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Intermittent Transition to Turbulence
in Dissipative Dynamical Systems
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Abstract. We study some simple dissipative dynamical systems exhibiting a
transition from a stable periodic behavior to a chaotic one. At that transition,
the inverse coherence time grows continuously from zero due to the random
occurrence of widely separated bursts in the time record.

Introduction

A number of investigators [1] have observed in convective fluids an intermittent
transition to turbulence. In these experiments the external control parameter, say
r, is the vertical temperature difference across a Rayleigh-Benard cell. Below a
critical value rτ of this parameter, measurements show well behaved and regular
periodic oscillations. As r becomes slightly larger than rτ the fluctuations remain
apparently periodic during long time intervals (which we shall call "laminar
phases") but this regular behavior seems to be randomly and abruptly disrupted
by a "burst" on the time record. This "burst" has a finite duration, it stops and a
new laminar phase starts and so on. Close to r τ, the time lag between two bursts is
seemingly at random and much larger than - and not correlated to - the period of
the underlying oscillations. As r increases more and more beyond rτ it becomes
more and more difficult and finally quite impossible to recognize the regular
oscillations (see Fig. 1).

This sort of transition to turbulence is also present in simple dissipative
dynamical systems [2] such as the Lorenz model [2a]. We present here the results
of some numerical experiments on this problem.

When a burst starts at the end of a laminar phase this denotes an instability of
the periodic motion due to the fact that the modulus of at least one Floquet
multiplier [3] is larger than one. This may occur in three different ways: a real
Floquet multiplier crosses the unit circle at (+1) or at (—1) or two complex
conjugate multipliers cross simultaneously. To each of these three typical crossings
we may associate one type of intermittency that we shall call for convenience type
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Fig. la and b. Time record of one coordinate (z) in the Lorenz model, a Stable periodic motion for
r= 166. b Above the threshold the oscillations are interrupted by bursts which become more frequent as
r is increased

1: crossing at (+1) ; type 2: complex crossing; and type 3: crossing at (—1)
respectively. In all these three cases our numerical studies show that the Lyapunov
number grows continuously from zero beyond the onset of turbulence. In what
follows we shall present some simple estimates for the "critical behavior" of this
Lyapunov number in the vicinity of the turbulence threshold and compare them
with the results of numerical experiments.

Type 1. Intermittency in the Lorenz Model

The Lorenz system reads [4] :

dx dy
(i)

where σ, b, and r are parameters. We have kept b and σ fixed at their original
values (σ = 10, b = 8/3). Integrating system (1) around r = 166 one finds for r slightly
less than r Γ ( ~ 166.06) regular and stable oscillations for a random choice of initial
condition (Fig. la). For r slightly larger than rτ these oscillations are interrupted
by bursts (Fig. lb). This can be explained quite simply by studying the Poincare
map (restricted here to be 1-dimensional without loss of significance). Let / be the
function such that yn+1=f(yn,r) where yn is the y-coordinate of the nth crossing of
the plane x = 0. Near r = rτ the curve of equation y' = f(y9 r) is nearly tangent to the
first bissectrix (Fig. 2). For r slightly below rτ, this curve has two intersections with
the bisectrix, they collapse into a single point at r = rτ while for r>rτ the curve is
lifted up and no longer crosses the first bisectrix so that a "channel" appears
between them (Fig. 3). Hence the successive iterates generated by the map
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Fig. 2. A part of the Poincare map along the y-coordinate for r= 166.2 slightly beyond the
intermittency threshold (rτ ^166.06)

Fig. 3. Idealized picture of the deformation of yn+ ^ y j explaining the transition via intermittency. For
r<rt two fixed points coexist one stable the other unstable. They collapse at r = rτ and then disappear
leaving a channel between the curve and the first bisectrix
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Fig. 4* The motion through the channel corresponds to the laminar phase of the movement. The slow
drift is quite imperceptible on the time record of Fig. lb

y-*f{y,r) travel along this channel, which requires a large number of iterations
(Fig. 4). To estimate this number let us consider a "generic form" for f{y, r) in the
region considered:

f(y. rjasj/.f e + y2 (+ higher order terms -H.O.T.),

where ε — (r — rτ)/rτ. Near ε = 0 + the difference equation

can be approximated by a differential equation over n and an elementary estimate
shows that a number of iteration of the order of ε^ 1 / 2 is needed to cross the
channel. This is in nice agreement with our numerical simulation of system (1)
(Fig. 5). After each transfer the burst destroys the coherence of the motion. This
leads one to conclude that near ε = 0 + the Lyapunov number varies as ε1 / 2.
Though this is consistent with our first numerical estimates, close to the
intermittency threshold the Lyapunov number converges so slowly that it is
difficult to get with precision, so we have preferred to turn to a modelling of the
Poincare map. We have got a qualitatively similar behavior for the following map

θ-> 2Θ + r sin 2πθ-f 0.1 sin 4ΛΘ (modi). (2)

As shown in Fig. 6 this applies Sι twice on itself and it is intermittent at
rτ~ —0.24706. In this model, as well as those we shall consider later, the
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Fig. 5. The square of Nx the largest number of cycles during a laminar period is inversely proportional to the
distance from the threshold r — rτ. Nι is given within 1 cycle to account for the uncertainty in the definition
of the beginning/end of a laminar phase

0 1

Fig. 6. Model mapping displaying qualitatively the same behavior as the Lorenz model around r= 166

possibility of starting a laminar phase after a burst comes from the fact that the
map is not invertible. In diffeomorphisms the "relaminarization" cannot occur in
this way due to the uniqueness of preimages. However dynamical systems for
which the "reduced" Poincare map takes a form similar to (2) [and later to (3) or
(5)] can be constructed simply by adding other dimensions along which flue-
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Fig. 7. For the model mapping rτ~ —0.24706. For r<rτ the Lyapunov number γ is negative and

varies as — \/rτ — r while for r>rτ it is positive and grows like yr — rτ

tuations are stable [5]. Numerical simulation of the model defined by (2) can easily
be performed using a desk-top computer. As expected the Lyapunov number
grows with the 1/2-power near the threshold (Fig. 7).

Type 2. Intermittency

In order to study numerically this case we have considered a map that applies the
torus T2 = [0, l [ x [0,1[ four times onto itself: in complex notations z = x + iy

z' = λz + μ\z\2z close to the origin (λ complex and μ real),

z' = 2z far from the origin

(3a)

(3b)

with a smooth interpolation inbetween. The fixed point z = 0 of this map looses its
stability when the complex parameter λ crosses the unit circle, the coefficient μ of
the cubic term being so chosen as to avoid the appearance of a stable limit cycle or
equivalently to make the bifurcation subcritical i.e. μ = μ Re {λ} >0. Iterations of
the above map show intermittency when \λ\ = 1 +ε and ε->0 + . Once an iterate falls
near z = 0, it enters a laminar phase and a large number of further iterations are
needed to expell it towards the "bursting region" (where correlations are broken)
defined by |z |>ρ*, ρ* being fixed and ε-independent, roughly in the interpolating
region. To find how the Lyapunov number grows near the intermittency threshold
one may reason as follows: Let ρ. = \zj\ be the distance of the/ 1 1 iterate to the fixed
point. The iterates rotate around the fixed point due to the complex nature of λ but
we shall neglect the angular variation and only consider the growth of the modulus
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Fig. 8. On the torus T2 for λ = (l-f ε)expiφ, φ = 0.05rd and μ = 20 "mean field" theory predicts
y~ln(l/ε) while the numerical simulation gives y~εα with α~0.04

ρ. Near ρ = 0 it is approximatively given by

. (4)

Now let us examine a laminar cycle with starting point at ρ = ρ <ζ ρ*. If § > ε 1 / 2 one
easily sees that a number of iteration of order 1/ρ2 are needed to reach ρ* and
enter a turbulent burst. On the other hand if ρ<^ε1/2 the laminar cycle ends after
ε - 1 l n ρ iterations approximately. Assuming then that ρ is at random with
probability ρdρ in the circle of center 0 and radius ρ* the estimates given above
yield ln(l/ε) as an order of magnitude for both the mean duration of a laminar
period and the inverse Lyapunov number near ε = 0 + . This is in slight disagree-
ment with our computer experiments which seem to indicate rather a power-like
growth of the Lyapunov number y~εα α small and positive (Fig. 8). This de-
screpancy between the naive theory presented above and computer results may
come from the neglect of fluctuations about the mean length of the laminar cycles,
which makes the procedure used sound much like a "mean field theory" in the usual
jargon of phase transitions (it may also come from the neglect of the rotation of
iterates affecting the statistics in an unknown way).

Type 3. Intermittency

The last type of intermittency we shall examine may occur when the Floquet
multiplier is real and crosses the unit circle at (— 1). Although a differential system
has been found which displays this kind of behavior [2b] we shall report here on
the simulation of the following mapping of the circle S± onto itself:

(5)
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Fig. 9. On the torus T1 for type 3 intermittency the Lyapunov number γ grows as ε 1 / 2

This map applies S1 twice onto itself and it reverse the orientation so that the
eigenvalue of the map linearized near the fixed point ΘF = 1/3 can easily be made
negative. Near the fixed point the map expands as

(6)
6

The most general form would be

(7)

a and b being constant. If the r.h.s. of (7) has a positive Schwarzian derivative that
is here b + a2 < 0 then the bifurcation at ε = 0 is subcritical and type 3 intermittency
can occur. This is precisely the case with (5) since a = 0 and b < 0. To estimate the
mean length of a laminar phase one considers instead of (6) or (7) the equation
giving 0w + 2 in function of θn. This relation is basically of the same form as Eq. (4)
(quadratic terms vanish at ε = 0 and are in inessential for ε small enough). Thus one
reasons as for type 2 intermittency with the difference that now the problem is
strictly unidimensional so that the probability measure for for the starting point of
a laminar cycle is now the usual Lebesgue measure instead oϊρdρ previously. An
elementary calculation shows that the Lyapunov number should grow like ε 1 / 2

near threshold, this time in agreement with the computer experiment (Fig. 9).

Conclusion

Intermittency is a quite common phenomenon in experimental turbulence. The
theory sketched in this paper is more especially related with the case of convection
in confined geometries [1] but intermittency is also well known in boundary layers
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and pipe flows [6] and even in 1/ / - noise theory [7]. Despite the different
meanings of the term "intermittency", the possibility remains that the kind of
dynamics described by the models we have studied could afford a qualitative
understanding of all these phenomena.
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