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Abstract  

Radiative feedbacks depend on the spatial patterns of sea-surface temperature (SST) and thus 

can change over time as SST patterns evolve – the so-called ‘pattern effect’. This study investigates 

inter-model differences in the magnitude of the pattern effect and how these differences contribute 

to the spread in the effective equilibrium climate sensitivity (ECS) within CMIP5 and CMIP6 

models. Effective ECS from abrupt4xCO2 simulations is on average 10% higher than that inferred 

from historical energy budget in CMIP5, this difference is reduced to 7% on average in CMIP6, 

but still with a wide range across models. The (negative) net radiative feedback weakens over the 

course of the abrupt4xCO2 simulations in the vast majority of CMIP5 and CMIP6 models, but this 

weakening is less dramatic on average in CMIP6. For both ensembles, the total variance in the 

effective ECS is found to be dominated by the spread in radiative response on fast timescales, 

rather than the spread in feedback evolution over time. Using Green’s functions derived from two 

AGCMs shows that the spread in feedbacks on fast timescales may be primarily determined by 

atmospheric model physics, whereas the spread in feedback evolution towards longer timescales 

is primarily governed by evolving SST patterns. Inter-model spread in feedback evolution is well 

explained by differences in the relative warming in the West Pacific warm-pool regions for the 

CMIP5 models, but this relation fails to explain differences across the CMIP6 models, suggesting 

that stronger sensitivity of extratropical clouds to surface warming may also contribute to feedback 

changes in CMIP6 models.  
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1. Introduction. 

 

        Uncertainty in estimates of equilibrium climate sensitivity (ECS) – the equilibrium surface 

temperature change in response to a doubling of CO2 above pre-industrial levels – has long been 

linked to uncertainty in the radiative feedbacks (l), which govern the efficiency with which the 

climate system radiates energy to space per degree of surface warming. The strength of l is 

intrinsically set by black-body radiation, which is further modulated by radiative feedbacks 

associated with changes in atmospheric lapse rate, water vapor, surface albedo, and clouds. Among 

these, the cloud feedback has been found to be the primary source of ECS uncertainty (Webb et al. 

2006; Soden and Held 2006; Dufresne and Bony 2008; Webb et al. 2013; Caldwell et al. 2016; 

Zelinka et al. 2016; Ceppi et al. 2017; Stevens et al. 2017; Caldwell et al. 2018; Zelinka et al. 

2020). The low-cloud feedback is particularly uncertain (Bony and Dufresne 2005; Webb et al. 

2006; Webb et al. 2015; Ceppi et al. 2017), leading to tremendous efforts in the community to 

constrain it (Bony et al. 2006). 

 

        Within global climate models (GCMs), ECS is often estimated based on a standard linear 

framework for global energy balance: 

𝑁 = 𝐹 + 𝜆𝑇,																																																																						(1) 

ECS = 	𝑇/0 =	−𝐹2´/𝜆/0	,																																																					(2) 

where F is the effective radiative forcing (with F2x representing forcing from CO2 doubling), and 

where the subscript eq denotes the equilibrium state when N approaches zero. All variables 

represent global-mean anomalies with respect to a pre-industrial state. A useful method to derive 

l and ECS from simulations of abrupt CO2 doubling or quadrupling is proposed by Gregory et al. 

2004, by regressing net TOA radiation imbalance (N) against surface-air-temperature change (T) 

(hereafter referred to as ‘Gregory N-T regression’, with the graphical illustration of this regression 

referred to as a ‘Gregory plot’). This method has been widely used to provide estimates of l 

(regression slope), F2x (from the y-axis intercept), and ECS (from the x-axis intercept), but is only 

valid under the assumption that l is constant over time, i.e., l = leq at any given time. This general 

assumption may be violated for several reasons. For example, a discrepancy between l and leq 

may arise from nonlinear state-dependence of some feedbacks on global-mean or local temperature 

(e.g., Block and Mauritsen, 2013; Andrews et al. 2014; Bloch-Johnson et al. 2016). For instance, 

sea-ice albedo feedback will become less-positive as the amount of sea ice decreases with warming 

(Goosse et al. 2018) while the water vapor feedback (Meraner et al. 2013) or cloud feedback 

(Caballero and Huber 2013) may both become more positive with warming. Most importantly, the 

majority of GCMs in Coupled Model Intercomparison Project phases 5 and 6 (CMIP5 and CMIP6) 

exhibit a weakening of the negative net feedback as time evolves after CO2 forcing is imposed, 

shown as the curvature in the Gregory N-T regression (Andrews et al. 2015; Armour 2017; 

Proistosescu and Huybers 2017; Lewis and Curry 2018). This time-dependence of l has been 

found to arise primarily from its dependence on the spatial pattern of sea-surface temperature 

(SST), which itself can evolve over time (Armour et al. 2013; Zhou et al. 2016; Haugstad et al. 

2017; Ceppi and Gregory 2017; Andrews et al. 2018; Dong et al. 2019) – the so-called ‘pattern 

effect’ (Stevens et al. 2016). An important implication is that the climate sensitivity inferred from 

the historical energy budget is biased low compared to the climate sensitivity estimated over longer 

timescales under CO2 forcing due to the evolution of surface warming patterns (Armour 2017; 

Proistosescu and Huybers 2017; Andrews et al. 2018; Marvel et al. 2018; Dong et al. 2019; 

Gregory et al. 2019; Rugenstein et al. 2019). What is less-well understood, however, is what sets 
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the magnitude of the pattern effect, as illustrated by the large inter-model spread in the degree of 

feedback curvature in the Gregory regression (Andrews et al. 2015; Armour 2017; Ceppi and 

Gregory 2017). Moreover, the contribution of model spread in feedback curvature to the model 

spread in ECS estimates has not yet been quantified. This work addresses these two key issues in 

both CMIP5 and CMIP6 models. 

 

        We first present an overview of net feedbacks in CMIP5 and CMIP6 models by showing the 

Gregory N-T regression for the 150-yr-long simulations of abrupt CO2 quadrupling (hereafter 

abrupt4´CO2) (Fig. 1). Following Andrews et al. (2015), we calculate radiative feedbacks based 

on regression over a fast time-scale (years 1-20) and over a slow time-scale (years 21-150), noted 

hereafter as l1-20 and l21-150, respectively. We calculate values of N and T in each model with 

respect to their pre-industrial control simulations (piControl) after accounting for drift by 

subtracting the linear regression of piControl values over time segment corresponding to the 

abrupt4´CO2 simulation (following Forster et al. 2013 and Armour 2017). All of the anomalies 

used in this study are annual-mean quantities. Note that we use year 20 to separate the fast response 

on decadal timescales from the slow response on centennial timescales, following many existing 

studies, but results are insensitive to the year chosen (Andrews et al. 2015). ECS estimated using 

the regression method over the course of abrupt4´CO2 simulations is often referred to as the 

effective climate sensitivity (Andrews et al. 2015; Andrews and Webb 2017; Andrews et al. 2018; 

Gregory et al. 2019), as it presumably differs from the true ECS of the Earth system that would be 

found by equilibrating over multiple millennia (Rugenstein et al. 2019). In this study, we use 

several measures of the effective ECS derived from extrapolation of the Gregory N-T regressions 

to the x-axis (divided by two to account for CO2 quadrupling) and distinguish them with a subscript 

denoting the years over which the regression was performed. Specifically, we use ECS1-20, ECS21-

150 and ECS1-150, corresponding to values derived from the regressions over years 1-20, years 21-

150, and years 1-150, respectively. Of these three, ECS21-150 provides the most accurate estimate 

of the true ECS in 8 GCMs analyzed by Rugenstein et al. (2019), so we will make this 

approximation and refer the effective ECS of each model to their ECS21-150 values here.  

 

        Fig.1 shows that for both CMIP5 and CMIP6, the ensemble-mean (negative) net feedback 

weakens towards the longer timescales. That is, there is a positive change in the (negative) net 

feedback (Dl = l21-150 - l1-20 > 0) across 23 of 24 CMIP5 models and 26 of 29 CMIP6 models, 

indicating that ECS1-20 is nearly always smaller than ECS21-150 in both CMIP5 and CMIP6. 

Comparing the two ensembles, we find that ECS1-20 and ECS21-150 on average are higher in CMIP6 

relative to CMIP5, although they have larger variance in CMIP6 (Fig. 1; Tables 2, 3). Several up-

to-date studies of individual CMIP6 models (Gettelman et al. 2019 for CESM2, Golaz et al. 2019 

for E3SM; Sellar et al. 2019 for UKESM1; Bodas-Salcedo et al. 2019 for HadGEM3; Andrews et 

al. 2019 for HadGEM3-GC3.1 and UKESM1) report that the higher values of ECS in their models 

are largely due to stronger positive cloud feedbacks, which is recently confirmed to be a common 

feature in the whole CMIP6 ensemble by Zelinka et al. (2020). Here, by quantifying l on different 

timescales, we find that both l1-20 (feedback strength on the fast timescale) and Dl (feedback 

change over time) are, on average, different in CMIP6 relative to CMIP5 (Fig. 1). Key questions 

are: (i) how do l1-20 and Dl contribute to the spread in ECS across models and between CMIP5 

and CMIP6 ensembles, (ii) what causes the differences in Dl across models and between CMIP5 

and CMIP6 ensembles, and (iii) what physical mechanisms govern l1-20 and Dl? 
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Motivated by the three questions, we assess the effective ECS, l1-20 and Dl within 24 CMIP5 

models and 29 CMIP6 models (summarized in Table 1). In section 2, we investigate the source of 

model spread in the effective ECS relating the radiative response on fast timescale and the pattern 

effect on slow timescale, and also estimate the ECS bias relative to historical estimates in both 

ensembles. In section 3, we compare the ensemble-mean Dl in the CMIP5 and CMIP6 models. In 

section 4, we investigate the inter-model spread in l1-20 and Dl separately, and track down the key 

regions of the pattern effect that are most responsible for driving the spread in Dl across the CMIP5 

and CMIP6 models.  

 

2. The contribution of the pattern effect to the variance of ECS estimates.  

 

Fig. 1d shows that Dl is on average smaller in CMIP6 models (0.4 Wm
-2

K
-1

) than in CMIP5 

models (0.53 Wm
-2

K
-1

), despite the fact that ECS21-150 is on average higher in CMIP6 (Fig.1f) 

(corresponding to an overall less-negative l). That is, higher CMIP6-mean effective ECS is not 

coming from a stronger pattern effect (it is weaker, in fact), but presumbably from less-negative 

feedbacks on the fast timescale and stronger radiative forcing (Zelinka et al. 2020). However, there 

remains the possibility that inter-model spread in Dl may contribute to the spread in effective ECS. 

Therefore, we first estimate the degree to which Dl affects the spread in ECS21-150 across models 

(section a). Then we use abrupt4´CO2 simulations as an analog for historical warming (following 

Lewis and Curry 2018) to estimate the degree to which the pattern effect causes historical estimates 

of effective ECS to be biased low relative to ECS21-150 (or ECS1-150) in CMIP5 and CMIP6 models 

(section b).  

 

a. Correlation between ECS21-150 and ECS1-20  

 

Previous studies (Dufresne and Bony 2008; Caldwell et al. 2016) partitioning ECS into 

components associated with radiative feedbacks and radiative forcing have identified feedbacks as 

the dominant source of the ECS spread across models. To estimate the relative roles of l1-20 and 

Dl in setting ECS, we evaluate the correlation between ECS21-150 and ECS1-20. Without any pattern 

effect induced variance, ECS21-150 and ECS1-20 would be highly correlated.  

 

The correlation (r
2
) between ECS21-150 and ECS1-20 is 0.69 in CMIP5 and 0.70 in CMIP6, 

respectively; both correlations are statistically significant at 95% confidence level. This indicates 

that the total variance of ECS21-150 can be primarily explained by the spread in the radiative 

response on fast timescales, even without considering the feedback evolution due to the pattern 

effect. The degree to which feedbacks change over time (Dl) thus explains, at most, 30% of the 

total variance in ECS in both model ensembles, given the fact that l1-20 and Dl are weakly 

correlated (r
2
 = 0.3 for CMIP5 and r

2
 = 0.2 for CMIP6).  

 

These results suggest that the differences in feedback evolution on longer timescales contribute 

much less to the spread in ECS21-150 than do the differences in feedbacks on the fast timescales, 

even though this measure of ECS here is based on the latter period of the abrupt4xCO2 simulations 

(years 21-150). However, it is worth noting that in both ensemble-means and individual models, 

Dl is generally positive (23 of 24 CMIP5 models and 26 of 29 CMIP6 models), therefore the 

ECS21-150 is nearly always greater than that derived from early portion of the simulation (ECS1-20). 
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Thus, while l1-20 is the major driver of variance in ECS, ignoring Dl and using an assumption of 

time-invariant feedbacks would lead to a low bias in the estimates of the true ECS (as estimated 

here by ECS21-150).  

 

b. ECS-to-ECShist ratio 

 

As many studies have revealed, the value of ECS estimated from historical energy budget 

constraints is biased low based on the behavior of fully-coupled and atmosphere-only GCM 

simulations (Armour 2017; Proistosescu and Huybers 2017; Andrews et al. 2018; Lewis and Curry 

2018; Marvel et al. 2018; Gregory et al. 2019). Multiple factors have contributed to the spatial 

pattern of warming, and thus the pattern effect, over the historical period, including the inherent 

timescales of ocean adjustment to radiative forcings (e.g. Marvel et al. 2016; Armour 2017; 

Proistosescu and Huybers 2017) as well as unforced internal climate variability (e.g., Andrews et 

al. 2018; Marvel et al. 2018). The distinction between forced and unforced pattern effects is further 

discussed in Dessler et al. (2020). In this section, we consider how the forced pattern effect may 

bias values of ECS inferred from historical warming based on the behavior of the CMIP5 and 

CMIP6 models’ response to CO2 forcing.  

 

Following Armour (2017) and Andrews et al. (2018), we rewrite Eq. (2) as 

ECS = 	−
𝐹2´

𝜆/0
= −

𝐹2´

𝜆5678 + 𝜆
9
.																																																							(3)	 

where lhist is the feedback parameter estimated from historical energy budget constraints, l¢ is the 

change in feedback at the equilibrium state relative to the historical period. Using lhist based on 

historical observations, one can make an estimate of climate sensitivity (termed ECShist herein): 

ECS5678 =	−
𝐹2´

𝜆<=>?
	,																																																																				(4) 

which will underestimate the value of ECS if l¢ > 0. Note that while l¢ is expected to have the 

same sign of Dl (positive in most GCMs), their magnitudes will be different. Dl is defined as the 

change in feedbacks between the first 20 years and the last 130 years of abrupt4xCO2 simulations, 

whereas l¢ is defined in terms of how feedbacks will change from historical warming to 

equilibrium warming under CO2 forcing.  

 

        Armour (2017) (hereafter A17) and Lewis and Curry (2018) (hereafter LC18) proposed a 

ratio of ECS to ECShist (hereafter “ECS-to-ECShist ratio”) to quantify the bias in ECS estimates, 

and reported the CMIP5-mean ECS-to-ECShist ratio as 1.095 (LC18) or 1.26 (A17). The difference 

between their estimates is attributed to the differences in the method and timescale of regression 

used and differences in assumptions about how CO2 forcing scales with CO2 concentration (LC18).  

Here we follow LC18 to calculate the ECS-to-ECShist ratio in CMIP6 model using abrupt4xCO2 

experiments. Specifically, we obtain ECShist by regressing N against T over years 2-50 of each 

model’s abrupt4xCO2 simulation, which is shown to be an effective analog for historical warming 

by LC18. We also calculate F2x by scaling the y-axis intercept of the regression of N against T over 

years 2-10. ECS here is estimated from the regression of N against T over years 21-150 (equal to 

ECS21-150), which is the same period used in both A17 and LC18, but using Deming regression to 

be consistent with LC18. For comparison, we also provide the results using a more conventional 

estimate of ECS derived from the N-T regression over years 1-150 (ECS21-150; shown in parenthesis 

in Table 4).  
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The results of individual CMIP6 models and ensemble-means are shown in Table 4. The 

pattern-effect induced feedback evolution from the historical period to equilibrium (l¢) is on 

average weaker in CMIP6 (0.06 Wm
-2

K
-1

) relative to CMIP5 (0.092 Wm
-2

K
-1

), so that the model 

produced ECS bias relative to the historical estimates (ECS-to-ECShist ratio) is also reduced in 

CMIP6 ensemble-mean (6%) compared to CMIP5 ensemble-mean (9.5%; consistent with LC18). 

This suggests that the latest generation of GCMs produce an overall smaller ECS-to-ECShist ratio, 

consistent with results above that the pattern effect is slightly smaller in the abrupt4xCO2 

simulations. However, there remains a large spread across CMIP6 models: l¢ varies from 0.3 Wm
-

2
K

-1
 to -0.23 Wm

-2
K

-1
, corresponding to ECS values that are 40% higher to 12% lower than ECShist. 

 

We note an important caveat of this analysis regarding the calculation of ECShist. There are 

several ways to estimate ECShist from GCM simulations. Using abrupt4xCO2 simulations (e.g. 

LC18; this study) or 1pctCO2 experiments (A17; LC18) provides a useful estimate of ECShist from 

historical coupled runs, but is not a perfect analog. Several recent studies instead use coupled 

historical simulations, where all historical radiative forcing agents and an unforced pattern effect 

are included (Marvel et al. 2016: Gregory et al. 2019; Andrews et al. 2019). In general, including 

realistic time-evolution of both CO2 and non-CO2 forcings may produce different values of ECShist 

than that estimated from idealized abrupt4xCO2 simulations. For example, Andrews et al. (2019) 

found that ECShist within historical simulations of HadGEM3-GC3.1-LL is 4.7K, with a ECS-to-

ECShist ratio of 1.21. For comparison, using HadGEM3-GC3.1-LL’s abrupt4xCO2 simulation, our 

calculation gives an ECShist of 5.2 K, and an ECS-to-ECShist ratio of 1.08 (Table 4), suggesting that 

the values reported here may underestimate the historical pattern effect. However, as our main 

focus is to compare CMIP5 and CMIP6 ensembles rather than providing the most accurate 

estimates for each model, this analysis provides valuable information on the difference in pattern 

effect between the two ensembles. Future work employing simulations of Radiative Forcing Model 

Intercomparion Project (RFMIP; Pincus et al. 2016) to accurately quantify radiative feedbacks in 

the historical simulations of CMIP6 models is needed to shed light on this in greater detail.  

 

3. The consistency and difference in ensemble-mean Dl between CMIP5 and CMIP6  

 

Even though Dl does not contribute as much as l1-20 to the inter-model spread in ECS, it 

substantially affects ECS estimates for both CMIP5-mean and CMIP6-mean projections 

(comparing ECS1-20 to ECS21-150 in Fig.1 e, f). In this section, we first compare the global-mean 

Dl and its individual components partitioned by radiative kernels. We then show the spatial 

patterns of ensemble-mean local Dl from CMIP5 and CMIP6 models. We also provide a 

comparison of SST patterns to aid in uncovering the causes of ensemble differences.  

 

Fig. 2 shows global-mean net Dl and its individual components associated with changes in 

atmospheric temperature, water vapor, lapse rate, surface albedo and clouds, estimated using 

radiative kernels (Huang et al. 2017) as described in Zelinka et al. (2020). We calculate the cloud 

feedback using radiative kernels by removing cloud masking effects from the temperature-

mediated change in net cloud radiative effect. An overall consistency between CMIP5 and CMIP6 

is found in the fact that the dominant contribution to the ensemble-mean Dl comes from the net 

cloud component (DlCLD), followed by the sum of lapse rate (DlLR) and water vapor (DlWV) 

components. Both CMIP5 and CMIP6 have a large spread in the net Dl, primarily owing to the 
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spread in DlCLD. However, the (positive) ensemble-mean net Dl is slightly smaller in CMIP6, 

primarily due to a smaller surface-albedo feedback change (DlALB), particularly from the Northern 

Hemisphere (NH).  

 

We next show the spatial patterns of ensemble-mean local feedbacks for the CMIP5 and 

CMIP6 models (Figs 3, 4). The feedback patterns are first calculated for each model by regressing 

the corresponding local N against global-mean T over the two separate time periods, and then 

averaging across models. The patterns of local contributions to the net feedback change are 

qualitatively consistent between the two ensemble-means (Figs 3, 4, the first row). That is, the 

positive changes in the net feedback primarily come from the tropical eastern Pacific. This is a 

region where cool SSTs and a strong capping inversion promote ubiquitous low clouds in the 

climatology. Because warmer surface temperatures and weaker low-level stability in this region 

both reduce low cloud cover, delayed warming in this region will yield a less-negative feedback 

during the approach toward equilibrium (Zhou et al. 2016; Ceppi and Gregory 2017). Indeed, 

among all individual components, cloud feedback and lapse-rate feedback contribute the most to 

the positive change in the net feedback over this region in both CMIP5 and CMIP6. The major 

difference between the two ensembles lies in the Arctic (Fig. 4b), where positive surface-albedo 

feedback strengthens with time in the CMIP5 models (Fig. 3 bottom row) but weakens over time 

in the CMIP6 models (Fig. 4a bottom row), consistent with the regional attribution results in Fig. 

2.  

 

The difference in the surface-albedo feedback, which arises from local sea-ice and/or snow 

melting, is closely associated with the difference in local temperature changes. We show the SST 

warming patterns on the fast and slow timescales for CMIP5 and CMIP6 in Fig. 5 (computed as 

regression slope of local SST change against global-mean SST change). In CMIP6, the relative 

warming in the Arctic over the first 20 years is stronger than that in CMIP5 (Fig. 5c), but becomes 

weaker over the following decades (Fig. 5f). That is, the CMIP6 multi-model mean exhibits a 

stronger inter-hemispheric asymmetry in the warming pattern (Fig. 5i), which features rapid 

warming in the Arctic and NH midlatitudes on fast timescales and delayed warming in the 

Southern Ocean and southern eastern Pacific on longer timescales (Fig. 5h). As a result, although 

the (positive) surface-albedo feedback strengthens with time over the Southern Ocean leading to a 

positive DlALB in both CMIP5 and CMIP6 (Figs, 2, 3, 4), the change in the Arctic warming rate 

yields a weakening of surface-albedo feedback (i.e. negative DlALB) within CMIP6 models (Fig. 

2, Fig. 4a bottom row). This negative DlALB thus compensates the global-mean DlALB (Fig. 2), 

causing an overall smaller Dl in CMIP6 models.  

 

4. The source of the inter-model spread in Dl across CMIP5 and CMIP6  

 

We next move away from the multi-model mean perspective, to consider why individual 

models have different values of Dl. We find it conceptually helpful to consider that radiative 

feedbacks and their changes may be influenced by both atmospheric model physics and SST 

patterns. To separate the two factors, we make use of radiative feedback ‘Green’s functions’ (Zhou 

et al. 2017; Dong et al. 2019), which will be introduced in section a. In section b and section c, we 

investigate the major source of the inter-model spread in Dl across the CMIP5 and CMIP6 models, 

respectively.  
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a. Green’s functions  

 

To separate the effect of SST patterns and the effect of model physics, we use radiative 

feedback Green’s functions, as they predict the radiative response based solely on SST anomaly 

patterns, given the atmospheric physics of the parent model from which they were derived. The 

basis of a Green’s function is a Jacobian matrix, representing the sensitivity of any regional 

response to regional SST anomalies, which consists of both local and nonlocal effects of changes 

in SST. The full Jacobian is calculated from a series of prescribed-SST simulations within an 

AGCM, each with a single patch of SST anomalies on the top of climatological SSTs. Then, 

convolving the Jacobian with a global SST anomaly pattern can predict the global response to the 

given SST pattern, based on the assumption of spatial linearity, which has been shown to be a good 

approximation (Zhou et al. 2017; Dong et al. 2019). Hence, applying the Green’s functions linearly 

separates the differences in SST patterns and the differences in the sensitivity of radiative 

feedbacks on SST patterns.  

 

Here we employ two Green’s functions: one derived from the Community Atmosphere Model 

version 5 (CAM5) by Zhou et al. (2017), and one derived from CAM4 by Dong et al. (2019). The 

major difference between CAM4 and CAM5 Green’s functions lies in the representation of cloud 

properties within the two models, which are reported to be more realistic in CAM5 (Kay et al. 

2012), although both models exhibit large biases in the subtropical marine boundary layer cloud 

regimes. Throughout this study, we use their 2-dimensional global-mean Jacobians (denoted as 𝒥B, 

the sensitivity of a global-mean response X to each grid of SST anomalies), for computational 

efficiency as our focus is on global-mean quantities. To compute feedback parameters from the 

Green’s functions, we first reconstruct annual global-mean net TOA radiative response (R) and 

surface air temperature response (T) by convolving the Green’s functions 𝒥B with each model’s 

annual-mean global SST anomalies (SST(r)), 

𝑋 = 	𝒥B ∙ 𝑆𝑆𝑇(𝒓),																																																																	(5) 

where X can be any response (e.g. R, T), r denotes global pattern of SST anomalies. Then l1, l2, 

and Dl are calculated following the same regressions used to process model outputs. Note that the 

Green’s function can only predict TOA radiative response R (= lT), which is different to the net 

TOA radiation imbalance (N) in fully-coupled GCMs, because the latter includes the effective 

radiative forcing of CO2 quadrupling F4´: N = F4´ + R. Indeed, the effective radiative forcing also 

varies slightly across models; but it is abruptly imposed and held constant over time. Therefore, 

while radiative forcing matters for ECS itself, its absence does not cause any inconsistency in the 

estimates of feedbacks (defined as the regression slope in Gregory plots) between Green’s 

functions and the GCM simulations.   

 

b. Inter-model spread in Dl across CMIP5 models 

 

We first show the comparison of feedbacks from CMIP5 GCMs and those reconstructed by 

the CAM4/CAM5 Green’s functions (Fig. 6). Both Green’s functions poorly capture l1-20 but 

approximately reproduce GCM values of Dl, suggesting that l1-20 and Dl are governed by 

different processes. The failure of the Green’s functions in reconstructing l1-20 may come from 

several factors, for example, the Green’s functions fail to account for the radiative response to land 

warming which emerges generally on fast timescales. However, we favor the interpretation that 

the spread in l1-20 is primarily determined by each model’s atmospheric physics (e.g., cloud 
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parameterizations). Therefore, the radiative responses from each model cannot be captured by 

Green’s functions derived from either CAM4 or CAM5, which have distinct atmospheric physics. 

On the other hand, the fact that both Green’s functions more accurately reproduce Dl, even though 

they are built from different models, suggests that the spread in Dl arises primarily from the 

changes in SST patterns and is largely insensitive to model physics. 

 

We next investigate what regions of SSTs drive the inter-model spread in Dl across the CMIP5 

models. Previous studies have pointed out the importance of tropical warming through changing 

cloud and lapse-rate feedbacks. Zhou et al. (2016) proposed the role of the tropical eastern Pacific, 

where relative cooling in recent decades is thought to be responsible for driving an increase in 

local low cloud and a more-negative cloud feedback. Andrews and Webb (2017) further 

established a mechanism associated with east-west tropical Pacific SST gradient that governs the 

change in tropospheric stability, and therefore the change in low clouds and lapse rate. Silvers et 

al. (2018) highlighted changes in low clouds throughout the tropics beyond the traditional 

stratocumulus regimes in driving decadal variability of feedbacks over the historical period. 

Recently, Dong et al. (2019) proposed that Dl tracks the ratio of warming in the West Pacific 

warm-pool (WP) regions relative to warming in the rest of global ocean areas (g). Here we test this 

mechanism by examining the correlation of Dl against the proposed WP warming ratio change 

(Dg) across models.  

 

To calculate Dg  for all CMIP5 and CMIP6 models, we define WP regions in this study as grid 

cells within 30°S – 30°N, 30°E – 160°W that have an upward vertical velocity at 500hPa (w500) in 

the piControl simulation. Unlike the fixed rectangular area in the west Pacific used in Dong et al. 

(2019), this updated metric takes into account mean-state biases, ensuring that in each model the 

WP regions capture the radiative responses in regions of deep convection. Note that results using 

the fixed region in Dong et al. (2019) are similar to those shown here. We also simplify g to be the 

WP SST warming relative to global-mean surface air temperature changes, calculated as the 

regression slope of the averaged SST over the selected WP regions against global-mean T, over the 

two time periods used throughout this study (years 1-20 for g1-20, years 21-150 for g21-150, and Dg 

=g21-150 -g1-20).  

 

Fig. 7a shows that Dl is well correlated with Dg for CMIP5 models (with r
2
 = 0.63). Although 

many approximations are made in the derivation (Dong et al. 2019), the simple metric Dg, which 

includes no information about radiative response, explains over 60% of the variance in CMIP5 Dl. 

The physical mechanism, as discussed in Dong et al. (2019), is the preeminent impact of WP 

warming on global TOA radiation change via deep convection. Over the WP regions, where the 

surface is tightly coupled to the free troposphere by deep convection, surface warming directly 

enhances upper tropospheric warming. This leads to a stronger negative lapse-rate feedback and a 

more-negative cloud feedback over low-cloud regions caused by increased lower tropospheric 

stability, which together promotes a more efficient radiative damping at TOA. On the other hand, 

the weaker coupling between surface and upper troposphere in all other regions results in a weak 

TOA radiation response to surface warming. This leads to a weaker negative lapse-rate feedback, 

and a more-positive low-cloud feedback, hence, resulting in an inefficient radiative damping (see 

Dong et al. 2019, Figs. 4, 5). The key importance of warm pool warming for TOA radiation 
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changes is also supported by observational evidence (Zhou et al. 2016; Ceppi and Gregory 2017; 

Fueglistaler 2019). 

 

To further demonstrate the proposed mechanism, we select three representative models that 

have large positive Dl (GISS-E2-R), small positive Dl (IPSL-CM5B-LR), and small negative Dl 

(CNRM-CM5), respectively. Dl is demonstrated as the degree of nonlinearity in the Gregory plots 

for each model (Figs 8 a-c). We then show their SST warming patterns defined as local SST 

changes regressed against global-mean SST changes, denoted by SST* (Figs 8 d-l). In this context, 

any grids with values above 1 (in red) have local warming exceeding global-mean warming in the 

given period, and those with values below 1 (in blue) have local warming weaker than global-

mean warming. In GISS-E2-R, the warm-pool regions warm up relatively quickly during the first 

20 years, but no longer keep pace with other oceans (e.g. the Southern Ocean) over the last 130 

years. This sharp transition of surface warming from tropical ascent regions to all other regions is 

responsible for the large Dl. In IPSL-CM5B-LR, the WP regions do not warm substantially faster 

than global warming on the fast timescale, so that the change in the relative warming over WP 

regions is weaker, leading to a smaller Dl. In CNRM-CM5, the WP regions warm relatively faster 

on the longer timescales, leading to a nearly zero change in WP regions in contrast to the other 

two models, and driving Dl of an opposite sign. This comparison shows that the CMIP5 values of 

Dl can be well characterized by the ratio of warm-pool to global-mean warming, suggesting an 

important role of tropical convective regions in modulating the strength of radiative feedbacks in 

CMIP5.  

 

c. Inter-model spread in Dl across CMIP6 models 

 

For CMIP6 models, we first repeat the analysis applying the WP warming ratio. Interestingly, 

the above theory does not seem to hold as well for CMIP6 models (Fig. 7b), suggesting that the 

Dl spread in the latest models may not directly trace to relative warm-pool warming. One may ask 

whether this is because the deep convection in other regions (e.g. Atlantic Ocean warm-pool 

regions) carry more weight in the CMIP6 ensemble. To identify where is the key region for driving 

feedback changes, we regress global-mean Dl onto local DSST* (the change in the relative 

warming rate from fast timescale to slow timescale) across CMIP5 and CMIP6 models, 

respectively, and evaluate the local correlation coefficient (r). Note that SST* is calculated as the 

local SST change relative to global-mean SST change, and D is defined as the late period (years 

21-150) minus the early period (years 1-20).  

 

The resulting correlation maps (r) are shown in Fig. 9. The positive correlation indicates that 

models that have stronger positive global-mean Dl tend to show a locally delayed warming as 

approaching to equilibrium, whereas the negative correlation indicates that models that have 

stronger positive global-mean Dl tend to show a local warming predominately on the fast timescale.  

The magnitude of correlation efficient illustrates the degree to which the inter-model spread in Dl 

correlates with the differences in local warming rates. For example, Fig. 9a shows a strong negative 

correlation over Indo-Pacific deep convective regions. It supports the idea that the CMIP5 values 

of Dl is primarily governed by the difference in the relative warming in the West Pacific warm-

pool regions, where stronger warming on the fast timescale gives rise to a stronger positive Dl. 

This is achieved mostly through DlCLD (Fig. 9c) and DlLR (Fig. 9g). However, the result of CMIP6 
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highlights equatorial eastern Pacific and SH midlatitudes in addition to tropical Indian ocean (Fig. 

9b), which are mostly reflected in the pattern of DlCLD (Fig. 9d). This comparison suggests that 

the CMIP5 values of Dl may be primarily dominated by surface warming in the broad tropical 

convective regions, whereas the CMIP6 values of Dl may be influenced more by surface warming 

in the tropical subsidence regions and extratropics.  

 

    Although it is also possible that the correlation between East Pacific warming and Dl is not 

causal but comes about through correlations between East Pacific and SH extratropical warming 

rates (Fig. 9b), we discuss possible reasons focusing on the cloud response to SH extratropical 

warming as highlighted in Fig. 9d. In addition to the results shown in Fig. 7 (b), we also found that 

both Green’s functions fail to reproduce CMIP6 Dl (not shown), even though they capture Dl in 

CMIP5 models (Figs. 6c, d). One possible reason is the changes associated with extratropical 

clouds in CMIP6 models, whose feedbacks have strengthened in CMIP6 owing to changes in their 

sensitivities to local environmental conditions which may be tied to changes in their mean-state 

properties (Zelinka et al 2020). These changes may give rise to a different dependence of cloud 

feedbacks on SST pattern, presumably with stronger cloud radiative response to Southern Ocean 

warming. In this case, the global TOA radiation change may not be dominated by the tropical 

warm-pool warming as seen in CAM4 Green’s function for example (see Dong et al. 2019 Fig. 

11), but will be substantially influenced by the Southern Ocean warming as well. That is, the 

delayed Southern Ocean warming would result in a stronger pattern effect on the cloud feedback. 

If this is the case, new Green’s functions with up-to-date GCMs may be helpful in shedding light 

on this issue, as the CAM4 and CAM5 Green’s functions may be systematically different from 

those derived from CMIP6 models.  

 

    Another possible reason is the nonlinear state-dependence of extratropical cloud feedback, 

particularly the mixed-phase cloud feedback associated with cloud phase change. This negative 

feedback arises from the brightening of the clouds as they become increasingly composed of liquid 

droplets with warming. Therefore, it depends on the mean-state of ice/liquid fraction of the clouds, 

with more ice in the initial state leading to a stronger negative-feedback with warming (Tsushima 

et al. 2006; Storelvmo et al. 2015; McCoy et al 2015). Many CMIP6 models now have higher 

climatological cloud liquid water fractions, in better agreement with observations (Bodas-Salcedo 

et al. 2019; Gettelman et al. 2019; Zelinka et al. 2020). Bjordal et al. (in revision) shows that in 

CESM2, with the inclusion of a new mixed-phase ice nucleation scheme, the negative mixed-phase 

cloud feedback weakens with warming from the first 20 years to the last 20 years of abrupt4xCO2 

simulation, particularly over the Southern Ocean, as the amount of ice decreases allowing for no 

further phase change to happen (see their Fig. 3). This weakening towards longer timescales in 

their simulations leads to a positive DlCLD over the Southern Ocean, which is primarily driven by 

the nonlinear state-dependence rather than by the pattern effect. If this case holds more generally 

across the CMIP6 models, the nonlinear state-dependence of DlCLD on the Southern Ocean 

warming may never be captured by any Green’s functions, as the method relies on linear estimation.  

 

    In summary, we found the CMIP5 and CMIP6 ensembles on average highlight different regions 

where surface warming can largely influence the magnitude of global-mean Dl (Fig. 9). In CMIP5, 

inter-model differences in Dl are overall driven by inter-model differences in the surface warming 

rates over the West Pacific warm-pool region, where surface warming has strong remote impact 

on global TOA radiation changes (Dong et al. 2019). In CMIP6, inter-model differences in Dl 
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(and the cloud component DlCLD in particular) appear to have more contributions from 

extratropical warming in addition to tropical warming. Specific physical mechanisms are under 

investigation. Here we speculate that the stronger sensitivity of feedbacks on the delayed 

extratropical warming may result either from the stronger pattern effect (stronger cloud radiative 

response to surface warming in this region), or from the nonlinear state-dependence of 

extratropical cloud feedback on the mean-state of the liquid fraction in the clouds. 

 

5. Conclusions 

 

    In this study, we investigated the changes in radiative feedbacks over time and their 

contributions to climate sensitivity from abrupt4´CO2 simulations within 24 CMIP5 GCMs and 

29 CMIP6 models. Comprehensive comparisons were made between the two CMIP generations 

and between individual models. To examine the time-variation of feedbacks, we derived feedback 

parameters from the Gregory regressions between the net TOA radiation imbalance and surface 

air temperature change over years 1-20 as l1-20 and years 21-150 as l21-150, and use Dl (= l21-150 – 

l1-20) to represent the feedback changes over time.  

 

    We found that on average the effective ECS derived from the regression is higher and Dl is 

smaller in CMIP6 relative to CMIP5. We then evaluated the correlation between ECS21-150 (derived 

from years 21-150; featuring long-term response) and ECS1-20 (derived from years 1-20; featuring 

fast response governed primarily by l1-20). The correlation (r
2
) is 0.69 for CMIP5 and 0.70 for 

CMIP6, suggesting that the variance in ECS (as estimated by ECS21-150) is dominated by the 

differences in radiative response on the fast timescale, rather than the differences in Dl. This also 

explains the fact that a greater Dl generally leads to a greater ECS within individual climate models, 

yet the higher ECS in the CMIP6 models occurs despite smaller Dl. We also compared the ECS-

to-ECShist ratio, representing the model-produced ECS bias relative to historical estimates, 

between CMIP5 and CMIP6. We found the feedback difference between the historical period and 

the equilibrium under CO2 forcing is on average smaller in CMIP6, and the CMIP6-mean ECS-to-

ECShist ratio is also slightly reduced, on average, relative to CMIP5, suggesting a weaker forced 

pattern effect in CMIP6 abrupt4xCO2 simulations. We note that although differences between two 

ensemble means are discussed in this study, there remains a large spread in feedback time-variation 

and ECS estimates across both CMIP5 and CMIP6 models.  

 

    Although the spread in Dl contributes less to the spread in ECS than does atmospheric model 

physics, understanding the magnitude of Dl and the pattern effect is still of a great importance to 

constrain ECS on longer timescales. By comparing the multi-model mean Dl in the CMIP5 and 

CMIP6 models, we see great similarities in the spatial patterns of Dl, highlighting the cold tongue 

regions with delayed warming. An overall smaller ensemble-mean Dl in the CMIP6 models is 

primarily due to the difference in surface-albedo feedback over the Arctic. While the positive 

surface-albedo feedback generally strengthens with time in CMIP5, it weakens over time in 

CMIP6, compensating the global-mean change in surface-albedo feedback. But we caution that 

the differences between the ensemble-mean Dl are not statistically significant given the large 

spread across models, and the results may be subject to change as more models come in.  

 



Manuscript submitted to Journal of Climate (currently in revision) 

---- This is a non peer-reviewed version on EarthArXiv ---- 

	 13	

Because both model physics and surface warming patterns are important for driving Dl, we 

employ Green’s functions to isolate their contributions and investigate why individual models 

produce different Dl. The Green’s functions used in this study are derived from two GCMs, which 

intrinsically represent the given model physics of CAM4 or CAM5 but can be independently 

applied to different SST anomaly patterns. When applied to the CMIP5 models, the Green’s 

functions reproduce Dl well but cannot capture l1-20, suggesting that Dl is primarily set by the 

differences in warming patterns, while l1-20 is presumably determined by the differences in model 

physics. Building upon Dong et al. (2019), the spread in Dl is found to be well correlated with the 

change in the warm-pool warming ratio, defined as the relative ocean warming from warm-pool 

ascent regions to global-mean surface air warming. Across CMIP5 models, this simple metric is 

able to explain over 60% variance of Dl. Models showing greater Dl generally have West Pacific 

warm-pool regions warming up more quickly than the rest of world oceans on the fast timescale, 

but more slowly on longer timescales. This transition, on the other hand, is less significant in 

models that produce smaller Dl. Regression of global-mean Dl against local warming rates also 

highlights the West Pacific warm-pool regions as the dominant control driving Dl variance across 

CMIP5 models, consistent with recent observations identifying the warm-pool as a key region 

controlling global radiation (e.g., Fueglistaler 2019).  

 

    However, the regression analysis across CMIP6 models show a different spatial distribution, 

with extratropics being highlighted in addition to tropics, suggesting that the CMIP6 values of Dl 

may not be dominated by tropical warming. The specific mechanism needs to be further uncovered; 

we speculate here that it may be partly attributable to a stronger sensitivity of extratropical clouds 

to surface warming. Future studies employing Green’s function approach built from the CMIP6 

models may bring more insights on investigating the pattern effect within the latest generation of 

GCMs, but will have limitations in the case that nonlinear state-dependence of feedbacks also 

contributes to the changes in feedbacks with time.   
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Table 1. The CMIP6 models used in this study.  

 

Institution CMIP6 MODEL Data Reference  

CSIRO-ARCCSS ACCESS-CM2 Dix et al. 2019  

CSIRO ACCESS-ESM1-5 Ziehn et al. 2019 

BCC BCC-CSM2-MR Wu et al. 2018  

BCC BCC-ESM1 Zhang et al. 2018  

CAMS CAMS-CSM1-0 Rong 2019 

CCCma CanESM5 Swart et al. 2019  

NCAR CESM2 Danabasoglu et al. 2019 

NCAR CESM2-WACCM Danabasoglu 2019 

CNRM CNRM-CM6-1 Voldoire 2018 

CNRM CNRM-ESM2-1 Seferian 2018 

E3SM-Project E3SM-1-0 Bader et al. 2019 

EC-Earth-Consortium EC-Earth3-Veg EC-Earth 2019 

EC-Earth-Consortium EC-Earth EC-Earth 2019  

NOAA-GFDL GFDL-CM4 Guo etal. 2018 

NOAA-GFDL GFDL-ESM4 Krasting 2018 

NASA-GISS GISS-E2-1-G NASA/GISS 2018  

NASA-GISS GISS-E2-1-H NASA/GISS 2018  

MOHC HadGEM3-GC31-LL Ridley et al. 2018 

INM INM-CM4-8 Volodin et al. 2019 

INM INM-CM5-0 Volodin et al. 2019 

IPSL IPSL-CM6A-LR Boucher et al. 2018 

MIROC MIROC-ES2L  Hajima et al. 2019 

MIROC  MIROC6 Tatebe and Watanabe 2018 

MRI MRI-ESM2-0 Yukimoto et al. 2019  

NUIST NESM3 Cao and Wang 2019 

NCC NorESM2-LM Seland et al. 2019  

SNU SAM0-UNICON Park et al. 2019  

MOHC UKESM1-0-LL Tang et al. 2019 
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Table 2. Estimates of feedback parameter and effective climate sensitivity from abrupt4´CO2 

simulations for the CMIP6 GCMs and their multi-model mean. Left to right: feedback parameter 

over the fast time scale (l1-20); feedback parameter over the longer time scale (l21-150); feedback 

evolution (Dl = l21-150 – l1-20); effective climate sensitivity from regressions over years 1-20 

(ECS1-20); effective climate sensitivity from regressions over years 21-150 (ECS21-150). The unit 

	

CMIP6 MODEL l1-20 l21-150 Dl ECS1-20 ECS21-150 

ACCESS-CM2 -1.1 -0.5 0.6 3.75 5.41 

ACCESS-ESM1-5 -1.14 -0.42 0.73 3.07 4.93 

BCC-CSM2-MR -1.26 -0.63 0.64 2.85 3.5 

BCC-ESM1 -1.25 -0.74 0.51 2.78 3.5 

CAMS-CSM1-0 -1.94 -1.71 0.24 2.23 2.31 

CESM2-WACCM -1.11 -0.48 0.63 3.65 5.49 

CESM2 -1.19 -0.38 0.81 3.67 6.42 

CNRM-CM6-1 -0.92 -0.81 0.1 4.29 4.76 

CNRM-ESM2-1 -0.49 -0.58 -0.09 5.7 4.91 

CanESM5 -0.69 -0.62 0.08 5.44 5.75 

E3SM-1-0 -0.77 -0.47 0.3 4.78 5.77 

EC-Earth3-Veg -1.12 -0.7 0.42 3.57 4.45 

EC-Earth3 -1.12 -0.7 0.42 3.57 4.45 

GFDL-CM4 -1.44 -0.59 0.85 2.94 4.4 

GFDL-ESM4 -1.36 -1.46 -0.1 2.71 2.63 

GISS-E2-1-G -1.46 -1.2 0.26 2.74 2.87 

GISS-E2-1-H -1.26 -1.08 0.17 2.95 3.15 

HadGEM3-GC31-LL -0.82 -0.58 0.24 4.72 5.73 

INM-CM4-8 -1.8 -0.98 0.82 1.74 1.91 

INM-CM5-0 -1.7 -1.09 0.6 1.85 2.02 

IPSL-CM6A-LR -1.01 -0.65 0.36 3.86 4.76 

MIROC-ES2L -1.48 -1.94 -0.46 2.69 2.53 

MIROC6 -1.63 -1.44 0.19 2.4 2.59 

MPI-ESM1-2-HR -1.51 -0.81 0.7 2.77 3.34 

MRI-ESM2-0 -1.45 -0.85 0.6 2.75 3.41 

NESM3 -0.94 -0.79 0.15 4.27 4.72 

NorESM2-LM -2.06 -0.83 1.23 2.24 2.98 

SAM0-UNICON -1.16 -0.74 0.42 3.6 4.19 

UKESM1-0-LL -0.79 -0.63 0.17 4.84 5.49 

Mean -1.24 (-1.19) -0.84 (-0.74) 0.4 (0.42) 3.4 (3.07) 4.08 (4.4) 

standard deviation  0.37 0.38 0.34 1.01 1.27 
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for feedback parameters and feedback change is Wm
-2

K
-1

, for ECS1-20 and ECS21-150 is K. All 

regressions are calculated using the ordinary least squares regression method.  

 

 
Table 3. Same as Table 2, except for the CMIP5 models.  

CMIP5 MODEL l1-20 l21-150 Dl ECS1-20 ECS21-150 

ACCESS1-0 -1.15 -0.57 0.57 3.1 4.3 

ACCESS1-3 -1.17 -0.5 0.67 2.92 4.36 

bcc-csm1-1 -1.49 -0.87 0.62 2.54 3 

bcc-csm1-1-m -1.42 -0.91 0.51 2.71 3.05 

CanESM2 -1.23 -0.89 0.33 3.4 3.85 

CCSM4 -1.57 -0.89 0.69 2.6 3.2 

CNRM-CM5 -1.06 -1.24 -0.19 3.38 3.18 

CSIRO-Mk3-6-0 -1.25 -0.4 0.85 2.84 5.03 

GFDL-CM3 -1.19 -0.61 0.58 3.11 4.3 

GFDL-ESM2G -1.51 -0.64 0.87 2.32 3.02 

GFDL-ESM2M -1.48 -0.99 0.49 2.42 2.68 

GISS-E2-H -1.86 -1.4 0.46 2.21 2.39 

GISS-E2-R -2.47 -1.3 1.17 1.88 2.31 

HadGEM2-ES -0.83 -0.34 0.49 4.01 6.02 

inmcm4 -1.5 -1.26 0.23 2.04 2.16 

IPSL-CM5A-LR -0.89 -0.62 0.27 3.77 4.44 

IPSL-CM5A-MR -0.91 -0.62 0.29 3.85 4.52 

IPSL-CM5B-LR -1.29 -0.79 0.5 2.35 2.79 

MIROC5 -1.66 -1.3 0.36 2.64 2.84 

MPI-ESM-LR -1.38 -0.87 0.51 3.32 3.89 

MPI-ESM-MR -1.48 -0.88 0.59 3.16 3.73 

MPI-ESM-P -1.57 -0.96 0.61 3.13 3.68 

MRI-CGCM3 -1.56 -1.13 0.43 2.31 2.66 

NorESM1-M -1.61 -0.77 0.85 2.34 3.18 

Mean(Median) -1.40(-1.45) -0.86(-0.88) 0.53(0.51) 2.85(2.78) 3.52(3.19) 

Standard deviation 0.35 0.3 0.27 0.58 0.95 
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Table 4. Estimates of ECShist, ECS-to-ECShist ratio and l¢ (the change in feedback from historical 

period to equilibrium) for individual CMIP6 models and ensemble-means of CMIP5 and CMIP6, 

to be compared with Table S2 in Lewis and Curry (2018). For ECS-to-ECShist ratio and l¢, the 

results shown are calculated with the values of effective ECS derived from regressions over years 

21-150 (or years 1-150), using the Deming regression method.  

CMIP6 MODEL ECShist 

ECS ratio  

yrs 21-150 (yrs 1-150) 

l'  

yrs 21-150 (yrs1-150) 

ACCESS-CM2 4.05 1.28 (1.13) 0.22 (0.12) 

ACCESS-ESM1-5 3.13 1.41 (1.19) 0.31 (0.17) 

BCC-CSM2-MR 2.81 1.06 (1.04) 0.06 (0.05) 

BCC-ESM1 3.05 1.07 (1.05) 0.07 (0.05) 

CAMS-CSM1-0 2.19 0.98 (1.02) -0.04 (0.03) 

CESM2 4.16 1.4 (1.21) 0.32 (0.2) 

CESM2-WACCM 3.9 1.32 (1.17) 0.25 (0.15) 

CNRM-CM6-1 4.72 0.96 (1.02) -0.03 (0.02) 

CNRM-ESM2-1 4.52 0.91 (1.02) -0.06 (0.01) 

CanESM5 5.33 1.05 (1.04) 0.03 (0.03) 

E3SM-1-0 4.91 1.1 (1.07) 0.06 (0.04) 

EC-Earth3 3.87 1.09 (1.1) 0.08 (0.09) 

EC-Earth3-Veg 3.91 1.08 (1.09) 0.07 (0.08) 

GFDL-CM4 3.16 1.12 (1.14) 0.13 (0.16) 

GFDL-ESM4 2.55 0.88 (0.98) -0.2 (-0.02) 

GISS-E2-1-G 2.57 1 (1.03) 0 (0.04) 

GISS-E2-1-H 2.95 0.99 (1.02) -0.01 (0.03) 

HadGEM3-GC31-LL 5.24 1.08 (1.05) 0.06 (0.04) 

INM-CM4-8 1.74 1.05 (1.04) 0.09 (0.07) 

INM-CM5-0 1.84 1 (1.02) 0 (0.04) 

IPSL-CM6A-LR 4.31 1.01 (1.02) 0.01 (0.02) 

MIROC-ES2L 2.62 0.88 (1.02) -0.23 (-0.04) 

MIROC6 2.37 0.95 (1.03) -0.09 (0.05) 

MPI-ESM1-2-HR 2.63 1.18 (1.11) 0.23 (0.15) 

MRI-ESM2-0 2.68 1.09 (1.11) 0.11 (0.13) 

NESM3 4.78 0.91 (0.96) -0.08 (-0.04) 

NorESM2-LM 1.88 1.1 (1.16) 0.22 (0.34) 

SAM0-UNICON 3.38 1.05 (1.06) 0.06 (0.06) 

UKESM1-0-LL 5.12 1.06 (1.04) 0.05 (0.03) 

CMIP6 Mean 3.46 1.07 (1.07) 0.06 (0.07) 

CMIP6 std 1.08 0.13 (0.06) 0.13 (0.08) 

CMIP5 Mean  2.807 1.095 (1.073) 0.092 (0.086) 

CMIP5 std 0.59 0.134 (0.063) 0.141 (0.069) 
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Figure 1. (a, b) Gregory plots for (a) CMIP5 and (b) CMIP6: annual-mean change in global-mean 

net TOA radiation (Wm
-2

) against annual-mean change in global-mean surface air temperature (K) 

from abrupt4xCO2 experiments. Gray dots denote each year from each model, black dots denote 

each year of multi-model means. Thin (thick) lines show regression fits for years 1-20 (blue) and 

for years 21-150 (red) for each model (multi-model means). The slope of blue lines represents 

feedback parameter on the fast time-scale (l1-20), and the slope of red lines represents feedback 

parameter on the longer time-scale (l21-150). (c, d, e, f) Box plots of l1-20 (Wm
-2

K
-1

), Dl (Wm
-2

K
-

1
), ECS1-20 (K) and ECS21-150 (K) in CMIP5 (left) and CMIP6 (right) models.  
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Figure 2. Dl for each individual CMIP5 models (blue circles), CMIP6 models (orange circles), 

and their multi-model means (black circles), decomposed into contributions of (from left to right) 

Planck (PL), surface-albedo (ALB), the sum of lapse-rate (LR) and water vapor (WV), net cloud 

(CLD), and residual (RES), respectively. The DlALB is further broken down into contributions 

from Northern Hemisphere (ALB_NH) and Southern Hemisphere (ALB_SH). The differences 

between CMIP5-means and CMIP6-means are printed at the bottom, with red numbers 

highlighting multi-model means that are significantly different (p<0.05).  
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Figure 3. CMIP5 ensemble-mean spatial patterns of the local radiative feedback components 

(calculated by regressing the local N against global-mean T). (top to bottom) net feedback, net 

cloud feedback, lapse-rate feedback, water-vapor feedback, Planck feedback, surface-albedo 

feedback, on (left) years 1-20 and (middle) years 21-150 time-scales, and (right) the change (late 

minus early).  
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Figure 4. (a) same as Fig. 3, except for CMIP6 ensemble means. (b) the difference in ensemble-

mean surface-albedo feedback between CMIP5 and CMIP6 (CMIP6 minus CMIP5).  
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Figure 5. Spatial patterns of SST changes (SST*) over (top to bottom) years 1-20, years 21-150, 

and their changes (late minus early), for (left) CMIP5 multi-model mean, (middle) CMIP6 multi-

model mean, and (right) the difference (CMIP6 minus CMIP5). The values of SST* are calculated 

as the regression slope of local SST changes against global-mean SST changes, such that the global 

mean of panels (a, b, d, e) is one by construction. Note that the color scales in the left two columns 

and in the right column are different.  
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Figure 6. Comparison of (top) l1-20 and (bottom) Dl from CMIP5 models and those from (left) 

CAM4 Green’s function, (right) CAM5 Green’s function, respectively. Gray lines are y=x 

reference line. Correlation coefficient is printed in each panel.   
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Figure 7.  The relation between the change in net feedback (Dl) and the change in the proposed 

West Pacific warm-pool warming ratio (Dg), for (left) CMIP5 models and (right) CMIP6 models. 

The linear fit for CMIP5 models is plotted as the black line in the left panel, and the grey dashed 

line in the right panel.  
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Figure 8. Gregory plots (top) and patterns of SST changes (bottom three rows) for (left) GISS-E2-

R, (middle) IPSL-CM5B-LR, and (right) CNRM-CM5. (a – c) Colored lines show regression fits 

for years 1-20 (blue) and for years 21-150 (red). (d – i) plots show the regression slope of local 

SST changes against global-mean SST changes over (d –f) years 1-20, (g-i) years 21- 150, and (j-

i) their differences (later minus early). The hatchings highlight the warm-pool ascent regions in 

each model.  

(g) (h) (i)

(j) (k) (l)

(d) (e) (f)

GISS-E2-R IPSL-CM5B-LR CNRM-CM5(a) (b) (c)
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Figure 9. Correlation coefficients (r) for local regression of global-mean Dl against local DSST* 

(local SST warming rate relative to global-mean SST change) across (left) CMIP5 models and 

(right) CMIP6 models. Top to bottom: net Dl, cloud Dl, surface-albedo Dl, lapse rate Dl, and 

water vapor feedback. Hatchings mark grids where correlations are significant (i.e. p<0.05).  


