skewness as the Taylor microscale Reynolds 

number (fT uA.f v) increases. This agrees with the trend ob­

served in Ref. 52 and conclusions. 

The Haar wavelet FF(Km) measures the importance of 

the tails of the spatial probability distribution of the velocity 

and temperature horizontal gradients for wave number Km. 

Figure 3(d) displays the variation of FF(Km) as a function 

of Km . For all three turbulence measurements, the gradients 

at the smaller wave numbers appear to be nearly Gaussian. 

Non-Gaussian statistics in the velocity and temperature hori­

zontal gradients exist within the inertial subrange. Again, 

notice how FF is much larger for the temperature measure­

ments when compared to the velocity measurements within 

the inertial subrange which is in agreement with the remarks 

of Fig. 3(a). 

C. Relation between wavelet coefficients and 

structure function 

As shown in (9) the Haar wavelet resembles a differenc­

ing operator, thus, it can be related to the nth-order structure 

function for any flow variable ¢J( = U, W, or 1) using 

(I ¢J(x+ r) - ¢J(x W)-(I WTu)(m)ln)f(2m'2 dy)". (21) 

In (21), we applied the following: (1) the separation distance 

r= 2mdy; (2) the wavelet coefficients are proportional to ¢J(x 

+ r) - ¢(x) at position x= (2mi)dy; (3) the amplitudes of 

the Haar wavelet coefficients are proportional to (2m) 1/2; and 

(4) <.) is the averaging operator of the wavelet coefficients 

over all values of the position index (i) at scale index (m). 

To study intermittency effects on (1), we modify the above 

relation and propose a conditional structure function to be 

discussed next. 

D. Conditional sampling and intermittency effects on 
K41 

In general, intermittency of turbulent fluids is symbol­

ized by an on-off process so that at a certain time, the tur­

bulent energy is only active in a certain fraction of the fluid 

volume. Hence, intermittency effects give rise to isolated 

large energetic events within an overall less energetic fluid 

volume. These events correspond to large squared wavelet 

coefficients at certain scale indices (m) and position indices 

(i). Since the energy content is directly proportional to the 

square of the wavelet coefficients, we can classify the wave­

let coefficients as either "active" (i.e., more energetic) or 

"passive." The distinction between active and passive must 

be based on some minimum energy threshold criterion. We 

chose this energy threshold to be related to the mean energy 

content at scale index (m). This criterion can be formulated 

by comparing the squared wavelet coefficient at position (i) 

and scale index (m) [WTCml(i)2] with the mean value 
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FIG. 4. The influence of sharp edges of main eddies on the squared wavelet 

coefficients for m = 1. Taylor's hypothesis was used to convert time to 

space. The squared wavelet coefficients exceeding the dotted line (Fc=5) 

are not considered in the conditional wavelet analysis at scale index m = 1. 

{[WT(m)(i)]2) at scale index (m). In order to modify (15) or 

(21) for intermittency investigation, we define an indicator 

function [em) at scale index (m) given by 

if [WT(m)(i) ]2> F c([ WT(m)(i) J2)] 
otherwise ' 

(22) 

where F c is an arbitrary conditioning criteria that allows dis­

crimination between the active and passive fluid 

volume.27
-

29 For example, if Fe = 5, then all squared wavelet 

coefficients that are in excess of 5 times the average squared 

wavelet coefficient are set to zero for that scale index (m). A 

relation between Fe' the mean dissipation rate, and the in­

stantaneous dissipation rate is derived in Ref. 14 for locally 

isotropic turbulence. 

An example of the application of the conditional wavelet 

criteria is shown in Fig. 4. Figure 4 shows the temperature 

measurements (the abscissa is converted into distance using 

Taylor's hypothesis) and the squared wavelet coefficients at 

scale index m = 1. Notice that the large spikes in the squared 

wavelet coefficient (bottom plot) correspond to the sharp 

edges of the large-scale thermals in the temperature measure­

ments. Therefore, the active wavelet coefficients result from 

large horizontal gradients in the temperature measurements. 

These large gradients are concentrated on the edges of these 

larger eddies (see Fig. 4, top plot), and hence, the large-scale 

motion directly influences the inertial subrange. The dotted 

line in Fig. 4 shows how the conditioning criteria eliminates 

the influence of these sharp edges from the wavelet trans­

formed temperature measurements for scale index m = 1. 

This conditioning criteria reduces the inertial subrange "con­

tamination" produced by this large eddy motion. 

We note here that Kuznetsov12 suggested that such inter­

action between the larger-scale eddy motion and inertial sub­

range scales is due to "external intermittency." It is not clear 

from their study whether such an intermittency is a genuine 

property of the Navier-Stokes equations or the result of 
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boundary conditions. For the purpose of this study, we do not 

focus on the origin of external intermittency but assume that 

the inertial subrange scaling as derived in K41 is contami­

nated by the large-scale motion. 

Similar analysis was performed at all scales (m) within 

the -5/3 power law. Hence, we can now consider a condi­

tional power spectrum E C given by 

EC(KIIl ) = «(I(IIl)WT(IIll[i])2»dyI27T In(2), (23) 

where « . » is now averaging in space over all nonzero values 
of [I(IIl)WT(IIl)(i)]2. Also, E C represents the power spectrum 

of the less active fluid or the power spectrum in the absence 

of the contamination from larger eddies. We can also define 

the conditional nth-order structure function14 by 

(I c,b(x+ r) - c,b(x)/,!)(c) 

(24) 

where « . » is averaging over all nonzero values of 

[/(IIl)WT(IIl)C i)]. These conditional statistics can be computed 

by (i) using the pyramidal algorithm to calculate the Haar 

wavelet coefficients at each scale index (m) and position 

index (i); (ii) squaring these coefficients to obtain the energy 

content at each scale index (m) and position index (i); (iii) 

averaging the squared wavelet coefficients for each scale in­

dex (m); (iv) dividing the squared wavelet coefficient (at 

space index i) by the value computed in step (iii); (v) if this 

ratio is larger than some preset value for Fe' then set this 

coefficient to zero, otherwise leave as is; (vi) use Eq. (23) or 

Eq. (24) to determine the power spectrum or the nth-order 

structure function with averaging performed over all nonzero 
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FIG. 5. (a) Comparison between conditioned and unconditioned longitudi­

nal velocity second order structure function. The dotted line corresponds to 

K41 scaling. (b) Same as (a) but for vertical velocity. (c) Same as (al but for 

temperature. 

values at scale index (m). Repeat the above steps for all 

values of (m) within the inertial subrange. The adequacy of 

this conditional sampling criteria for recovering K41 from 

the inertial sub range is discussed next using the velocity and 

temperature measurements. 

V. RESULTS AND DISCUSSION 

This section discusses the effects of intermittency on 

K41 for the velocity and temperature measurements using 

the conditional wavelet analysis for three cases: (1) n = 2, (2) 

n=3, and (3) n=6. In each case, we check whether K41 is 

satisfactory for the velocity and temperature measurement 

when intermittency and other inertial subrange "contamina­

tion" are suppressed, and then we investigate the statistical 

structure of the events responsible for deviations from K41 

scaling. We do not present theoretical details regarding inter­

mittency models, but we focus more on the contrast between 

the conditioned (intermittency suppressed) and uncondi­

tioned statistics. 

Case I: n =2. It is known that intermittency effects are 

generally small and may not be detectable for the structure 

function with n = 2 (see Refs. 3 and 53). We test this hypoth­

esis by comparing the unconditioned and conditioned 

(Fe = 5) structure functions of (24) for velocity and tempera­

ture, respectively. The results are presented in Figs. 5(a)­

S(c) for longitudinal and vertical velocities, and temperature, 

respectively. Both conditioned and unconditioned second or­

der structure functions for velocity and temperature exhibit 

scaling laws that are in agreement with K41 (slope =2/3). 

This supports the hypothesis that intermittency effects (ex-
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TABLE II. Summary of the regression statistics for the modellog[ (lLl.u, w, 

or TI")]=A log[r]+B. Mixed moments of the form log[(Ll.T2Ll.u), 

(Ll.rLl.u 2)]=A log[r]+B are also presented for intermittency parameter 

determination. The coefficient of determination (R2) and the standard error 

of estimate (SEE) are shown. The conditioned statistics are for the condi-

tioning criterion Fe = 5. Here, (C) are conditioned structure functions, and 

(U) are unconditioned structure functions. The number of points used in the 

regression analysis is also shown. 

Slope Intercept Number of 

Variable n (A) (B) R2 SEE points (C)/(U) 

u 2 0.68 ~3.163 0.999 0.0159 10 C 

0.64 -2.875 0.994 0.0401 10 U 

w 2 0.67 -3.120 0.996 0.0189 4 C 

0.60 -2.837 0.997 0.0135 4 U 

T 2 0.69 -3.050 0.997 OJI245 6 C 

0.56 -2.606 0.983 0.0455 6 U 

u 3 1.02 -4.476 0.999 0.0323 10 C 

0.89 -3.836 0.992 0.0750 10 U 

w 3 0.98 -4.421 0.999 0.0254 4 C 

0.79 -3.780 0.999 0.0129 4 U 

T 3 0.99 -4.255 0.995 0.0466 6 C 

0.66 -3.252 0.964 O.OSOl 6 U 

u 6 1.99 -8.148 0.999 0.0706 10 C 

1.50 -5.905 0.971 0.0247 10 U 

w 6 L88 ~S.OO 0.997 0.0456 4 C 

0.S8 ·-5.33 0.943 0.0920 4 U 

T 6 1.97 -7.602 0.992 0.095 5 C 

0.921 -4.339 0.916 0.154 5 U 

Ll.rLl.u ** 0.95 -1.82 0.990 0.06 8 C 

1.38 -2.09 0.896 0.16 8 U 

Ll.T4Ll.u2 
** 1.76 -2.61 0.993 0.11 8 C 

1.54 -0.57 0.943 0.21 8 U 

ternal or internal) may not be very significant for n = 2 (see 

Refs. 54 and 55 for a possible physical explanation). We also 

present a summary of the regression statistics for the regres­

sion modellog[D2(r)]=A 10g[r]+B in Table II. Notice in 

Table II that the coefficient of determination (R2) for the 

regression model is in excess of 0.99; hence, the determina­

tion of scaling laws from wavelet structure functions appears 

to be very reliable. Also, in order to check the effects of our 

conditioning criteria (F c) on the slope of the structure func­

tion, we performed the same analysis for F c =4, 5, 7, and 10. 

The slope variation A (for n = 2) did not differ by more than 

0.008. Some limitations of the proposed conditional sam­

pling scheme are discussed in Ref. 14. 

Case 2: n=3. In Landau and Lifshitz,4 a relation be­

tween the third-order structure function and (r) is given by 

(25) 

The above relation was derived from the Navier-Stokes 

equations, and thus is independent of any assumptions im­

plicit in K41 or any intermittency corrections to K41. For the 

temperature measurements, an equivalent formulation to (25) 

is given by 

(26) 
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where N r is temperature dissipation rate (see Ref. 2, p. 400, 

for derivation). 

If the intermittency is "internal" in the sense of 

Kolmogorov,8 then our conditioned and uncondition{;d statis­

tics should both reproduce the rl dependence. Using (21) 

and (25), with F c =5 and n=3, the unconditioned and con­

ditioned third-order structure functions are compared in Figs. 

6(a) and 6(b), for the longitudinal and vertical velocities, and 

the mixed second-moment temperature and first-moment ve­

locity differences in Fig. 6(c), respectively. Notice in Figs. 

6(a)-6(c) that an rl power law was not observed for the 

unconditioned structure function. This indicates that the in­

termittency and other sources of inertial sub range contami­

nation are responsible for deviations from K41 as suggested 

by KuznetsovP The conditioned slopes (see Table II) are in 

good agreement with Landau and Lifshitz4 predictions (and 

are consistent with K41). This analysis demonstrates the use­

fulness of the third-order structure function to identify pos~ 

sible contamination of the inertial subrange scaling for lo­

cally isotropic turbulence. 

Case 3: n=6. The sixth-order structure function can be 

related to the dissipation correlation function from 

«All)6) 
-'--"""2..-'- -(€(x)€(x+r», 

r 

where the dissipation correlation function is given by 

(€(x)€(x+r»-( ~ r 
(27) 

(28) 

and f-t is the intermittency parameter?,7,8,56 The value of f-t 

has been the subject of extensive research and its value ap­

pears to vary between 0.15 and 0.5. Kuznetsov12 showed that 

the large variation in f-t is due to external intermittency. From 

(27) and (28), we see that the sixth-order structure funCtion is 

related to JL using 

«All)6>_r2~/L. (29) 

For the temperature measurements, an equivalent formula­

tion to (29) is given by 

(I(AT)4AIl21)-r2~JLT, (30) 

where f-tr is the thermal intermittency parameter due to the 

dissipation correlation function given by 

(
Lr) /LT 

(Nr(x)Nr(x+r»- -; , (31) 

where LT is the temperature integral length scale.57 

We now evaluate the performance of the conditional 

wavelet analysis for reproducing K41 scaling for n=6 and 

suppressing intermittency buildup (f-t=0, f-tr= 0) for both 

velocity and temperature. Using (21) and (24) with F c= 5 

and n = 6, we compare the unconditioned and conditioned 

sixth-order wavelet velocity structure function in Figs. 7(a) 

and 7(b), and the mixed velocity/temperature structure func­

tion in Fig. 7(c), respectively. The slope of conditioned sixth­

order structure function is 2.0 (=2 - JL) indicating that inter­

mittency is well suppressed (f-t=0) for the higher-order 

statistics in both velocity components. Recall that the condi­

tioning criteria is based on second-order statistics (wavelet 
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FIG. 6. Ca) Same as Fig. Sea) but for third-order structure function. (b) Same 

as Fig. Sea) but for vertical velocity and third-order structure function. (c) 

Same as Fig. Sea) but for the mixed second-order temperature and first-order 

velocity structure function. 

laboratory reported values (0.2-0.25) indicating again that 

external contamination of the inertial subrange significantly 

contributes to deviations from K41. However, the condi­

tioned statistics did not give ,uT= 0 but rather a value of 0.24 
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FIG. 7. (a) Same as Fig. Sea) but for sixth-order structure function. (b) Same 

as Fig. Sea) but for vertical velocity and sixth-order structure function. (c) 

Same as Fig. Sea) but for the mixed fourth-order temperature and second­

order velocity structure function. 
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FIG. 8. Cal Same as Fig. Sea) but for third order and temperature. (b) Same 

as Fig. Sea) but for sixth order and temperature. 

which is identical to that reported in Ref. 57 for ASL mea­

surements. 

A. Further comments on extending K41 to 
temperature 

Analogous to (1), the nth-order temperature structure 

function is given by 

([LlT]n) = ([T(x + r) - T(x)]") = C~T)(N'!;Z E-nI6)rnI3 

(32) 

within the inertial subrange.58 We investigate whether (32) is 

recovered using the proposed conditional wavelet analysis. 

Figures 8(a) and 8(b) present these results for n = 3 and n = 6 

(using F c= 5), respectively. Notice that the scaling in (32) is 

recovered by the conditional wavelet analysis and all inertial 

subrange contamination is eliminated (see Table I). 

B. K41 and non-Gaussian statistics 

Kraichnan6 suggested that K41 is consistent with the 

concept of an inertial cascade if the velocity statistics within 

the inertial subrange do not differ significantly from Gauss­

ian. We therefore consider the structure of the velocity sta­

tistics and its relation to K41 scaling by noting that condi­

tional wavelet analysis recovers K41 and eliminates both 

internal and external intermittency effects. The relation be­

tween Gaussian behavior and conditioned velocity and tem­

perature statistics within the inertial sub range can be 

achieved by computing the conditioned and unconditioned 
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FIG. 9. Comparison between conditioned and unconditioned wavelet fiat­

ness factor for velocity and temperature. The closed symbols are condi­

tioned and the open symbols are unconditioned. 

wavelet flatness factor for the inertial subrange scales.14 The 

results are summarized in Fig. 9. Notice that the conditioned 

FF(Rm) are nearly Gaussian (i.e., FF~3) for all inertial 

subrange scales (velocity and temperature) while the uncon­

ditioned wavelet statistics are non-Gaussian. This analysis 

clearly indicates that K41 (which was obtained using the 

conditional wavelet analysis) is associated with near­

Gaussian statistics in agreement with the arguments of 

Ref. 6. 

VI. CONCLUSIONS 

Triaxial sonic anemometer velocity and temperature 

measurements at 2.0 m above a uniform bare soil surface 

were used to investigate intermittency buildup in the inertial 

subrange. The power spectrum of the longitudinal velocity 

measurements exhibits a -5/3 power law for three decades 

allowing detailed investigation of scaling laws in the inertial 

subrange. The temperature and vertical velocity exhibit a 

- 5/3 slope for about 1.5 decades. In order to describe space­

scale relations in the inertial subrange, we utilized orthonor­

mal wavelets. The orthonormal wavelet representation is 

well suited for this investigation, since the basis function is 

orthogonal and mutual independence of the wavelet expan­

sion coefficients is guaranteed. In addition, it was shown that 

the expansion coefficients can be related directly to quanti­

ties commonly used in conventional turbulence analysis. Re­

lations between the Haar wavelet coefficients and the Fourier 

power spectrum, as well as relations with the nth-order struc­

ture function were derived. A comparison between Fourier 

and wavelet power spectra was also carried out. Good agree­

ment between the two spectra was noted for both velocity 

and temperature measurements. Furthermore, we demon­

strated the usefulness of orthonormal wavelet transforms in 

characterizing the spatial variation of turbulent energy at dif­

ferent scales. Since intermittency buildup in the inertial sub­

range is related to local energy containing events, a condi­

tional wavelet scheme was developed. The conditional 

wavelet scheme efficiently suppressed intermittency and 
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other external contamination within the inertial subrange. 

K41 statistics, up to sixth order, were obtained when inter­

mittency was suppressed from the wavelet coefficients. The 

recovery of K41 up to sixth-order statistics from limited 

number of measurements also demonstrates the robustness of 

orthonormal wavelet transforms. It was found that the sharp 

edges of the large eddies directly contribute to inertial sub­

range scales. It was also found that intermittency did not 

significantly affect second-order statistics. We demonstrated 

that intermittency as well as other external effects are di­

rectly responsible for non-Gaussian statistics in velocity and 

temperature horizontal gradients in the inertial subrange, 

while K41 appears to be consistent with near-Gaussian sta­

tistics for these gradients. 
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