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Intermodal  Stability of a  Coupled-Cavity 
Semiconductor  Laser 

ROBERT J. LANG, STUDENT MEMBER, 

Abstract-We present an analysis of the steady-state operation of a 

two-element coupled-cavity laser near a mode hop. The equations of 

motion for the two cavities and two relevant modes of a longitudinally 

coupled-cavity laser are reduced to a system of nondimensional nonlin- 

ear ordinary differential equations which describe a general two-ele- 

ment laser. The equations are then solved and the stability zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof their 

solutions is analyzed. Depending upon the fill factors for the two modes, 

there exists an intrinsically multimode oscillation for operating con- 

ditions under which it was previously thought that no steady state ex- 

isted. Under conditions where the multimode state is unstable, both of 

the single-mode states are stable with bistable transitions occurring only 

on the boundaries of the unstable multimode regimes. 

I.  INTRODUCTION 

C OUPLED-CAVITY  lasers  have recently become  the 
subject  of  much  study  because of their potential for 

single-mode  operation  under  high-speed  current  operation 
[ l ] ,  [2]. In  addition,  they,  like  many  other  two-element 
lasers  [3],  have  been  shown to exhibit  bistable  behavior. 
Such  behavior  makes  them  suitable for digital optical read/ 
write  operations or candidates  for  elements of an  optical 
logic system [4].  Although  there  have  been  several anal- 
yses  of  longitudinally  coupled-cavity  lasers  (e.g.,  a  C3 
laser) at varying  levels of approximation [5]-[8] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, none  has 
treated  the  problems  associated  with  operation  near a 
mode  boundary.  Yet,  when  the  current supplied to  one of 
the  two  cavities is modulated,  crossing  a  mode  boundary 
is almost  inevitable [SI. Recently, in a  steady-state anal- 
ysis, Henry  and  Kazarinov  made the  claim that there  ex- 
isted regimes  of  operation  near  a  mode  boundary  where 
no steady-state  solutions  were  stable (although they  left 
open  the  question  of  what  happened  in  such  a  regime).  In 
this  paper,  we  analyze  the  behavior of  a  two-element  cou- 
pled-cavity laser  near  a  mode  boundary. Although  we 
choose  the specific geometry of a longitudinally coupled 
pair  of  cavities,  the  nondimensional  equations of motion 
are  equally  applicable  to  any  two-element  laser  (e.g.,  a 
laterally  coupled  cavity [9]). In  Section 11, we  give  a brief 
development  of  the  equations  of  motion  of  the  laser,  using 
a  slowly  varying  complex  frequency  approximation [lo]. 
In Section 111, we  expand  around  a  mode  hop in the  carrier 
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density plane  and  develop a set  of  nondimensional  equa- 
tions  which  describe the  dynamical  behavior  of  the  laser. 
We  solve  for  the  dc  solutions of the  equations  and  perform 
a stability analysis  upon  the  solutions.  We  show  that in 
all  regimes  of  operation,  there  exists at  least  one  stable 
solution,  and  sometimes  two;  we identify a sufficiency 
condition for  bistable  behavior,  and we solve  for  the  lines 
of instability on  which  a  bistable  transition occurs. In Sec- 
tion IV, we summarize  the  important results of  the  anal- 
ysis. 

11. EQUATIONS OF MOTION 

We  begin by deriving  the  eigenvalue  equation  for  the 
modes of a  longitudinally  coupled-cavity  laser  illustrated 
schematically  in  'Fig. 1. It  consists  of  two  cavities of 
length L1 and L2, separated  by  a small gap zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD. Although 
in actual  practice  one  would  control  the  currents zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj ,  andj2 
supplied to each  of  the  two  sections,  for  the  purposes  of 
analysis, it is  more  convenient  to  treat  the  carrier  densities 
nl and ' n2 as  free  parameters,  solve  for  the  lasing  fre- 
quency w ,  and  then' find the  currents  necessary to support 
that  operating point at  a  given  power  level.  We  choose 
our  time  factor  as e"'. Then  a  roundtrip  self-reproduction 
condition imposed  upon  the field in the  laser  yields  the 
secular  equation [5] 

exp [-y1@1) L ,  + 2jwPl(fil) Ldcl 

Rl - lI 

* L  R2 - l l  
exp [-y2(n2) L2 + 2jwP2(n*) L2/Cl zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

- K , = O  (1) 

where yi(ni) is  the  linear  gain  constant  for  the ith cavity, 
p j (n j )  is  the  index  of  refraction, Rj is  the reflectivity of  the 
outside  mirrors,  and K, is a  coupling  factor  which  char- 
acterizes  the  gap (taking into  account  the  length  and re- 
flectivity of the  mirrors  bounding  the  gap) [$]. Equation 
(1) can be  considered [lo] an  implicit  equation  for  com- 
plex o as  a  function  of  n1  and n2. For any fixed pair (nl, 
n2), there  exists  an infinite number  of  complex w solu- 
tions; each  solution  corresponds tQ a different spatial (lon- 
gitudinal) mode of the  structure.  We  are not interested in 
the phase  of  the  optical  field, so we  can  ignore the real 
part of w ,  but the  dynamics of the  power  depend  upon  the 
imaginary  part. The  time  evolution  of  the  average  photon 
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Fig. 1. Schematic of a longitudinally  coupled-cavity  laser. 
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Fig. 2. Plot  of  the  line  Im zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(w )  = 0 for  a  single  mode in the  carrier  density 
plane  (normalized to threshold  values  for  the  uncoupled  lasers)  for a laser 
with L ,  = 200 pm, L2 = 20 pm, D = 1.5 wavelengths. 

density zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp i  in the ith mode  obeys 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnj is the  carrier density in the  jth  cavity, rS is the 
spontaneous lifetime, and pq are coefficients representing 
the  fraction of spontaneous  emission  coupled  into  the op- 
tical field. For  a  single  mode,  the  line  determined  by  the 
requirement  Im (w)  = 0 (Fig. 2) corresponds  to  a  quasi- 
steady-state  mode  which  neither  grows  nor  decays in time 
(that is,  a  true  steady-state  mode).  For  Im (w)  < 0, the 
quasi-steady-state  mode  grows  without  limit,  and  for  Im 
(w )  > 0, it decays  to  zero.  When  spontaneous  emission 
[which  was not included  in (l)] is considered,  the  carrier 
densities  of  the  laser  are  clamped  just  to  the  left of the  Im 
(w )  = 0 line (in the  absence  of  spontaneous  emission, 
they are  clamped  onto  it). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

As we  said,  there  are  an infinite number  of  solutions  Im 
(w )  = 0 to (l), each  corresponding  to  a different longi- 
tudinal mode;  we plot a set of  them in Fig. 3. Consider  a 
point well to the  left  of  any of the  lines,  e.g., point A in 
Fig. 3 .  Then  Im (w )  > 0 for  all  the modes in the  set; any 
excitation will decay  away  and no lasing  state  exists  for 
that  pair of carrier  densities.  On  the  other  hand,  a point 
on the  curve’s  leftmost  boundary  (point B)  is on  the 
steady-state  curve  for  one  mode  and  in  the  Im (wj > 0 
region for  the  rest;  consequently, the one  mode will lase 
(and  since  Im (w )  = 0, neither  grow  nor  decay)  while  all 
others decay away. An  operating point at the  intersection 
of two  curves (point’c) could  conceivably  have  two  las- 
ing modes.  However,  a point to the right of  any  of the 
mode  curves  (point 0) does not corresond to a physically 
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Fig. 3 .  Plot  of  ten  modes in the  carrier  density  plane. 
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Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. Accessible  regions of the  carrier  density  plane.  Above-threshold, 
the  carrier  density  is  clamped onto the  threshold  carrier  density  line. 
Each  cusp  on  the  curve  indicates  a  mode  hop. 

realizable steady state.  It  is in the  Im (wj < 0 regime  for 
one  or  more  modes,  and those modes will thus grow  ex- 
ponentially without limit.  This region is, of course,  ac- 
cessible on a  transient basis-but  if one drives the  device 
into  the  Im (0) < 0 region for  a  particular  mode,  the 
optical  power in that mode will build up  over  time  and 
saturate  the gain back  down to a point somewhere on the 
lowest curve.  These arguments  justify  the division of the 
(n l ,  n2) plane  into regions below  and  above threshold as 
in Fig. 4. Between  any  two cusps,  the  curve  corresponds 
to the  Im ( w )  = 0 line of the  lowest lying mode.  The  cusps 
correspond  to  mode  hopping.  Above  lasing  threshold,  the 
carrier density is clamped  onto  the threshold line (al- 
though it is  free to shift  along  the  line). 

In  practice,  one  controls  the  currents supplied to the 
two  sections, not the  carrier  densities.  The question of 
multistability refers  to  the  existence  of multiple operating 
points (n, ,  n2) for  the  same  pump  current densities ( j , ,  
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j z ) .  We must also  consider the carrier  density  equqtions 

where q is the  electronic  charge, d is the  thickness  of  the 
active  layer, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgi(ni) is the  gain  constant,  and rq are fill 
factors defined by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

rij  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= (the proportion of optical power  of the 

jth mode in the ith cavity). 

In steady state,  we  can  write  this  equation  as 

Thus,  for  a given  operating point (nl, n2) and  a  given  set 
of  photon  densities p j ,  the  currents  are exactly deter- 
mined. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs we  have  ‘seen,  for  all  operating points well 
away  from  a  mode  boundary,  only  a  single  mode  lases, 
so we  can  set  the  photon  density  for that mode  equal to 
the  total  power  density  and set all  of  the  other  photon 
densities to 0. For ptot = 0, the  allowable  currents  are 
precisely equal to the  threshold  carrier  densities (with a 
scaling  factor  of qdh,), and  for ptot > 0, we  can  use (4) 
to replot the  carrier  density  curves at any  desired  power 
level. 

A modification  occurs  when we  are  at  a  cusp,  since two 
lasing  modes  are  possible.  Let  the  two  modes  have  power 
levels 

P1 = XPtot,  P2 = (1  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx) Ptot (5 )  

so that x is  the  relative  fraction  of  optical  power in mode 
1 ; then  the  current  relations can  be written as 

It  is  clear  from (6) that as x is varied from 0 to 1, the 
current  (and  mode)  changes  linearly  from  that of purely 
mode 1 to that  of purely mode 2. Hence,  as  we  increase 
the  power,  the  cusps  which  exist at threshold  move  out 
into  the  current  plane  and  become  straight  line  segments 
which join  the  single-mode  curves.  There  are  two  quali- 
tively different ways in which  this  situation manifests it- 
self, both  illustrated in Fig. 5 for  a  constant ptot (they usu- 
ally do not .occur  together; both are shown on the  same 
graph  for  illustrative  purposes  only).  The  line  segment 
labeled  “modes 1 & 2” is one of a  family  which fills the 
region of the  current  plane  claimed [5]  to possess  no  sta- 
ble solution.  The  segment  labeled  “modes 2 & 3” which 
completes  the  loop  shows  that multiple (in this case, three) 
steady-state  solutions  exist  (the  three  solutions at three 
different power  levels  for  the  same ( j l ,  j,) are  shown  ex- 
plicitly in Fig. 6). A steady-state  analysis  cannot  tell us 
anything  about  the  stability of such  states,  however.  In 
the  next section,  we  will  transform  the  equations of mo- 
tion near  the  mode hop to a  simple  system  of  nonlinear 
ordinary differential equations  which incorporate all of the 

J I  - 
Fig. 5 .  Schematic  of  constant  power  curves in the  current  plane  (arbitrary 

units).  The ptot = 0 curve  is  identical  to  the  threshold  gain  curve  in  the 
( n , ,  n2) plane  (within a scaling  factor).  The  straight  line  segments  joining 
the  curves for fixed pr<,r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 0 are  the  mixed  state  (two  simultaneously 
oscillating  modes). 

t 
J; 

Pig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 .  Illustration of a single  point  in  the  current  plane  which  possesses 
three  steady-state  solutions  at  different  power  levels  (multimode  at p , ,  
mode 2 at p2 ,  mode 3 at ps ) .  

relevant physics, yet allow  simple  analytic  solutions  and 
thus an  unmistakeable  interpretation of the  physics  of  the 
device. 

111. NONDIMENSIONAL EQUATIONS AND STABILITY 

The problem as  posed is strongly  nonlinear; in partic- 
ular,  the  variation of Im (aj) with ni must be analyzed 
numerically.  However,  we  can  put (2) and (3) in  nondi- 
mensional  form valid near  a  mode  boundary  which  carries 
all physical information  without  recourse to numerical 
techniques.  The results we  derive will be  applicable  to 
any  two-element laser  and not exclusively  to  a  longitudi- 
nally coupled-cavity  laser. 
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We  begin by putting (3) and (2) in  matrix  form: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
$ = f ip  + B N .  (8) 

The ith element of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN is {n i } ,  the  elements of 9 are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( j i ] ,  
the  elements of f are {I’q}2 the  elements of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW are 
{ 6, Im (q)} , the elements  of B are { Pi8 , /~ , } ,  and  the ele- 
ments  of P are { p i } .  We now transform  to the coordinate 
system &i illustrated in Fig.  7. If we linearize the mode 
lines about  the  mode  crossing,  then  there  exists  a  trans- 
formation  matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR such  that 

- - 

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfi = R(N - p ) )  (9) 

where the elements  of  are (n: ’)},  the  coordinates  of 
the  mode  crossing.  (Note that R is only  unique to within 
a constant scaling  matrix ($ g) with a ,  b > 0; this  ambi- 
guity does not affect the  analysis.)  To  lowest  order,  the 
system  of  matrix  equations  becomes 

$ = KMp + (1 1) 

where  the  elements of 2 are ( -2(81m(wi)/8mJ)}  and k is 
the  2 X 2  matrix  with  the  elements of fi on  the  diag- 
onal.  The  virtue of  choosing  the  axes (mi} is that (to the 
same  order  of  approximation  as  the linearization) I? is di- 
agonal.  It  is  also  important to note  that  with the  axes so 
defined,  det R > 0 (if the  axes  were  reversed,  the sign 
would  change).  Now,  we define dimensionless  variables 
by taking 

- 

t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE T,T, r is the new time variable (12a) 
- 

E Ez KM ( 12b) 

fi ~ f$&#(O)) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF 
8 3 BN(0) 

( 1 2 4  

W e )  

which  reduces (10) and (1 1) to  the  simple  system 
- E = f - E - E j J 3  

P = EF + D. (13) 

In component  form, 

e .  = i. - e .  - k . .  . 
1 1  SPJ (14) 

J 

p .  = e .  . + d. 
J I P J  J‘ (15) 

Equations (14) and (15) are  several  levels  removed  from 
the  original  system, so it is helpful to review the  terms  in 
each  equation  and identify them  with  a physical mecha- 
nism. {e i }  ’ are  carrier  densities, {ij} are  pump  currents, 

“(0) 
I “I- 

Fig. 7. Schematic  of  a  single  mode  crossing in the  carrier  density  plane 
(arbitrary  units). The  transformed  variables {m, }  are  measured  along  the 
two intersecting mode lines. 

( p i }  are  the  modal  power  densities, ( k q }  are  the fill fac- 
tors (the  proportion  of modej in carrier  pool i), and (d;} 
are  the  spontaneous  emission rates. Thus,  the three terms 
on  the right side  of (14) correspond  to  pump  current, 
spontaneous  emission,  and stimulated emission, respec- 
tively;  the  two  terms  on  the right of  (15)  are stimulated 
emission  and  spontaneous  emission,  respectively.  Exam- 
ination of (12d) reveals that det H is of the  same sign as 
det r (because  the  determinants  of  all of the intervening 
matrices is  positive).  This  is  indicative  of  the  fact that in 
transforming  from  the (n i }  representation to  the ( e i }  rep- 
resentation, we  “stretched” the axes, but did not flip them 
over.  Also,  we  note that the  spontaneous  emission rate is 
typically quite  small (Pi  = lop4) so that (dj}  are  also  of 
the  same  small  order. 

The  steady-state  solutions  of  (14)  and  (15)  are plotted 
in the  current  plane  for  a fixed ptot in Fig. 8 (subject to 
the physical constraint p i  I 0) .  The solutions in the  ab- 
sence  of  spontaneous  emission (di = 0) are apparent by 
inspection (one  virtue  of  the  dimensionless  system of 
equations).  They  are 

{ p l  = 0, e2 = 0,  e l  free 

or 

{ p 2  = 0,  el  = 0, e2 free 

or 

If we  include  spontaneous  emission  and define x as  the 
free  parameter  (restricted to x E [0, 1]), the  solutions  are 

Equation (17) is more  exact  than (16); however, the shape 
of the  curves is not as  obvious  from  the  equations. 
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(a) (b) 

Fig. 8. Steady-state  modes  in  the  transformed  current  plane  for fixed total 
output  power ptot zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. Dotted  lines  are  solutions in the  absence of spon- 
taneous  emission zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(d, = 0), solid  lines  are  solutions  including  sponta- 
neous  emission (d,  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd2 = 0.05). (a) h , ,  = hZ2 = 1, h , ~  = hzl  = 0.2,  
so det H zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 0. (b) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh,,  = hZ2 = I ,  h , ,  = h,, = 1.8, so det H 5 0. 

With  or  without  spontaneous  emission,  we still must 
prove  that  these  steady-state  solutions are  stable.  We  do 
this by performing  a  second  linearization of (14) and (15) 
and  determining  the  boundedness  of  the  response of the 
homogeneous  system to a  perturbation. 

giving 

These  can  be  put  into  matrix  form  as 

The  solution to (20) is bounded  only if all of the  eigen- 
values of the  square  matrix  have  nonpositive real parts. 
The  secular  equation  for  the  eigenvalue X is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(X + (X - el) (X - e21 + (X + 1) (X - e2) Plhll 

+ (X + 1) (X - el) p2h22 + p I 2  det H = 0. (21) 

We  shall first solve  for  the  case  with no spontaneous  emis- 
sion. 

Case  I-e2 = p I  = 0 (Only  Mode 2 Lasing): Equation 
(21) reduces to 

(X + 1) (X -- el) [X@ + 1) + p2hz2] = 0. (22) 

The roots are X = -1, X = e l ,  X = -(L 2) k [a - 
p2h22]”2, so the  solution is stable if e l  I 0. 

Case 11-el = p 2  = 0 (Only  Mode 1 Lasing): By 
switching  subscripts  we  see  that e2 I 0 is necessary for 
stability. 

1 

Case 111-e, = e2 = 0 (Multimode State): 

(X + U2X2 + (PlhllP2h22) + 1) 

+ p 1 p 2  det H = 0. (23) 

J I  - 
Fig. 9. Division  of  the  current  plane  into  regions  of  subthreshold  lasing, 

multimode  operation,  single-mode  operation,  and  bistable  operation. 
Lines  of  instability  on  which  bistable  transitions  take  place  are  indicated. 

Define x = X(X + 1). Then 

X = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-1 + [’ + x] 2 -  4 (24) 
1 12 

so x must  have  a  negative real part  for  stability.  The  equa- 
tion for x is 

x2 + (p lh l l  + p2h22) x + plp2 det H = 0. (25) 

From  inspection,  we  can  see  that x has  a  negative real part 
only if det H 2 0. In  Fig.  8, we have plotted represen- 
tative  cases in the (i l , i2) plane  for  the  two  possible  signs 
of det H .  Case I yields  the  vertical  dashed  lines,  Case I1 
yields horizontals,  and  Case I11 yields  the  diagonal  line; 
det H I 0 in Fig. 8(a) and  det H I 0 in Fig.  8(b).  Thus, 
the  multimode  state  (Case 111) is  stable in Fig.  8(a), while 
it is unstable in Fig.  8(b). All of  the  steady-state  solutions 
in Fig.  8  are labeled (S = stable, U = unstable) according 
to these rules.  While  one  can  work out the roots for  the 
case  including  spontaneous  emission  numerically,  there is 
no need; as  the  spontaneous  emission  goes to zero,  the 
solution lines and  the roots of (21) must  collapse  onto 
those of no  spontaneous  emission.  Therefore, the label- 
ings are valid for  the  curves which  include  spontaneous 
emission. 

One  important point is that the  portions  of  the  single- 
mode  curves in Fig.  8(b)  which  overlap  each  other  (and 
consequently yield multiple  solutions)  are  stable;  bistable 
transitions can  only  occur  at  their  endpoints  (where  they 
become  unstable).  Furthermore,  we  have  proven  the  sta- 
bility of the mixed  state  of Fig.  8(a).  It  remains to relate 
this  nondimensional  problem to the physical problem  with 
which we started.  This is accomplished by noting that  the 
point ( e l ,  e2) = (0, 0) is the  crossing of the  two  mode 
lines in Fig. 5. Since  (as  we  pointed  out  earlier)  det H and 
det r have  the  same  sign,  the  stability  criterion  for  the 
mixed  state is that  det L 0. The different states  and 
their  stability  are  summarized in Fig.  9.  The  current  plane 
will, in general,  divide  into regions of  single-mode  op- 
eration;  the  boundaries will either  consist of bimodal re- 



gions  (two  simultaneous  lasing modes) where det r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 0 
or bistable  regions  (two  possible  single-mode  states) 
where  det r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 0. This is contrary to  the assertions of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 5 ] .  
One final point  of  interest: the stable mixed state  [Fig. 
8(a)] is a multimode  state  that  persists  in the absence of 
spontaneous  emission. This  is  to  be contrasted  with  the 
more usual multimode  behavior  where the intensity of side 
modes  is  proportional  to the spontaneous  emission  rate. 
(It  should be pointed out that with insufficient selectivity 
between  modes,  any laser-including coupled cavity-will 
run multimode due to the spontaneous emission.) 

There  are several  features  of  this  behavior  which would 
be of interest from a systems  viewpoint.  Every point in 
the bimodal  region  corresponds  to the  same  set of carrier 
densities (el zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= e2 = O}. Therefore,  the  carrier density  is 
fixed, and so the gain  and  resonant  refractive  index are 
effectively clamped (which is not the case  in a single-mode 
region).  Consequently, if one  modulates the laser  entirely 
within the multimode  region,  there  is  no  direct  frequency 
modulation of either of the  two modes.  With the addition 
of a notch filter to  remove  one  of the two  modes  from the 
optical  output, the  device becomes a chirpless  modulator. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Also the response  time of a laser diode  is  dependent  upon 
the  total  optical  power  present. By modulating the  diode 
in  the bimodal  region, the optical  power  is  merely 
switched  from one  mode  to  another (as in a push-pull am- 
plifier); consequently,  even  though the amplitude of the 
desired  mode may approach zero,  the total power  present 
remains  constant  and the response  time  of the device re- 
mains short. 

On  the  other  hand, if the  cavity  were tuned such that 
det r I 0 at  the mode hop,  the device  possesses  electrical 
bistability and  the  inherent noise immunity associated with 
bistability.  Examination of (4) shows  that  an  external 
beam  of  light  impinging  upon  one of the cavities  shifts 
the  entire  set of tuning  curves up and  down (or side to 
side)  in the current plane.  Hence,  all-optical bistability is 
equally feasible. 

IV. CONCLUSIONS 

In  summary,  we  have  analyzed  the  steady-state  opera- 
tion of a two-element  coupled-cavity  semiconductor laser 
near a mode  boundary. We showed how the equations of 
motion for a specific system of a longitudinally  coupled- 
cavity laser can  be  reduced to a nondimensional  set of 
nonlinear differential equations  which  describe the behav- 

ior of a general  two-element  coupled-cavity  laser  near a 
mode  boundary. We showed that a multimode  state which 
was previously unexplained  exists  whenever the  deter- 
minant of the matrix of fill-factor coefficients is nonzero. 
The multimode  state  varies  continuously  between  the  two 
involved single modes  regardless  of the level of sponta- 
neous emission. 

If the determinant  is  greater  than zero, the  multimode 
state  is  stable.  Otherwise, it is  unstable, but there are  two 
stable  single-mode  states. Bistable transitions occur on  the 
boundaries of the  unstable  multimode state. Large  bista- 
bilities are desirable  from the point  of  optical  storage  and 
hysteretic devices; consequently, the relation between the 
bistable region and the size of  the determinant of the fill- 
factor  matrix is a useful design  criterion for such devices. 

REFERENCES 
[ l ]   W.  T. Tsang  and N. A.  Olsson,  “High  speed  direct  single-frequency 

modulation with large  tuning  rate  and  frequency  excursion in cleaved- 
coupled-cavity  semiconductor  lasers,” Appl. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPhys. Lett., vol.  42,  pp. 
650-652,  1983. 

[2j  K. J .  Ebeling,  L. A.  Coldren,  B. I. Miller,  and J. A.  Rentschler, 
“Single-mode  operation  of  coupled-cavity  GaInAsP/InP  serniconduc- 
tor  lasers,” Appl. Phys. Letr., vol.  42,  pp.  6-8,  1983. 

[3] I. H.  White, J.  E. Carroll,  and R. G.  Plumb,  “Closely  coupled  twin- 
stripe  lasers,” Proc.  IEE, vol.  129.  pp.  291-293,  1982. 

[4]  Ch.  Harder,  K. Y. Lau,  and  A.  Yariv,  “Bistability  and  negative re- 
sistance in semiconductor  lasers,” zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAppl. Phys. Lett., vol.  40,  pp. 

[5] C.  H. Henry  and R. F.  Kazarinov,  “Stabilization of single  frequency 
operation  of  coupled  cavity  lasers,” IEEE J .  Quantum  Electron., vol. 
QE-20,pp.  733-744,  1984. 

[6] D. Marcuse  and  T.-P.  Lee,  “Rate  equation  model  of  a  coupled-cavity 
laser,” IEEE J .  Quantum  Electron., vol.  QE-20,  pp.  166-176,  1984. 

[7j  K. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ. Ebeling  and  L.  A.  Coldren,  “Analysis of multielement  semi- 
conductor  lasers,” J .  Appl. Phys.. vol.  54,  pp.  2962-2969,  1983. 

[8] W.  Streifer, D. Yevick,  T.  L.  Paoli,  and R .  D. Burnham,  “An  anal- 
ysis  of  cleaved  coupled-cavity  lasers,” IEEE J .  Quantum  Electron., 
vol.  QE-20,  pp.  754-764,  1984. 

[9j J. Salzman, R. J .  Lang,  and  A.  Yariv,  “Laterally  coupled  cavity 
semiconductor  laser,” Appl. Phys. Lett., vol.  47,  pp.  195-197,  1985. 

[lo] R. J. Lang  and  A.  Yariv,  “Analysis  of  the  dynamic  response  of mul- 
tielement  semiconductor  lasers,” IEEE J .  Quantum  Electron., vol. 

124-126,  1982. 

QE-21,  pp.  1683-1688,  1985. 

Robert J. Lang (S’83),  for  a  photograph  and  biography, see p. 448 of the 
March  1986  issue  of  this JOURKAL. 

Amnon  Yariv (S’56-M’59-F’70),  for  a  photograph  and  biography,  see p.  
448  of  the  March  1986  issue  of  this JOURNAL.  

636 IEEE JOURNAL OF QUANTUM ELECTRONICS,  VOL. QE-22, NO. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 ,  MAY 1986 


