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Abstract: Intermittent fasting (IF) plays an essential role in improving lipid metabolism disorders
caused by metabolic cardiomyopathy. Growing evidence revealed that N6-methyladenosine (m6A)
RNA methylation is related to obesity and lipid metabolic. Our study aimed to assess the beneficial
effects of IF on lipid deposition, apoptosis, and m6A methylation in high-fat diet (HFD)-induced obesity
cardiomyopathy. Male C57BL/6J mice were fed a normal diet (ND) or HFD ad libitum for 13 weeks,
after which time a subgroup of HFD mice were subjected to IF for 24 h and fed HFD in the other day
for 8 weeks. We found that IF intervention significantly improved cardiac functional and structural
impairment and serum lipid metabolic disorder induced by HFD. Furthermore, IF intervention decreased
the mRNA levels of the fatty acid uptake genes of FABP1, FATP1, and CD36 and the fatty acid synthesis
genes of SREBF1, FAS, and ACCα and increased the mRNA levels of the fatty acid catabolism genes
of ATGL, HSL, LAL, and LPL in cardiac tissueof HFD-induced obese mice. TUNEL-positive cells,
Bax/Bcl-2 ratio, and Cleaved Caspase-3 protein expression in HFD-induced obese mice hearts was
down-regulated by IF intervention. In addition, IF intervention decreased the m6A methylation levels
and METTL3 expression and increased FTO expression in HFD-induced obesity cardiomyopathy. In
conclusion, our findings demonstrate that IF attenuated cardiac lipid deposition and apoptosis, as well
as improved cardiac functional and structural impairment in HFD-induced obesity cardiomyopathy, by
a mechanism associated with decreased m6A RNA methylation levels.

Keywords: intermittent fasting; high-fat diet; N6-methyladenosine methylation; obesity cardiomy-
opathy; lipid deposition; apoptosis

1. Introduction

Obesity cardiomyopathy is defined as obesity-induced impairment in the cardiac
architecture and function that is independent of hypertension, coronary heart disease,
and other heart diseases [1,2]. High-fat diet (HFD)-induced obesity cardiomyopathy is
characterized by abnormal heart structure and dysfunction, such as echocardiographic
changes consistent with poor systolic function, enhanced cardiac lipid deposition, and
apoptosis [3–5]. Clinical and experimental evidence has demonstrated that myocardial lipid
metabolic disorder is the initial cellular pathogenesis of obesity cardiomyopathy, which
causes cardiomyocyte injury by triggering apoptosis [6–8]. Hence, further carrying out
effective research on the regulation of myocardial lipid deposition is necessary and could
provide new insights into potential therapeutic approaches for obesity cardiomyopathy.

Intermittent fasting (IF), a nutritional approach in which ad libitum feeding is alternated
with fasting periods, has been shown to have cardioprotective effects in the heart [9,10]. Both
clinical and experimental evidence has revealed that IF extends lifespan, decreases myocardial
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triglyceride accumulation, inhibits cardiac cell apoptosis, improves cardiac diastolic param-
eters, and activates a cardioprotective metabolic program [11–13]. Furthermore, growing
evidence showed that IF participates in attenuating abnormal lipid metabolism [14,15]. IF
ameliorates HFD or high-fructose diet-induced myocardial injury by modulating the left ven-
tricular renin-angiotensin system [16]. In addition, IF exerts beneficial lipid metabolic effects
by improving gut microbiota in HFD-induced obese mice [17]. However, the underlying
mechanism by which IF regulates lipid metabolism remains unknown.

N6-methyladenosine (m6A) methylation, the most common and abundant epigenetic
modification of eukaryotic mRNA, is catalyzed by m6A methyltransferase, or writers (
methyltransferase like 3/14 (METTL3/14) and Wilms tumor 1-associated protein (WTAP)),
removed by m6A demethylating enzymes, or erasers ( fat mass and obesity-associated
protein (FTO) and α-ketoglutarate-dependent homolog 5 (ALKBH5)), and recognized by
m6A-binding proteins, or readers (YTH domain-containing family 1/2/3 (YTHDF1/2/3)
and YTH domain-containing protein 1/2 (YTHDC1/2)) [18]. Modification of m6A on
mRNA functionally affects multiple RNA processes, including stability, splicing, translation,
and degradation [19]. Recent studies show m6A methylation is related to obesity, lipid
metabolism, and apoptosis, and plays an essential role in the physiological and pathological
processes of cardiovascular diseases [20–22]. However, the effect of IF on m6A methylation
modification remains unclear.

We assumed that IF in a HFD improved myocardial lipid deposition and apoptosis
due to changes in m6A modification levels, thereby ameliorating obesity cardiomyopathy.
Therefore, our study was designed to assess the effects of IF on lipid deposition, apoptosis,
and m6A methylation in cardiac tissueof obese mice.

2. Materials and Methods
2.1. Animal and Diets

All animal experiments in our study were reviewed and approved by the Institutional
Animal Care and Use Committee of Tsinghua University (identification number: F16-
00228; A5061-01). Three- to four-week-old male C57BL/6J mice were purchased from
the Laboratory Animal Research Center of Tsinghua University and bred in the specific
pathogen-free experimental animal environment at the Laboratory Animal Research Center
of Tsinghua University, with five mice per cage and a 12 h light/12 h dark cycle in a
temperature-controlled environment.

After 1 week of acclimation, the mice were randomly divided into 2 groups: normal
diet (ND, n = 15) and HFD (n = 30). ND has 20% kcal from protein, 70% kcal from
carbohydrates, and 10% kcal from fat, and HFD has 20% kcal from protein, 20% kcal from
carbohydrates, and 60% kcal from fat (Beijing Keao Xieli Feed Co., Ltd., Beijing, China).
After 13 weeks of being fed HFD, each of the 30 mice gained 20% more body weight than
at week 0. Therefore, it can be considered that the obesity model was established. The mice
fed HFD were further divided into 2 groups to continue having ad libitum access to HFD
or to have IF access to food (HFD-IF, n = 15) for 8 weeks. Mice in the HFD-IF group were
allowed free access to regular chow every other day and no food on the alternate day [23].
No mice were excluded during the 21-week experiment. The experimental design is shown
in Figure 1. The body weight and food consumption were recorded weekly. At the end of
the experiment, the eyeball blood of mice was taken after fasting for 12 h. The myocardial
tissues were rapidly removed, washed with cold normal saline, dried by blotting on filter
paper, weighed, and stored at −80 ◦C for later use.

2.2. Echocardiography

The cardiac physiological functions were assessed in anesthetized (isoflurane) mice
using a two-dimensional guided M-mode echocardiography (VINNO 6 VET, VINNO,
Suzhou, China) [24]. The left ventricle internal dimension diastole (LVIDd), left ventricle
internal dimension systole (LVIDs), and ejection fraction (EF) were evaluated by M-mode
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echocardiography. Fractional shortening (FS) was calculated with the following formula:
FS = (LVIDd − LVIDs)/LVIDd × 100%.
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Figure 1. Schematic diagram of experimental design. Normal diet (ND) group: mice were fed ND for
21 weeks. High-fat diet (HFD) group: mice were fed HFD for 21 weeks. HFD-IF group: mice were
fed HFD for 13 weeks and subjected to intermittent fasting (IF) for 24 h and fed HFD in the other day
for 8 weeks.

2.3. Biochemical Parameters

Serum levels of glucose (GLU), total cholesterol (TC), triglycerides (TG), high-density
lipoprotein (HDL), and low-density lipoprotein (LDL) were measured with a biochemical
analyzer (KHB-ZY 1280, Shanghai Kehua Bio-engineering Co., Ltd., Shanghai, China).
Free fatty acid (FFA) contents in serum were determined by an ELISA kit (ab65341, Ab-
cam, Cambridge, MA, USA) according to the manufacturer’s protocols. Levels of TG in
myocardial tissue were measured using a commercially available kit (Nanjing Jiancheng
Bioengineering Institute, Nanjing, China).

2.4. m6A RNA Methylation Quantification

An EpiQuik m6A RNA methylation quantification kit (EpiGentek, Wuhan, China) was
used to quantify the global RNA m6A content in cardiac tissue samples. In brief, add 200 ng
of total RNA to the well, incubate with the capture antibody for 1 h, then incubate with the
detection antibody for 30 min, and then incubate with the enhancer solution for 30 min at
−37 ◦C. Quantification was measured by reading the absorbance at 450 nm using a microplate
spectrophotometer. The m6A levels in the total RNA was calculated by OD intensity.

2.5. Histology and Oil Red O Staining

The myocardial tissues were fixed in 4% paraformaldehyde overnight and embedded
in paraffin. For the detection of morphological changes, 5-µm-thick dewaxed sections
were stained with hematoxylin and eosin (H&E). The heart sections were stained with
standard Masson trichrome staining to estimate interstitial fibrosis. To evaluate cardiac lipid
accumulation, the frozen myocardial tissue was cut in Tissue-Tek OCT (Sakura-Finetek,
Tokyo, Japan), and then the heart sections (10µm) were stained with Oil Red O (Solarbio,
Beijing, China). Histopathology images were observed and acquired with an Olympus
optical microscope (Olympus, Tokyo, Japan).

2.6. Transmission Electron Microscopy (TEM)

The mice left ventricle was cut into 1 mm3 piece and fixed with 2.5% glutaraldehyde in
0.1 M sodium phosphate (pH 7.4) for 24 h at 4 ◦C. The heart tissue samples were embedded,
cut, and stained with uranyl acetate and lead citrate. Lipid droplets (LDs) were observed
by TEM (H-7650B, Ibaraki, Hitachi, Japan).

2.7. TUNEL Staining

Apoptosis was examined via using terminal deoxynucleotidyl transferase-mediated
dUTP nick end-labeling (TUNEL) staining according to the manufacturer’s protocols
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(Beyotime, Nanjing, China). 5µm heart sections were incubated with a TUNEL reagent
mixture and incubated in dark at 37 ◦C for 1 hand then rinsed three times for 5 min
each with PBS. The green positive particles were visualized under a Nikon fluorescence
microscope (Nikon, Tokyo, Japan).

2.8. Quantitative Real-Time PCR (RT-PCR)

Total RNA of mouse cardiac was extracted using Trizol reagent. Reverse transcription
was performed with the PrimeScript TM RT-PCR kit (TaKaRa, Tokyo, Japan). RT-PCR was
detectedusing Quantitative PCR with SYBR Green PCR Master Mix (Beyotime, Nanjing,
China) and CFX96 Real-Time PCR System (Bio-Rad, Hercules, CA, USA). The quantitative
data were obtained with the 2−∆∆Ct method and normalized to GAPDH. RT-PCR analysis
was performed for fatty acid binding protein 1 (FABP1), fatty acid transporter 1 (FATP1),
cluster of differentiation 36 (CD36), sterol regulatory element-binding factor 1 (SREBF1),
fatty acid synthase (FAS), acetyl- CoA carboxylase α (ACCα), adipose triglyceride lipase
(ATGL), lysosomal acid lipase (LAL), hormone-sensitive lipase (HSL), lipoprotein lipase
(LPL), METTL3, METTL14, WTAP, FTO, ALKBH5, YTHDF1, YTHDF2, YTHDF3, YTHDC1,
YTHDC2, and GAPDH. All primers were produced by Sangon (Shanghai, China), and the
primers used in this study are shown in Table 1.

Table 1. Primer Sequences Used for RT-PCR.

Genes
Primer Sequences

Forward (5′–3′) Reverse (5′–3′)

FABP1 CCATGACTGGGGAAAAAGTC GCCTTTGAAAGTTGTCACCAT
FATP1 TGCACAGCAGGTACTACCGCAT TGCGCAGTACCACCGTCAAC
CD36 ATTGGTCAAGCCAGCT TGTAGGCTCATCCACTAC

SREBP1c AATCAGGACCATGCCG CTCAACCTATGAAAATAAAGTTTGC
FAS GCGGGTTCGTGAAACTGATAA CAGGTTGGCATGGTTGACAG

ACCα GCCTCCGTCAGCTCAGATAC ATGTGAAAGGCCAAACCATC
ATGL TGTTTCAGACGGAGAGAACG GGAGGGGTGGAGGAATGAGG
LAL TGGAGGGACAAACCACTGA AAGGGAATCGGACCACTTG
HSL CTTCTCCCTCTCGTCTGCTG AATGGTCCTCTGCCTCTGTC
LPL GATCCGAGTGAAAGCCGGAG TTGTTTGTCCAGTGTCAGCCA

METTL3 CTGGGCACTTGGATTTAAGGAA GTATCCCATCCAGTTGGTTTC
METTL14 CTGAGAGTGCGGATAGCATTG GAGCAGATGTATCATAGGAAGCC

WTAP TAGACCCAGCGATCAACTTGT CCTGTTTGGCTATCAGGCGTA
FTO TTCATGCTGGATGACCTCAATG GCCAACTGACAGCGTTCTAAG

ALKBH5 GCATACGGCCTCAGGACATTA TTCCAATCGCGGTGCATCTAA
YTHDF1 ACAGTTACCCCTCGATGAGTG GGTAGTGAGATACGGGATGGGA
YTHDF2 GAGCAGAGACCAAAAGGTCAAG CTGTGGGCTCAAGTAAGGTTC
YTHDF3 GATCAGCCTATGCCATATCTGAC CCCCTGGTTGACTAAAAACACC
YTHDC1 GGAAGCACCCAGTGTATAGGA GGAAGCACCCAGTGTATAGGA
YTHDC2 GAAGATCGCCGTCAACATCG GCTCTTTCCGTACTGGTCAAA
GAPDH GCAAGGACACTGAGCAAGA GGATGGAAATTGTGAGGGAG

2.9. Western Blot

Total protein was isolated from heart tissue with a RIPA buffer, and the protein con-
centration was measured with a BCA assay kit. The protein samples were separated by
SDS-polyacrylamide gels with suitable concentration and then transferred onto polyvinyli-
dene fluoride (PVDF) membranes. The membranes were blocked with 5% bull serum
albumin and then developed with diluted antibodies for Bax (14796, 1:1000, Cell Signal-
ing Technology, Beverly, MA, USA), Bcl-2 (BS1511, 1:1000, Bioworld, Bloomington, USA),
Cleaved Caspase-3 (9661, 1:1000, Cell Signaling Technology, Beverly, MA, USA), METTL3
(ab240595, 1:1000, Abcam, Cambridge, MA, USA), FTO (27226-1-AP, 1:1000, Proteintech,
Wuhan, China), YTHDF1 (17479–1-AP, 1:1000, Proteintech, Wuhan, China), and GAPDH
(10494-1-AP, 1:5000, Proteintech, Wuhan, China) overnight at 4 ◦C. Subsequently, mem-
branes were incubated with horseradish peroxidase- (HRP-) conjugated secondary antibody
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at room temperature for 90 min. The membranes were observed on Image Systems (Bio-Rad,
Hercules, CA, USA). Image Lab software was used for semiquantitative calculation.

2.10. Statistical Analysis

Results were shown as the mean ± standard error of the mean (SEM) from at least
three independent experiments. Statistical differences between the groups were analyzed
using One-way analysis of variance (ANOVA) and post hoc least significant difference
(LSD) multiple-comparison test. p < 0.05 was considered statistically significant (* p < 0.05,
** p < 0.01 are indicated in figures).

3. Results
3.1. IF Improves HFD-Induced Mice Obesity Cardiomyopathy

Echocardiography was performed in HFD mice to determine whether IF had an
improvement effect on cardiac function. Compared with mice fed with ND, 21-week HFD
significantly decreased FS% and EF% and increased LVIDs and LVIDd. These changes
caused by HFD were markedly restored in the hearts treated with IF (Figure 2A–E). HFD
and HFD-IF did not significantly affect heart rate (Figure 2F). Furthermore, HFD feeding
significantly caused a higher body weight, LV mass, and heart-to-body weight ratio, which
were significantly decreased by IF intervention (Figure 2G–I). H&E and Masson staining
indicated that morphological abnormalities and interstitial fibrosis were observed in the
myocardial tissues of obese mice; however, the above damage was remarkably reversed
in HFD-IF groups (Figure 2J–L). Together, these results demonstrated that IF showed a
promising approach in improved obesity cardiomyopathy induced by HFD, suggesting the
protective effects on cardiomyocyte injury and dysfunction in obese mice.
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Figure 2. Effects of IF on myocardial structure and function in HFD-fed mice. (A) Echocardio-
graphic measurements of (B) LVIDs, (C) LVIDd, (D) FS%, and (E) EF% for cardiac functional anal-
ysis. Measurements of (F) heart rate, (G) body weight, (H) LV mass, and (I) heart weight/body
weight. Representative images of (J) H&E staining (scale bar = 20µm) and (K) Masson staining
(scale bar = 50µm) cardiac sections. (L) Quantitative analysis of interstitial fibrosis. Data are shown
as means ± SEM. * p < 0.05, ** p < 0.01. ns: no significant difference.
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3.2. IF Ameliorates HFD-Induced Serum Lipid Metabolic Disorder

In comparison to the NC group, HFD significantly increased in serum fasting blood
glucose, TC, TG, HDL, LDL, and FFA; however, these effects were remarkably mitigated
in the HFD-IF groups (Figure 3A–F). It was indicated that IF could attenuate serum lipid
metabolic disorder induced by HFD.
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3.3. IF Alleviates HFD-Induced Cardiac Lipid Deposition

Metabolic perturbations stemming from obesity could lead to lipid deposition in
myocardium [25]. Oil Red O staining and TEM suggested that HFD significantly increased
lipid deposition and LDs accumulation in hearts; these abnormalities were restored in
the HFD-IF groups (Figure 4A–D). Additionally, HFD-induced lipid deposition increases
the levels of TG in cardiac were down-regulated by IF intervention (Figure 4E). What’s
more, long-term HFD significantly increased the mRNA expression of genes regulating
fatty acid uptake (FABP1, FATP1, and CD36) and fatty acid synthesis (SREBF1, FAS, and
ACCα), and reduced the mRNA expression of genes regulating fatty acid catabolism
(ATGL, LAL, HSL, and LPL); but these effects were obviously restrained by IF intervention
(Figure 4F). Collectively, these findings suggested that IF was effective in reducing cardiac
lipid deposition in obese mice.

3.4. IF Inhibites HFD-Induced Cardiac Apoptosis

Ectopic deposition of myocardial lipids could lead to apoptosis in the heart [26,27].
TUNEL staining revealed that HFD-induced positive apoptotic particles were downreg-
ulated by IF intervention (Figure 5A,B). Consistently, western blot analysis showed that
Bax/Bcl-2 ratio and Cleaved Caspase-3 protein expression were significantly increased in
the HFD group compared to the ND group. However, IF significantly restored these effects
(Figure 5C–E). These results demonstrated that obesity-induced apoptosis in cardiac tissues
could be inhibited by IF intervention.
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catabolism (ATGL, LAL, HSL, and LPL) in cardiac tissues. Data are shown as means± SEM. ** p < 0.01.
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3.5. IF Decreases HFD-Induced Cardiac m6A Methylation

To assess the effect of IF on m6A methylation, we measured m6A content and m6A-
associated genes and proteins in cardiac tissues. IF intervention markedly rescued m6A
content in the heart from HFD-fed mice (Figure 6A). Additionally, the gene expression
of METTL3 was up-regulated by HFD, and the FTO mRNA levels was down-regulated;
however, IF intervention markedly reversed HFD-induced these effects, which were also
confirmed by western blot (Figure 6B–D). Taken together, these results indicated that IF
intervention decreases cardiac m6A methylation levels in HFD-fed mice.
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4. Discussion

As we know, cardiac tissueis the major attacking target of obesity. HFD-induced obesity
cardiomyopathy is characterized by abnormal heart structure and dysfunction [2,3]. Increasing
evidence suggests the protective effect of IF in obesity cardiomyopathy [28–30]; however,
its molecular mechanism is not yet fully clarified. In the present study, we examined the
therapeutic effect of IF on obesity cardiomyopathy as well as its impact on lipid deposition
and m6A methylation in the heartof obese mice. Our study revealed that IF intervention
protected against HFD-induced lipid deposition, apoptosis, and m6A methylation in cardiac
tissues, as a result, restored cardiac functional and structural impairment. Mechanistically,
IF may regulate myocardial lipid metabolism and apoptosis through m6A methylation in
obesity cardiomyopathy. The present study, in part, shows that the protective effects of IF in
cardiovascular protection may be involved in m6A RNA methylation.

Long-term HFD induces obese cardiomyopathy, leading to cardiac abnormal structure
and dysfunction. Our results indicated that 8 weeks of IF intervention in obese mice could
attenuate cardiac diastolic and systolic dysfunction, morphological abnormalities, and
interstitial fibrosis. It was reported that the disorder of myocardial lipid metabolism is con-
sidered to be the major pathogenesis of obesity cardiomyopathy [3]. Previous studies have
shown that serum lipid metabolism disorders in obese mice, such as increased levels of TC,
TG, HDL, LDL, and FFA [31,32]. Furthermore, 24-week HFD resulted in increased cardiac
TG content and LDs number and induced lipotoxic cardiomyopathy [33]. Similarly, in our
results, abnormal serum lipid metabolism and cardiac lipid deposition were examined in
obese mice but were ameliorated by IF intervention. Lipid synthesis and breakdown are
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highly regulated multistep reactions, with a pathway involving distinct sets of enzymatic
reactions. Obesity induces the breakdown of the dynamic balance of myocardial lipid syn-
thesis and decomposition and the abnormal transcription of the cardiac lipid accumulation,
lipid synthesis, and catabolism genes [34]. We found that IF decreased the mRNA levels
of fatty acid uptake genes of FABP1, FATP1, and CD36, the fatty acid synthesis genes of
SREBF1, FAS, and ACCα, and increased the gene expression of fatty acid catabolism genes
of ATGL, HSL, LAL, and LPL. Therefore, we speculated that IF alleviates HFD-induced
cardiac lipid deposition by decreasing fatty acid uptake and synthesis and increasing fatty
acid catabolism.

Myocardial lipid accumulation has been reported to promote myocardial apoptosis [35].
Previous research has shown that myocardial apoptosis increased in obese rats, as evidenced
by an up-regulated TUNEL-positive cells, Bax/Bcl-2 ratio, and Cleaved Caspase-3 protein
expression [36]. Another study reported that food restriction decreased TUNEL-positive
cells, Bax/Bcl-2 ratio, and Cleaved Caspase-3 protein expression, which could inhibit cardiac
apoptosis in HFD-induced obese rats [28]. Similarly, in our study, TUNEL staining and
western blot analysis showed that cardiac lipid deposition significantly increased cardiac
apoptotic cell death, and IF intervention markedly reversed HFD-induced these effects. In
sum, IF appeared to inhibit HDF-induced cardiac apoptosis, but its underlying mechanism at
the epitranscriptomic modification is not fully understood yet.

Growing evidence revealed that m6A methylation is related to obesity and lipid
metabolic [37,38]. Previous study has shown that the mRNA and protein expression of FTO
were upregulated in non-alcoholic fatty liver disease (NAFLD) rats, which were involved in
lipid metabolism disorders [39]. The m6A methylation levels and METTL3 expression were
raised in the livers of obese mice, and hepatocyte-specific knockout of METTL3 improved
lipid metabolic disorders and insulin resistance [40]. A recent study showed that YTHDC2,
an m6A reader, was significantly down-regulated in the livers of obese mice and NAFLD
patients. Overexpression of YTHDC2 in the livers of obese mice improved hepatic lipid
metabolism and insulin resistance [41]. In addition, increased m6A methylation levels were
up-regulated in the impaired cardiovascular system and were involved in the pathogenesis
of cardiovascular diseases, leading to cardiac apoptosis and dysfunction [20]. A recent
study has revealed that m6A methylated levels were up-regulated and the gene and protein
levels of FTO were reduced in human and mouse failing hearts, while FTO overexpression
significantly decreased fibrosis and enhanced cardiomyocyte contractile function [42]. The
m6A levels and METTL3 expression were up-regulated in hypoxia/reoxygenation (H/R)-
treated cultured H9C2 cells and ischemia/reperfusion (I/R) mouse hearts. Cardiomyocyte-
specific knockout of METTL3 promoted autophagic flux and reduced apoptosis in I/R
mice [43]. Our study revealed that m6A methylation levels and METTL3 were consistently
up-regulated, and FTO was consistently reduced in cardiac tissueof HFD-fed mice. It
is worth noting that IF intervention markedly reversed HFD-induced these effects. We
speculate that down-regulation the expression of METTL3 and up-regulation the expression
of FTO may be responsible for altered m6A levels in the HFD-IF group. Additionally, it
has been reported that IF can improve metabolic diseases such as obesity and aging by
regulating epigenetic modifications [44,45]. Therefore, it is thought that IF may ameliorate
HFD-induced obesity cardiomyopathy via decreasing m6A RNA methylation.

As indicated above, to the best of our knowledge, our study is the first to assess the
effects of IF on m6A RNA methylation. Together, these results provide a novel pathological
mechanism of HFD-induced obesity cardiomyopathy and suggest that reducing m6A
methylation levels through intermittent fasting intervention is a therapeutic strategy for
obesity-associated myocardial lipid deposition and apoptosis. Our study may help to
design better non-pharmacological intervention protocols for obesity cardiomyopathy
patients. However, one limitation of our manuscript is that it only detected the expression
of m6A-associated genes and proteins by RT-PCR and western blot but did not conduct
a genome-wide profiling of m6A-tagged transcripts in cardiac tissueby methylated RNA
immunoprecipitation sequencing (MeRIP-Seq). Moreover, the molecular mechanism by
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which IF can attenuate cardiac lipid deposition and apoptosis via m6A methylation in
obesity cardiomyopathy will need to be explored in further study.

5. Conclusions

In summary, our results demonstrate that IF attenuated cardiac lipid deposition and
apoptosis, as well as improved cardiac functional and structural impairment in HFD-
induced obesity cardiomyopathy, by a mechanism associated with decreased m6A RNA
methylation levels (Figure 7).
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