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ABSTRACT Studying perturbations in the gut ecosystem using animal models of
disease continues to provide valuable insights into the role of the microbiome in
various pathological conditions. However, understanding whether these changes are
consistent across animal models of different genetic backgrounds, and hence poten-
tially translatable to human populations, remains a major unmet challenge in the
field. Nonetheless, in relatively limited cases have the same interventions been stud-
ied in two animal models in the same laboratory. Moreover, such studies typically
examine a single data layer and time point. Here, we show the power of utilizing
time series microbiome (16S rRNA amplicon profiling) and metabolome (untargeted
liquid chromatography-tandem mass spectrometry [LC-MS/MS]) data to relate two
different mouse models of atherosclerosis—ApoE�/� (n � 24) and Ldlr�/� (n � 16)—
that are exposed to intermittent hypoxia and hypercapnia (IHH) longitudinally (for
10 and 6 weeks, respectively) to model chronic obstructive sleep apnea. Using ran-
dom forest classifiers trained on each data layer, we show excellent accuracy in pre-
dicting IHH exposure within ApoE�/� and Ldlr�/� knockout models and in cross-
applying predictive features found in one animal model to the other. The key
microbes and metabolites that reproducibly predicted IHH exposure included bacte-
rial species from the families Mogibacteriaceae, Clostridiaceae, bile acids, and fatty ac-
ids, providing a refined set of biomarkers associated with IHH. The results highlight
that time series multiomics data can be used to relate different animal models of
disease using supervised machine learning techniques and can provide a pathway
toward identifying robust microbiome and metabolome features that underpin
translation from animal models to human disease.

IMPORTANCE Reproducibility of microbiome research is a major topic of contempo-
rary interest. Although it is often possible to distinguish individuals with specific dis-
eases within a study, the differences are often inconsistent across cohorts, often due
to systematic variation in analytical conditions. Here we study the same intervention
in two different mouse models of cardiovascular disease (atherosclerosis) by profiling
the microbiome and metabolome in stool specimens over time. We demonstrate
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that shared microbial and metabolic changes are involved in both models with the
intervention. We then introduce a pipeline for finding similar results in other studies.
This work will help find common features identified across different model systems
that are most likely to apply in humans.

KEYWORDS cardiovascular, machine learning, metabolism, microbiome, sleep apnea

Obstructive sleep apnea (OSA) is a common sleep disorder marked by obstructed
breathing due to episodic upper airway collapse. Chronic OSA is associated with

adverse cardio-metabolic outcomes such as atherosclerosis (1); however, potential
causal pathways remain elusive. We previously modeled human OSA and its cardio-
vascular consequences in Ldlr knockout (Ldlr�/� [atherosclerosis model]) mice by
exposing individuals to intermittent hypoxia and hypercapnia (IHH), a hallmark of OSA
(2). IHH is a clinically important exposure because it markedly promotes atherosclerotic
lesions in the pulmonary arteries and aorta not only in Ldlr�/� mice but also in ApoE
knockout (ApoE�/�) mice, another widely used atherosclerosis model (3, 4), thereby
mimicking the adverse cardiovascular changes that occur in OSA patients (5). In Ldlr�/�

mice, we reported significant shifts in the bacterial and chemical composition of the gut
on IHH exposure. The key chemical alterations included changes in microbe-dependent
metabolites such as gut-derived estrogen-like molecules (phytoestrogens) and bile
acids. These observations revealed an unrecognized link between IHH and gut mi-
crobes, thereby holding immense potential for translation in OSA patients. However, a
key challenge in microbiome research is understanding if different animal models or
animal models and human subjects are characterized by common changes in the
microbiome and metabolome (6, 7). As a first step, finding reproducible alterations
across multiple animal models would provide confidence in the generalizability of the
findings and accrue evidence for clinical relevance.

Here, we use machine learning predictive models to address the reproducibility of
the perturbations associated with IHH exposure in the gut ecosystem using both
Ldlr�/� and ApoE�/� mouse models (see Fig. S1 in the supplemental material). To
model OSA and its cardiovascular conditions, all mice were exposed to either IHH
(treatment group) or air (control group) and fed a high-fat diet (HFD) (3, 4). Individuals
were studied longitudinally for 6 weeks (Ldlr�/�) or 10 weeks (ApoE�/�) to understand
the impact of prolonged IHH exposure (analogous to chronic OSA in humans). Further-
more, multiple cages per treatment group were used following study design recom-
mendations (8). Starting with 10 weeks of age (baseline), fecal pellets were collected
twice every week and profiled for the microbiome and metabolome using 16S rRNA
amplicon sequencing and liquid chromatography-tandem mass spectrometry (LC-MS/
MS)-based untargeted mass spectrometry, respectively. These data layers were pro-
cessed per recommended practices (9) to obtain relative abundances of microbial and
molecular species per sample for all downstream analyses (see Materials and Methods).

Predictive models that classify microbiome and metabolome responses to interven-
tions have proven extremely useful in disease diagnosis and biomarker discovery (10,
11). Yet, these have been surprisingly hard to generalize across populations or model
systems (12–14). In this work, we use random forest (RF) classification to investigate the
cross-applicability of our previous findings in Ldlr�/� mice (2) to ApoE�/� mice and
vice versa. RF is an ensemble machine learning algorithm that fits many decision trees
on random subsamples of original data and then aggregates the results of each
decision tree to improve the prediction accuracy (15). The level of accuracy is often
expressed using the area under the curve (AUC) of true-positive versus false-positive
rates, known as a receiver operating characteristic (ROC). RF has consistently been
reported to perform well in high-dimensional data sets (i.e., data sets with many
features [microbial reads or metabolites] such as ours), making it our algorithm of
choice for this work (16–18). We had previously shown that machine learning classifiers
trained on inflammatory bowel disease (IBD) cases and healthy controls in humans can
distinguish between IBD cases and controls in dogs using cross-sectional microbiome
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data (19). To our knowledge, however, this type of cross-model classification task has
not been performed with metabolomics data or with data collected longitudinally.

RESULTS

Unsupervised comparison of the gut microbiome and metabolome in ApoE�/�

and Ldlr�/� mouse models. First, we performed principal-coordinate analysis (PCoA)
to get a visual overview of the characteristic microbiome and metabolome of the two
animal models. PCoA is an unsupervised method routinely used to explore major
factors that drive the clustering of data points in high-dimensional data sets by
projecting the samples in a reduced-dimensional space (as a two-dimensional [2D] or
3D graph) (20). Figure 1 displays the PCoA results plotted along time to visualize the
dynamics of diet and IHH-associated changes in the gut ecosystem. This analysis shows
that the Ldlr�/� and ApoE�/� mice in our study have very distinct gut microbial (Fig. 1a
and b) and chemical (Fig. 1c and d) signatures, which are captured by the first principal
axis (axis 1) in both data layers. These plots also capture a rapid shift in the baseline gut
microbial and chemical compositions in response to HFD, which has also been reported
previously (21, 22). We performed PCoA without baseline samples to better visualize
the impact of IHH exposure alone (see Fig. S2 in the supplemental material). We
observed that despite underlying differences in the two genotypes, axis 2 consistently
captured IHH-induced shifts in both the gut microbiome and metabolome, highlighting
common shifts in the gut ecosystem due to IHH exposure.

When comparing the overall sharedness of microbial features, out of 635 unique 16S
Deblur processed sequences (23) in the Ldlr�/� gut microbiome (and 582 in the

FIG 1 Principal-coordinate analysis (PCoA) of the gut microbiome and metabolome in ApoE�/� and Ldlr�/� mouse models. (a and b) PCoA
of the microbiome (16S rRNA sequencing) data using unweighted UniFrac distances. (c and d) PCoA of the metabolome (untargeted
LC-MS/MS) data using Bray-Curtis distances. The ordination is visualized along the duration of treatment (starting at 10 weeks of age, with
an interval of 0.5 week). Axis 1, principal coordinate 1; IHH, intermittent hypoxia and hypercapnia; HFD, high-fat diet.
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ApoE�/� gut microbiome), the two animal models only shared 248 unique sequences.
The chemical space was also distinct, with the two models sharing only 137 out of 267
and 374 metabolomic features in Ldlr�/� and ApoE�/� mice, respectively (see meth-
ods). Interestingly, Ldlr�/� and ApoE�/� mice have more similar microbiomes (by
permutational analysis of variance [PERMANOVA] [24], pseudo-F, 13.2605, and P �

0.001) at baseline (10 weeks of age [i.e., before the HFD-induced shift is observed])
compared to later time points (pseudo-F, 19.9059 at 12 weeks of age). We note a similar
divergence in the gut metabolome (pseudo-F, 46.9112 and 66.1165 at baseline and
12 weeks of age, respectively) of the two animal models as well. Together, these results
suggest a differential impact of high-fat diet on the gut ecosystem of the Ldlr�/� and
ApoE�/� mice which makes the mouse models more distinct over time.

It is important to note that the two animal models are temporally separated for
sample collection and data acquisition (for both 16S rRNA sequencing and LC-MS/MS),
which likely contributes to the strong distinction between the models observed here.
We quantified the effects of covariates such as genotypes (or processing batches), age
of individuals, housing conditions, and individual variability on the microbiome and
metabolome composition by performing effect size analysis on our data set (see the
“Effect size analyses” section in Materials and Methods). While the largest effect on the
microbial and chemical composition was linked to the mouse model, the type of
exposure (IHH or air) impacted each data layer within both models significantly.
Moreover, the effect sizes varied based on the animal model, highlighting the distinc-
tive characteristics of the gut ecosystem in the two models (see Table S1 in the
supplemental material).

Gut microbiome- and metabolome-based prediction of IHH exposure within

and across animal models. Our unsupervised analysis showed that the gut ecosys-

tems of ApoE�/� and Ldlr�/� mice, despite being inherently distinct, consistently shift
in response to IHH exposure (Fig. S2). We applied supervised machine learning in order
to capture the consistent shifts associated with IHH exposure in both animal models.
Specifically, we built RF classifiers using IHH-associated microbial and chemical com-
position in ApoE�/� and tested their performance in predicting IHH exposure in
Ldlr�/� mice and vice versa. This informed us if the changes we observe in one model
are consistent with the other, which would make the findings more relevant for
translation in OSA patients.

To examine the predictive potential of microbiome data, we trained RF classifiers on
relative abundances of 16S tag sequences shared between the two mouse models (443
features after removing low-prevalence sequences [see Materials and Methods]). Within
each animal model, the classifiers yielded nearly perfect prediction (99% area under the
ROC curve [AUC]) of IHH exposure (Fig. 2). We then predicted the same in Ldlr�/� using
RF trained on microbiome signature in ApoE�/� (Fig. 2a) and vice versa (Fig. 2c), still
achieving very high cross-model prediction accuracies (95% and 89% AUC, respec-
tively). Similarly, we used metabolomics data for training RF models on relative abun-
dance of MS1 spectral ions (377 features after removing low-prevalence ions [see
Materials and Methods]). Metabolome-based RF classifiers also predicted IHH exposure
within animal models accurately (99% AUC) and maintained impressive cross-model
prediction accuracies (97% when trained on Ldlr�/� mice and tested on ApoE�/� mice
[Fig. 2b] and 84% vice versa [Fig. 2d]). Together, these analyses suggest that IHH
exposure alters both the gut microbial and chemical compositions distinguishably in
each animal model. Moreover, the changes induced by IHH exposure in the gut are
largely consistent across Ldlr�/� and ApoE�/� models, despite the underlying differ-
ences between the two genotypes (Fig. 1; Fig. S2). It is worth noting that we hugely
benefited from our longitudinal sample collection scheme as we had more data points
available for learning, despite the limited number of animals (i.e., n � 8 for Ldlr�/� and
n � 12 for ApoE�/�) per group. We accounted for the longitudinal samples from the
same individual in our analyses by ensuring that observations for each individual
appeared in either the training or validation data set but not both. This prevented
overoptimistic cross-validation accuracy scores as a result of the model overfitting to
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the characteristics of the individual itself rather than the treatment. (The relatively lower
accuracy of ApoE�/�-based metabolomics RF model can be attributed to fewer sam-
ples compared to the Ldlr�/� model [Fig. S1].)

Longitudinal dynamics of IHH-associated changes in the gut ecosystem. Next,

we used these longitudinal data sets to learn how the duration of IHH exposure impacts
the gut microbiome and metabolome over time and if this is consistent across the
mouse models. The goal was to compare the dynamics of changes in the gut ecosystem
with chronic IHH exposure in the ApoE�/� and Ldlr�/� mice. We tested this by
assessing the capability of the RF classifier to distinguish IHH samples from the control
at each time point. In ApoE�/� mice, the classification AUC using gut microbiome data
is high (constantly 1) at each time point starting at 11 weeks of age. The microbiome
in Ldlr�/� mice, however, appears more predictive only at later time points, with its
classification AUC improving from 0.71 at week 11 to more than 0.99 beyond week 14.
We also observed a similar lag in gut metabolome changes in Ldlr�/� compared to

FIG 2 Receiver operating characteristic (ROC) curves evaluating ability to predict exposure to IHH using the random forest model. Green curves
represent classification accuracy within each mouse model. Purple ROC curves correspond to a model trained using gut microbiome (a) and
metabolome (b) data from the ApoE�/� mouse model to predict IHH exposure in Ldlr�/� mice. Red curves show the same for microbiome (c) and
metabolome (d) data from Ldlr�/� mice tested on ApoE�/� mice. IHH, intermittent hypoxia and hypercapnia.
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ApoE�/� animals (see Table S2 in the supplemental material). Importantly, this is
concordant with our previous finding that the atherosclerotic lesions evolved slowly
and mildly in Ldlr�/� mice compared to ApoE�/� mice (4). Therefore, observing this
trend in both omics layers provides supporting evidence that the atherosclerosis
phenotype in these animals is linked to perturbations in their gut ecosystem. Moreover,
the gut microbiome and metabolome changes occur quickly after IHH exposure, before
atherosclerotic lesions were observed, which was reported to be 4 weeks for ApoE�/�

mice and 6 weeks for Ldlr�/� mice post-IHH exposure (4).
Reproducible biomarkers of IHH exposure. The subsequent goal of this analysis

was to narrow the list of fecal biomarkers that are reproducibly predictive of IHH
exposure, thereby guiding future mechanistic and clinical studies. The RF classifiers
used to distinguish the IHH-exposed and control animals described above provided us
with a ranked list of bacterial and chemical features important for prediction (see the
classifier trained on ApoE�/� microbiome and metabolome data in Table S3 and the
classifier trained on Ldlr�/� data in Table S4 in the supplemental material). We
examined the features that were top-ranked predictors in both Ldlr- and ApoE-based
classifiers. To investigate if there were some key biomarkers that could single-handedly
distinguish IHH from control, we used the abundance of each of these features
individually to plot ROC curves and compute AUCs. Indeed, some of these microbial
(Fig. 3a) and chemical (Fig. 3d) features could alone detect IHH exposure within each
mouse model highly accurately (AUC � 0.75; see Tables S5 and S6 in the supplemental
material for the AUC values per model per microbial and chemical feature, respectively).
We then used our longitudinal data to compare trends of these predictive features in
IHH-exposed and control groups in both animal models. Fig. 3b, c, e, and f show
abundance trends in top consistently altered features (additional trends provided in
Fig. S3 and S4 in the supplemental material). The goal was to investigate if these
microbial and chemical species changed in the same direction on IHH exposure in both
ApoE�/� and Ldlr�/� mice or had idiosyncratic responses to exposure based on the
genetic background of the host. The consistent predictors included bacterial strains
from the families Mogibacteriaceae and Clostridiaceae, fatty acids identified as vaccenic
acid and hexadecenoic acid (level 2 identification [25]), and bile acids, including
taurocholic acid, taurodeoxycholic acid, and muricholic acid (level 1 identification).
These microbes and metabolites highlight key IHH-related changes in the gut microen-
vironment that could guide subsequent reconstitution experiments in germfree mice to
establish causality.

DISCUSSION

We examined the reproducibility of IHH-associated alterations in the gut micro-
biome and metabolome of Ldlr�/� and ApoE�/� mouse models, crucial for under-
standing links between OSA and associated cardiovascular pathologies. As both APOE
and LDLR are important in clearing cholesterol and triglyceride-rich particles from the
blood, both models show elevated plasma cholesterol levels. However, they develop
atherosclerotic plaques to different extents under high-fat dietary conditions (26–28).
Concordant with these phenotypic differences, we highlight throughout that the gut
ecosystems of the two models are also intrinsically distinct. As technical variables such
as origin of animals, housing conditions, experimental batches, and data acquisition
protocols are important considerations for meta-analyses such as ours (29, 30), we
ensured that all animals were handled in the same facility and data were acquired using
identical protocols to minimize confounding effects. It is worth noting that instead of
cohousing, we use separate cages for IHH-exposed and control animals (2 or 3 cages
per treatment group) throughout, as previous work has shown that coprophagy during
cohousing could rescue microbial and metabolic perturbations in the gut (31), which
were of interest here. Furthermore, we used supervised machine learning to identify
features specifically associated with IHH exposure in both animal models reproducibly.

To our knowledge, the impact of IHH on the gut ecosystem in the context of
atherosclerosis has not been investigated before, making our work exploratory in

Tripathi et al.

March/April 2019 Volume 4 Issue 2 e00058-19 msystems.asm.org 6

https://msystems.asm.org


nature. Intermittent hypoxia alone (without hypercapnia or HFD) has been reported to
significantly alter the microbiome in wild-type mice (32) and guinea pigs (33), which
lends support to our findings with IHH exposure. Another study modeled human OSA
and its cardiovascular consequences in HFD-fed rats by inflating a tracheal balloon
during the sleep cycle (34). The authors concluded that HFD and OSA synergistically
caused hypertension and gut dysbiosis in these rats. Moreover, intermittent hypoxia
with hypobaric stress (35) and chronic hypoxia (36) were also reported to alter the fecal
microbiota in rats. In the latter study, chronic hypoxia-induced gut dysbiosis was
implicated in premature senescence of bone marrow mesenchymal stem cells (BMSCs),
and BMSCs were restored by intragastric supplementation of Lactobacillus. Interest-
ingly, bone marrow function was also altered due to HFD-induced changes in the gut
microbiota in mice (37). Further investigations would be needed to test if related
mechanisms are at play in the obstructive sleep apnea mouse models discussed here
(HFD and IHH exposure) as well.

In this work, we report consistent IHH-associated changes that include unclassified
strains belonging to the families Ruminococcaceae, Mogibacteriaceae, Lachnospiraceae,
and Clostridiaceae (Fig. 3; Fig. S4). These taxonomic groups have been associated with

FIG 3 Individual microbes and metabolites that distinguish IHH from the control group in both ApoE�/� and Ldlr�/� mice. (a) ROC curves using each microbe’s
abundance. Each curve represents the sensitivity and specificity as a function of the abundance of a single microbe to distinguish IHH and control groups. The
curves for microbes enriched in IHH are above the diagonal line, while those for microbes depleted in IHH are below the diagonal line. Two predictive microbial
features that are consistently altered in ApoE�/� and Ldlr�/� animals in both mouse models are highlighted by color. (b and c) The abundance trends of these
two microbes in each mouse model along time. (d, e, and f) Similar plots for the metabolome data set highlighting two consistently altered features. The
features were identified as vaccenic acid (m/z, 283.2629498309951; RT, 5.430859365079369) and hexadecenoic acid (m/z, 255.2317783582418; RT,
5.1814566985645945) based on MS/MS fragmentation. ROC, receiver operating characteristic; IHH, intermittent hypoxia and hypercapnia; RT, retention time.
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cardiovascular, metabolic, and inflammatory conditions (38–40), which indicates shared
mechanistic pathways in OSA-associated cardiovascular conditions. Furthermore, our
work is the first to profile OSA-associated changes in the gut metabolome at this scale.
We observed reproducible perturbations in clinically relevant biomolecules in both
ApoE�/� and Ldlr�/� mice. For example, vaccenic acid, a trans-fatty acid that has been
reported to lower low-density lipoprotein (LDL) cholesterol and triglyceride levels in
rats (41), was found to decrease under IHH exposure in both models. Similarly, bile acid
molecules such as muricholic acid and taurocholic acid were more abundant in
IHH-exposed versus control animals. Bile acids are crucial not only for facilitating
transport of dietary fats and cholesterol in the host but also for regulating host energy
expenditure, glucose homeostasis, and anti-inflammatory immune responses (42–46).
Many metabolic and cardiovascular conditions (47) have been associated with aberrant
bile acid profiles, suggesting that prolonged perturbations in these key molecules
could contribute to downstream adverse cardiovascular consequences of OSA as well.
It is noteworthy that we also identified microbes and metabolites that were highly
predictive within both ApoE�/� and Ldlr�/� mice but altered in opposite directions in
the two animals on IHH exposure (Fig. S3 and S4). Whether these opposite trends are
due to a differential impact of HFD or IHH exposure on the two genotypes requires
further investigation. This, together with the high cross-genotype prediction accuracy
using all features (Fig. 2), suggests that although the microbiome and metabolome
changes induced by IHH are largely consistent across mouse models, there do exist
some animal model-specific changes as well. Hence, multi-animal model studies such
as this are highly advantageous in precisely identifying biomarkers robustly associated
with an intervention of interest.

In summary, our work provides reproducible candidate biomarkers of IHH exposure
in animal models (and potentially OSA in humans) that will be most applicable to
designing diagnostic and treatment modalities. Furthermore, we outline a general
pipeline to select for biomarkers and therapeutic targets that is applicable to other
intervention studies as well. We have made these information-rich data sets publicly
available to promote collaborative progress in this area of research.

MATERIALS AND METHODS

Animals. Atherosclerosis-prone 10-week-old male Ldlr�/� (n � 16) and ApoE�/� (n � 24) mice on a
C57BL/6J background (stock no. 002207 and 002052, respectively; The Jackson Laboratory, Bar Harbor,
ME) were used in this study (26, 27). Ldlr and ApoE deficiencies were confirmed by PCR according to the
vendor’s instructions. Animals were either exposed to intermittent hypoxia and hypercapnia (n � 8 and
n � 12 for Ldlr�/� and ApoE�/� animals, respectively) or air (control group) and fed with high-fat diet.
All animal protocols were approved by the Animal Care Committee of the University of California—San
Diego and followed the Guide for the Care and Use of Laboratory Animals (48) of the National Institutes
of Health.

High-fat diet treatment. Mice were fed with regular chow consisting of 0.01% cholesterol and 4.4%
fat (TD.8604; Envigo-Teklad, Madison, WI) until initiation of dietary and IHH treatments. Starting at
10 weeks of age, male mice were provided with a high-fat diet (HFD) containing 1.25% cholesterol and
21% milk fat (4.5 kcal/g [TD.96121; Envigo-Teklad, Madison, WI]) while being exposed to either IHH or
room air. Body weight of each mouse was measured twice a week. Food intake of animals in each cage
was recorded twice a week.

Intermittent hypoxia and hypercapnia exposure. Intermittent hypoxia and hypercapnia (IHH) was
maintained in a computer-controlled atmosphere chamber system (OxyCycler; Reming Bioinstruments,
Redfield, NY) as previously described (4). IHH exposure was introduced to the mice in short periods
(�4 min) of synchronized reduction of O2 (from 21% to 8%) and increase of CO2 (from �0.5% to 8%)
separated by alternating periods (�4 min) of normoxia ([O2] � 21%) and normocapnia ([CO2] � �0.5%)
with 1- to 2-min ramp intervals for 10 h per day during the light cycle. This treatment protocol mimics
the severe clinical condition observed in obstructive sleep apnea patients. Mice on the same HFD but in
room air were used as controls. Fecal samples were collected at baseline and twice each week for 6 weeks
(Ldlr�/�) or 10 weeks (ApoE�/�).

16S rRNA sequence processing. We performed 16S sequencing on fecal samples from Ldlr�/� and
ApoE�/� mice for all time points. DNA extraction and 16S rRNA amplicon sequencing were done using
Earth Microbiome Project (EMP) standard protocols (http://www.earthmicrobiome.org/protocols-and
-standards/16s) (49). In brief, DNA was extracted using the Mo Bio PowerSoil DNA extraction kit (Carlsbad,
CA). Amplicon PCR was performed on the V4 region of the 16S rRNA gene (Platinum Hot Start PCR 2�

master mix; Invitrogen RED 13000014) using the primer pair 515f to 806r with Golay error-correcting
barcodes on the reverse primer. Amplicons were barcoded and pooled in equal concentrations for
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sequencing. The amplicon pool was purified with the Mo Bio UltraClean PCR cleanup kit and sequenced
on the Illumina HiSeq 2500 sequencing platform. Sequence data were demultiplexed and minimally
quality filtered using the QIIME 1.9.1 script split_libraries_fastq.py, with a Phred quality threshold of 3 and
default parameters to generate per-study FASTA sequence files.

The raw sequence data were processed using the Deblur workflow (23) with default parameters in
Qiita (50). This generated a sub-operational taxonomic unit (sOTU) abundance per sample (BIOM format)
(51). Taxonomies for sOTUs were assigned using the sklearn-based taxonomy classifier trained on the
Greengenes 13_8 99% OTUs (feature classifier plug-in) in QIIME 2 (52). The sOTU table was rarefied to a
depth of 2,000 sequences/sample to control for sequencing effort (53). A phylogeny was inferred using
SATé-enabled phylogenetic placement (54), which was used to insert 16S Deblur sOTUs into Greengenes
13_8 at a 99% phylogeny.

LC-MS/MS data processing. We acquired LC-MS/MS data on fecal samples from Ldlr�/� (for 10
through 16 weeks of age) and ApoE�/� (at ages 10, 12, 14.5, 17, and 19.5 weeks) mice using identical
protocols. Details of data acquisition parameters are specified in reference 2. Briefly, fecal pellets (30
to 50 mg approximately) were extracted in 500 �l of 50:50 methanol-H2O solvent, followed by
centrifugation to separate insoluble material. The extracts were dried completely by centrifugal
evaporation (CentriVap centrifugal vacuum concentrator; Labconco, Kansas City, MO) and resus-
pended in 150 �l of methanol-H2O (1:1 vol/vol). After resuspension, the samples were analyzed on
a Vanquish ultraperformance liquid chromatography (UPLC) system coupled to a Q Exactive orbital
ion trap (Thermo Fisher Scientific, Bremen, Germany). A C18 core shell column (Kinetex column, 50
by 2 mm, 1.7-�m particle size, 100-Å pore size; Phenomenex, Torrance, CA) with a flow rate of
0.5 ml/min (solvent A, H2O–0.1% formic acid [FA]; solvent B, acetonitrile–0.1% FA) was used for
chromatographic separation (2).

The raw data sets were converted to m/z extensible markup language (mzXML) in centroid mode
using MSConvert (part of ProteoWizard) (55, 56). All mzXML files were cropped with an m/z range of
75.00 to 1,000.00 Da. Feature extraction was performed in MZmine2 (http://mzmine.sourceforge.net/)
(57) with a signal intensity threshold of 2.0e5 and minimum peak width of 0.3 s. The maximum allowed
mass and retention time tolerances were 10 ppm and 10 s, respectively. A local minimum search
algorithm with a minimum relative peak height of 1% was used for chromatographic deconvolution; the
maximum peak width was set to 1 min. The detected peaks were aligned across all samples using the
above-mentioned retention time and mass tolerances, producing the final feature table used in these
analyses. (See the MZmine2 batch processing file available at https://github.com/knightlab-analyses/
crossmodel_prediction/blob/master/data/metabolome/fileS7.mzmine2_batch.xml.)

We performed molecular networking (58, 59) in GNPS (https://gnps.ucsd.edu/) to putatively identify
molecular features using MS/MS-based spectral library matches. The parameters used for molecular
networking in this study are available at the University of California—San Diego GNPS site (https://gnps
.ucsd.edu/ProteoSAFe/status.jsp?task�3dbc660b9bdd4f699d31750d99b25463). Additionally, we pur-
chased analytical standards for bile acids of interest (based on previous work [2, 59]: �/�-muricholic
acid, chenodeoxycholic acid, cholic acid, lithocholic acid, deoxycholic acid, and taurodeoxycholic
acid) from Cayman Chemical (Ann Arbor, MI). We analyzed them using the same LC-MS/MS method
described above to compare and verify the exact masses, fragmentation patterns, and retention times
to ensure level 1 annotations (https://github.com/knightlab-analyses/haddad_osa/blob/master/data/
standard_identified_all.txt), as defined by the 2007 metabolomics standards initiative (25).

Sharedness of microbial and metabolomic features across animal models. We calculated the
sharedness of microbial features as follows. To quality control the 16S sequences obtained per animal
model, we retained only reads that were prevalent within each model, i.e., above a sum relative
abundance threshold of 10E�06 and present in at least 1% of the samples, thus avoiding sequencing
noise. The numbers of such reads in Ldlr�/� and ApoE�/� animals were 635 and 582, respectively. Out
of these, 248 sequences were shared between the two models. Therefore, the percentage of microbiome
features shared between the animal models was 39% of unique microbial features found in the Ldlr�/�

model (and 42% of those in the ApoE�/� model).
For metabolomic data, we quality controlled the chemical features by retaining those above a sum

relative abundance threshold of 10E�01 and present in at least 10% of all samples for each animal model
individually. There were 267 and 374 such features in Ldlr�/� and ApoE�/� animals, respectively. Out of
these, 137 metabolites were shared between the two models. Thus, the percentages shared between the
animal knockout models were 51% of total features in the Ldlr�/� model and 36% of those in the
ApoE�/� model.

Effect size analyses. Effect sizes were calculated over the individual genotype, mice, cage number,
age, and exposure type. For each of these covariates, we applied the mixed directional false-discovery
rate (mdFDR) (60) methodology to test for the significance of each pairwise comparison among the
groups. For each significant pairwise comparison via PERMANOVA (24), we computed the effect size
using Cohen’s d (61) or the absolute difference between the mean of each group divided by the pooled
standard deviation. As diversity estimators, we used unweighted UniFrac and Bray-Curtis distances
matrices for the 16S rRNA sequencing and LC-MS/MS, respectively.

For the microbiome data layer (Table S1), when taking both genotypes together, we see that the first
three largest effect sizes are mouse number, age, and cage number, followed by genotype and exposure
type. It is noteworthy that the maximum difference (effect size) on the first three covariates are related
to genotype differences. For example, the maximum difference in mouse number is between two mice
(mouse no. 105 [ApoE�/�] versus 32 [Ldlr�/�] [Fig. S1]) that belong to two different genotypes and
exposure types. To untangle the effect of genotype, we stratified our data set by genotypes and
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calculated effect sizes of each of the covariates within each model. The effects of covariates are ranked
differently within each model, hinting toward underlying differences in the characteristics of the
microbial community. Nevertheless, the effect of exposure is ranked comparably across models. Similarly,
we calculate effect sizes of the above-mentioned covariates for the metabolome data layer (Table S2).
When taking both genotypes together, consistent with the microbiome results, mouse number, age, and
cage number have the largest effect sizes, and the groups with the maximum effects belong to different
genotypes (e.g., mouse no. 114 [ApoE�/�] versus 17 [Ldlr�/�]). We then stratified the data by genotype
and observed that different covariates had distinct effects within each genotype. Interestingly, our
analysis shows that unlike in Ldlr�/� mice, individual variability was not significant in ApoE�/� mice. It
is important to note that given our study design, we are reporting the effect sizes of each variable
individually without correcting for other covariates. For example, it is not possible to partial out the effect
of the cage from the effect IHH exposure as we needed to house IHH-exposed and control animals
separately throughout the experiments (Fig. S1). Another study design will be needed to accurately
report the independent effect size of each variable.

Supervised classification. The random forest (RF) classifier was trained and evaluated with cross-
validation for each mouse model, using microbial or chemical features as predictors. During cross-
validation, all the samples from the same mouse appeared only in either training or validation data
but not both to avoid overoptimistic cross-validation accuracy scores as a result of the classifier
learning idiosyncrasies of the individual itself rather than the treatment. The classifiers trained for
each mouse model were then applied on the samples of the other mouse model for cross-genotype
prediction. For the longitudinal prediction, we trained and evaluated an RF classifier on the samples
collected at each time point for AUC computation. To assess the capability of individual 16S
sequences and metabolites to separate IHH-exposed from control animals, we used the abundance
of each feature as the score to plot the ROC curve and compute the AUC and highlighted the
features that can single-handedly distinguish IHH on ROC plots. These analyses were done using the
scikit-learn Python package.

Data availability. The data generated in this study are available publicly in the GNPS/MassIVE
repository under the following accession numbers: for metabolomics data, MSV000081482 (Ldlr knock-
out animal) at ftp://massive.ucsd.edu/MSV000081482, MSV000082813 (ApoE knockout animal) at ftp://
massive.ucsd.edu/MSV000082813, and MSV000081853 (commercial standards) at ftp://massive.ucsd.edu/
MSV000081853, and for microbiome data, ERP106495 (Ldlr knockout animals; EBI database) and
ERP110592 (ApoE knockout animals). Data analysis has been documented in Jupyter notebooks available
on GitHub (https://github.com/knightlab-analyses/crossmodel_prediction).

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at https://doi.org/10.1128/
mSystems.00058-19.
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TABLE S4, XLS file, 0.2 MB.
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