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Exposure to perinatal infection and inflammation is associated 
with an increased risk for neonatal brain damage and devel-
opmental disabilities. In this integrated mechanism review, 
we discuss evidence in support of the contention that the 
preterm newborn is capable of intermittent or sustained sys-
temic inflammation (ISSI), which appears to contribute more 
to adverse neurodevelopmental outcomes in preterm infants 
than does shorter duration inflammation.

The concept that noninfectious inflammatory stimuli con-
tribute to perinatal brain damage dates back four decades 

(1). More than 15 y ago, this concept was expanded to help 
explain the relationship between contributors to preterm birth 
and perinatal brain damage (2,3).

Since then, the major new concept has been the role of sus-
tained inflammation (4). The recent abundance of publications 
relevant to intermittent or sustained systemic inflammation 
(ISSI) prompts this update of recent progress.

ISSI
What Is Systemic Inflammation?
Although many infections are thought to be characterized by 
inflammation localized to a tissue or organ, some clinicians 
want to see leukocytosis before they make a diagnosis of appen-
dicitis (5). The increase in number of immune cells and/or the 
increased concentration of inflammation-related proteins (e.g., 
C-reactive protein and proinflammatory cytokines) in the cir-
culation is deemed evidence of systemic inflammation (6).

What Is Chronic Systemic Inflammation?
A rapidly mounted systemic inflammatory response can be an 
effective defense against microbial invasion and should finally 
resolve (7). Failure of inflammation-resolution processes, 
however, leads to dysregulated and prolonged inflammation, 
which can damage organs and contribute to the development 
in adults of malignancies, chronic lung disease, rheumatoid 
arthritis, type 2 diabetes mellitus, heart disease, and such neu-
rological disorders as stroke, Parkinson’s disease, Alzheimer’s 
disease, multiple sclerosis, and a diverse group of other neuro-
degenerative diseases (8).

What Is ISSI?
We currently do not know if the systemic inflammation in very 
preterm newborns that predicts brain damage is intermittent 
or sustained. Until that knowledge becomes available, we con-
sider it appropriate to use the term “ISSI” for this brain damage 
risk factor or indicator of other risk factors.

Both adjectives, intermittent and sustained, allow for the 
inflammation to eventually resolve. Some authors do not 
hesitate to eliminate this possibility when using the word 
“persistent” in describing among surgical patients what they 
call PICS, persistent inflammation, immunosuppression, and 
catabolism syndrome (9).

Some of what follows pertains to sustained inflammation in 
the brain and not necessarily in the circulation. We cite this 
literature in support of the concept of sustained inflammation 
and caution drawing inferences to what might be occurring in 
the blood when circulating indicators of systemic inflamma-
tion have not been measured.

ISSI and Secondary Brain Damage
Closed head trauma can be followed by a prominent neuroin-
flammatory response (10). Although this might serve to assist 
in removal of debris and initiate repair, the possibility has also 
been raised that this phenomenon might contribute to ongo-
ing “secondary” damage (11).

This phenomenon of secondary damage does not explain the 
systemic response that sometimes accompanies brain damage. 
This inflammation in the blood is most likely a reflection of 
inflammation that “spilled over” from the brain, or inflam-
mation-provoking signals sent from the brain to the liver and 
the peripheral immune system (12). This inflammation in the 
blood following brain damage might be merely an indicator 
of the damage already done. On the other hand, the systemic 
inflammation might contribute to “secondary damage”. A 
systemic anti-inflammatory approach to reducing secondary 
damage appears promising (13).

ISSI and Tertiary Brain Damage
Tertiary brain damage is defined as “injury caused by long- 
persisting processes following brain insult that worsen 
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outcome, predispose to further injury, or prevent repair/regen-
eration” (11,14). One possible example comes from the obser-
vation that years after preterm birth, children who developed 
cerebral palsy had elevated tumor necrosis factor (TNF)-α 
concentrations in their plasma (15).

Schizophrenia and some other chronic psychotic disorders 
have inflammatory characteristics (16). Treatment with anti-
inflammatory compounds appears to reduce the severity of 
some symptoms.

These observations, too, can be viewed as support for the 
concept of tertiary inflammatory damage. They go beyond, 
though, holding out the promise that systemic anti-inflamma-
tory therapy might reduce the severity of symptoms of disor-
ders with on-going inflammation. Because autism has some of 
the same inflammatory characteristics as schizophrenia (17), 
the possibility exists that systemic anti-inflammatory therapy 
might prove helpful here, too.

ISSI and the Developing Brain—Animal Studies
Thirty-five days after a local, apparently noninflammatory set 
of brain-damaging stimuli, immature rats’ microglia/macro-
phages, astroglia, and CD4 lymphocytes in the brain remained 
activated (18). Giving lipopolysaccharide, a powerful inflam-
matory stimulus, to pregnant rats is followed by apoptosis 
of brain cells in their newborn a week after birth (19). Three 
months following a hypoxic–ischemic insult to the brain of 
mouse pups, activated T lymphocytes were still present in the 
damaged hemisphere (20).

ISSI and the Developing Brain—Human Studies
Elevated concentrations of inflammation-related proteins in 
the circulation on two separate occasions a week apart shortly 
after preterm birth provide information about an increased 
risk of microcephaly more than 2 y later (21). As mentioned 
above, school-aged children with cerebral palsy have higher 
TNF plasma levels than controls and their monocytes exhibit a 
more vigorous TNF response to lipopolysaccharide stimulation 
than monocytes from controls (15). In addition, the presence 
of astrocyte damage marker S100B in the systemic circulation 
of children with cerebral palsy suggests that the disease pro-
cess might be ongoing/sustained as well (22). Elevated levels of 
inflammation-related proteins in blood collected on both post-
natal days 7 and 14 are associated with impaired mental and 
motor development at age 2 y (23). ISSI also plays a prominent 
role in one framework proposed for the etiology of schizophre-
nia and autism (17).

MECHANISMS
In this section, we try to answer the question, “What perpetu-
ates inflammation to make it chronic?” (Figure 1). One pos-
sibility is that the inflammatory stimulus persists. A second is 
that the resolution of inflammation is hampered. Third, pre-
term newborns have developmentally regulated characteristics 
that allow reinforcement loops to sustain systemic inflamma-
tion (24). Fourth, positive feedback loops between innate and 
adaptive immune systems might perpetuate the inflammatory 

responses (25). A fifth candidate mechanism involves epi-
genetics. This section ends with a list of multiple miscellaneous 
but not mutually exclusive possibilities.

Persistence of Inflammatory Stimuli
In the preterm newborn, assisted (i.e., mechanical) ventila-
tion might be the most common prolonged/continued stimu-
lus for systemic inflammation (26). One explanation for this 
link between assisted ventilation and systemic inflammation 
invokes barotrauma provocation of the local synthesis of 
inflammation-associated proteins, followed by translocation 
of some of these proteins from the lung to the circulation. In 
support of this interpretation is the observation that strategies 
that reduce ventilator-induced lung injury appear to reduce 
systemic inflammation in newborns (27). The presence of 
endotoxin in tracheal aspirates from mechanically ventilated 
newborns accompanied by inflammation-associated pro-
teins suggests that some of the inflammation associated with 
assisted ventilation is the consequence of infection (28).

The other common systemic inflammation-provoking expo-
sure among very preterm newborns is bacteremia (29,30). The 
reasons for their propensity to become bacteremic are com-
plex, but include exposure to maternal organisms, need for 
assisted ventilation, fragile skin, impaired T(H)17-polarizing 
cytokine production, and deficient expression of complement, 
as well as a deficiency of antimicrobial proteins and peptides 
(31). The acquisition of gut microbiota at the time the intesti-
nal epithelium is immature might contribute to the transloca-
tion of bacteria from the gut to the adjacent blood vessels and 
their blood contents (32).

Toll-like receptors (TLRs) are pattern recognition recep-
tors that can recognize pathogen-associated molecular pat-
terns (including bacterial components), as well as endogenous 
substances released during/following injury and inflamma-
tion (including oxidized phospholipids, oxidized low-density 

Figure 1. Proposed list of candidate mechanisms linking infectious and 
noninfectious stimuli, the initial inflammatory response, and subsequent 
intermittent or sustained systemic inflammation (ISSI).
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lipoproteins, β-defensin, high-mobility group protein 1, and 
heat shock proteins) (33). When these activate TLR-2 or TLR-
4, the result is induction of the transcription factor nuclear 
factor-κB, which then promotes the synthesis and release of 
such inflammation-related proteins as interleukin (IL)-6 and 
TNF-α. The resulting inflammation and injury can thereby 
promote chronic inflammation.

Inflammation Resolution
The normal inflammatory response includes components that 
contribute to the termination of the inflammatory response 
(34). This resolution of inflammation is tightly regulated by 
anti-inflammatory proteins, such as IL-4, IL-5, IL-10, and 
IL-13 (35) and proresolving proteins, especially transforming 
growth factor-β (36). Preterm newborns appear to have a pau-
city of some of these proteins (37,38).

Other endogenous products of inflammation contrib-
ute to resolution. Among these are a variety of lipid media-
tors derived from arachidonic acid in the plasma membrane, 
including prostaglandins, lipoxins, and resolvins. We still do 
not know how capable the preterm newborn is in synthesizing 
these lipid-based inflammation-resolution promoters.

A subset of neutrophils from preterm newborns when 
exposed to inflammatory stimuli appears to be relatively resis-
tant to apoptosis (39). The continued presence of such cells in 
term newborns (40) can contribute to continued (i.e., subacute 
and/or chronic) inflammation. Indeed, the pool of such apop-
tosis-resistant cells appears to be relatively larger in newborns 
than adults (41). Here, too, we do not know how much the 
prolonged presence of these apoptotic-resistant cells enhances 
the probability of ISSI.

Developmental Regulation
Data from observational and experimental studies document 
that, once initiated, the fetal/neonatal inflammatory response 
can be sustained for long intervals (4). Phenomena that vary 
with gestational age are identified as “developmentally regu-
lated.” Several components of the inflammatory response of 
preterm newborns that are deemed “developmentally regu-
lated” might account for some of the inflammatory hyperre-
sponsiveness and persistence that has been documented.

Following an intravenous inflammatory stimulus (i.e., lipo-
polysaccharide), healthy young adults volunteers have TNF-α 
and IL-6 concentrations that peak at about 2 to 2½ hours and 
return to baseline within 12 h (42). In preterm newborns, how-
ever, some indicators of systemic inflammation (proinflam-
matory cytokines) are elevated after birth much longer than 
would be expected based on their half-life in adults (43,44). We 
still do not know the half-life of inflammation-related proteins 
in preterm newborns. Consequently, we do not yet know if the 
sustained inflammation reflects nothing more than a develop-
mentally regulated very prolonged catabolic process.

Compared to their counterparts at term, preterm rats and 
humans appear to have limited ability to synthesize proteins 
with anti-inflammatory characteristics (45,46). Despite this 
weak anti-inflammatory capability, very preterm newborns 

appear to be capable of a more vigorous systemic inflamma-
tory response than gestationally older newborns (47,48). The 
result is a propensity to a proinflammatory imbalance of pro-
teins that is not readily eliminated.

Positive Feedback Loops Between Innate and Adaptive Immune 
Systems
In adults, the innate and adaptive immune systems reinforce 
each other (49). Support has been provided for the possibility 
that the innate and adaptive immune systems reinforce each 
other in the very preterm newborn, thereby prolonging the 
inflammation and increasing the likelihood of brain damage 
(25). Part of this phenomenon might be due to an insufficient 
number of T cells that leads to “uncontrolled’ inflammation 
(50). In addition, proinflammatory cytokines and other aspects 
of the inflammatory environment have the potential to dimin-
ish the response of effector T cells to regulation (51).

Epigenetic Mechanisms
Epigenetic processes modify gene expression and/or cell phe-
notype without altering the genomic DNA (11). Many of these 
pack/unpack (i.e., tighten/loosen the bonds of) chromatin. 
For a gene to be transcribed, it has to be “unpacked” from the 
chromatin (52). In turn, a gene can be silenced by “packing” 
the chromatin. The two mechanisms most often involved in 
transforming the chromatin alter nucleosomal histones, or 
micro(noncoding)-RNA expression. DNA methylation is 
another epigenetic mechanism.

Normal acute systemic inflammation follows a set pattern 
beginning with an initiation (proinflammatory) phase, rap-
idly followed by an adaptive (anti-inflammatory) phase, and 
finally a resolution (restoration of homeostasis) phase (7). 
These phase shifts are accompanied by changes in gene expres-
sion, some due in part to epigenetic processes. The shift from 
a proinflammatory to an anti-inflammatory state, for example, 
is accompanied by the repression of some genes and the activa-
tion of others (53).

Inflammation-stimulated cells undergo extensive transcrip-
tional reprogramming mediated, in part, by inducing histone 
deacetylases (54) and by enhancing methylation and/or acety-
lation at specific histone proteins (55).

Just as chromatin reorganization (including histone deacety-
lation) contributes to inflammation opening access to promot-
ers of acute proinflammatory genes, subsequent chromatin 
reorganization (including histone acetylation), tends to close 
access to these promoters of acute proinflammatory genes, 
thereby facilitating the transition to the anti-inflammatory 
state (56). Some histone deacetylases, however, put a brake 
on the propensity to resolve inflammation (57), while other 
histone deacetylases appear to promote inflammatory gene 
expression in response to inflammatory stimuli (58). The net 
effect of histone deacetylation, however, is inflammation pro-
motion (59).

Some micro-RNA influence inflammation, and inflamma-
tion, in turn, influences the biogenesis of some of these, as 
well as other micro-RNAs (60). Some of these micro-RNAs 
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dampen the inflammatory process, while others potentiate the 
immune response.

Miscellaneous Additional Mechanisms
Ongoing tissue destruction leads to continued inflammation. 
Necrosis of any cells, including brain cells, leads to the release of 
cellular proteins and other nuclear/cell contents. Some of these 
function as damage-associated molecular patterns that, once 
outside the cell, can induce noninfection-associated immune 
responses (61). The result is continued inflammation. Some of 
the damage-associated molecular patterns generated during 
traumatic injury leak into the systemic circulation (62). If the 
damage-associated molecular patterns released by brain damage 
within the blood–brain barrier of preterm newborns leak into 
the systemic circulation and contribute to ISSI, might the devel-
oping brain be less able than the mature brain to contain damage-
associated molecular patterns within the blood–brain barrier?

Inflammatory phenomena induce endoplasmic reticulum 
stress, which, in turn, leads to the unfolded protein response, 
which is followed by even more inflammation (63). The rela-
tionship between the ubiquitin proteasome system and inflam-
mation is complex (64). Normally, the induction of proteasomes 
clears accumulating misfolded proteins, thereby minimizing 
continued inflammation. Consequently, impairments of ubiq-
uitylation can contribute to continuing inflammation. Products 
of inflammation acting on transient receptor potential chan-
nels can promote the release of substances that promote further 
inflammation (65). Autophagy is an intracellular mechanism 
that removes damaged or unused cell components, including 
inflammatory stimuli (66). Because impairments of autophagy 
allow some of these to remain, they allow the inflammation to 
continue. Finally, stroma includes fibroblasts, as well as blood 
and lymphatic vessels. “The stroma, formerly considered the 
theatrical stage of the inflammatory process, has acquired, 
in recent years the role of director of the immune response, 
regulating the process of leukocyte recruitment, organization 
of leukocytes within the tissue and exit via the escape route of 
the lymphatic endothelium” (67). Continued inflammation can 
result in the acquisition by stromal cells of novel features that 
can contribute to the perpetuation of inflammation.

Intervention Design
Multiple potential anti-inflammatory and/or immunomodula-
tory intervention schemes are conceivable with the perinatal 
brain in mind (68,69). If ISSI indeed contributes to brain dam-
age in the preterm newborn over an extended time period, a 
wide window of opportunity would open for such interven-
tion (4), perhaps even after the onset of the initiator of ISSI. 
Targeting the mechanisms of ISSI discussed above seems to 
be a reasonable strategy when thinking about future interven-
tions to curb its adverse effects.

CONCLUSION
Intermittent or sustained inflammation appears to character-
ize a large number of disorders of different organs. Here, we 
focus on the newborn brain, especially the brain of infants 

born months before term, and offer evidence that the very 
preterm newborn has the capacity to sustain inflammation, 
thereby increasing the risk of brain damage.
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