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Abstract—The nonlinearity behavior of CMOS cur-
rent-switching mixers is investigated. By treating the mixer
as a periodically-time-varying weakly nonlinear circuit, we study
the distortion-causing mechanisms and we predict the mixer
distortion performance. Normalized graphs are provided from
which the designer can readily estimate the mixer nonlinearity
for particular process and design parameters. A simple CMOS
transistor model appropriate for our calculations, which also
takes into account deviation from the square law is adopted. The
significance of a physical transistor model for reliable distortion
simulation is demonstrated. The prediction of our analysis is
compared with simulation results and with experimental data.

Index Terms—Active mixers, analog integrated circuits, CMOS
analog integrated circuits, CMOS mixers, distortion, frequency
conversion, Gilbert cell, intermodulation distortion, mixers,
nonlinear distortion.

I. INTRODUCTION

M IXERS ARE widely used in modern communication
systems in order to realize frequency translation of the

carrier signals. Intermodulation distortion in the mixer greatly
affects the dynamic range of most communication systems.
Since mixers are not linear-time-invariant circuits, one cannot
apply classical distortion analysis techniques using power
series at low frequencies and Volterra series at high frequencies
[1], [2], appropriate for linear amplifiers. Designers usually
lack a complete understanding of the distortion-generating
mechanisms, and design optimization usually relies on simu-
lation using transient analysis, which is time consuming and,
depending on the transistor model used, often unreliable, as
will become apparent below.

Active mixers which employ a switching transistor pair for
current commutation, such as the Gilbert cell, are frequently
used [3]–[7], because they offer advantages such as high con-
version gain and high port-to-port isolation. Their principle of
operation is technology independent and they can be realized in
bipolar or CMOS processes. A transconductance stage is used to
transform the input voltage signal to current, which is then com-
mutated with the switching pair. Modern sub-micron CMOS
technologies are increasingly used in the design of integrated
communication systems because they have low fabrication cost
and are appropriate for a high level of integration, while re-
alizing good high-frequency performance. The CMOS Gilbert
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Fig. 1. A CMOS Gilbert cell.

cell is shown in Fig. 1 and the active single-balanced mixer is
shown in Fig. 2. A brief description of their operation can be
found in [8]. The Gilbert cell, being a double-balanced struc-
ture, has the advantage of rejecting the strong local oscillator
(LO) component and the even-order distortion products. Com-
pared with passive CMOS mixers, active CMOS mixers offer
conversion gain and provide in general a better system noise per-
formance, while their linearity is generally significantly worse.

The CMOS transistors used in the transconductance stage
of active mixers demonstrate fairly good linearity and are
used often with little or no degeneration, in contrast with the
bipolar transconductance stages which often require significant
degeneration. The transconductance stage linearity can be
analyzed with classical techniques [1], [2], [9]. However,
little has been published on the distortion characteristics of
the CMOS switching pair. Its nonlinearity imposes problems,
particularly when together with high linearity, high gain is
required from the mixer, since then the signal at the output
of the transconductance stage is large. While the exponential
– characteristics of the bipolar transistor make the bipolar

transistor switching pair arbitrarily linear at low frequency if
the device base resistance is low [10], [11], this is not true
for the CMOS switching pair, which demonstrates significant
nonlinearity even at low frequencies.

The analysis of the switching pair presented here aims to
illuminate the distortion mechanisms and to provide intuition
and the means for fast performance estimation. The switching
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Fig. 2. A single-balanced active CMOS mixer.

pair is treated as a weakly nonlinear periodically time-varying
circuit and time-varying power series are employed in the
analysis. It will be shown that if the capacitive effects are neg-
ligible, in the frequency band of interest the distortion behavior
of the switching pair can be described by a time-invariant
power series which can be cascaded with the power series of
the transconductance stage to calculate the total distortion.
The methodology also applies to high frequencies, where
time-varying Volterra series replace the time-varying power
series. Similar approaches have been used in [12] and [13] for
the distortion of diode mixers, and in [14] for the distortion of
passive MESFET mixers. Our analysis also identifies the char-
acteristics of a transistor model for a reliable mixer distortion
simulation.

A distortion study of a bipolar switching pair has been pre-
sented in [10] and [11], but the method used was different from
the one employed here. The behavior of the bipolar switching
pair was found to depend on only a few normalized variables,
and transient simulation was used to find their effect on the dis-
tortion. Using the methods described here for fast evaluation of
the CMOS switching pair distortion, we also provide normal-
ized graphs from which one can predict the intermodulation for
any given technology and operating conditions.

II. TRANSISTORMODEL

The transistors of the CMOS switching pair operate in weak,
moderate, and strong inversion. It will become apparent below
that a model which ignores the subthreshold region, or uses dif-
ferent equations to describe the different modes of operation, is
inappropriate for a distortion analysis of the switching pair. A
model which describes all three regions with a single analytical
expression and therefore has continuous derivatives of any order
is needed. Furthermore, it must be simple enough for analytical
calculations.

Continuous MOS transistor models have been presented in
[15] and [16]. We will use the same kind of smooth interpolation
between the regions of operation. We will take into account to a
first order the deviation from the square law in strong inversion
while we will neglect second-order phenomena such as channel-
length modulation, which complicate the transistor model. As
a result of the latter assumption, we will neglect the distortion
introduced by the output impedance of the devices, assuming
that a linear load dominates the mixer output. The drain current

as a function of the gate-source voltage is modeled in this
paper by

(1)

where

(2)

Above, is the threshold voltage, is the thermal voltage
, and is a constant depending on the technology

and the transistor dimensions, proportional to the transistor
width. Parameter approximately models source series re-
sistance, mobility degradation because of the vertical field,
and short-channel effects such as velocity saturation [17]. For
a minimum-length device of an existing 0.8-m technology,
it was estimated to be 0.9 V, and for a different 0.25-m
technology, it was found to be approximately 2.5 V. It is
a function of the channel length and is independent of the
body effect. Parameter determines the rate of exponential
increase of the drain current with the gate-source voltage in
the subthreshold region, and also the size of the moderate
inversion region. It takes values approximately between 1 and
2 and it decreases (approaching 1) because of the body effect
when the source-body voltage increases, while it tends to be
higher when short-channel phenomena are present. It is shown
in [15] to depend slightly on , but for simplicity will
be considered here a constant for a given channel length. The
parameter corresponding to our parameteris referred to in
the BSIM3 Version 3 Manual [16] as the effective
voltage. Using this model, the analysis presented in [8] can also
be performed while taking into account the effect of weak and
moderate inversion.

This model reduces to known expressions in strong and weak
inversion. In strong inversion where the exponential term domi-
nates the argument of the logarithm in (2), , and
(1) becomes

(3)

the common – relation in saturation. In weak inversion, using
the approximation for small , we obtain

(4)

and since is small, 1 dominates in the denominator of (1), and
it provides

(5)

which is the exponential– relation of the transistor in weak
inversion. In moderate inversion equations (1) and (2) provide a
smooth monotonic increase, interpolating between (3) and (5).
However, the proportionality constant of (5) is probably inac-
curate and the value of parameter that provides the correct
exponential increase in weak inversion does not necessarily pro-
vide accurate moderate-inversion modeling. For distortion pre-
diction of the switching pair the moderate-inversion region is
more significant than the subthreshold and it is preferable to
consider an value that better models the moderate inversion.



TERROVITIS AND MEYER: INTERMODULATION DISTORTION IN CMOS MIXERS 1463

Fig. 3. I–V curve and first three derivatives for a quarter-micron CMOS
technology. The solid line is the simple model and the dashed line is obtained
from the BSIM3 version 3 model.

Nevertheless, it will be shown that the value ofhas only a
minor effect on the distortion prediction.

The – transistor curve in saturation and its first three
derivatives with respect to obtained from this simple
model were compared with the corresponding curves obtained
from the SPICE models BSIM3 version 3 and version 2, in
Figs. 3 and 4, respectively. The two SPICE models describe
different technologies of channel length 0.25m and 0.8 m,
respectively. The parameters of the simple model were curve
fitted to the – curves obtained from SPICE. The derivatives
of the simple model were derived analytically (see Appendix),
while those of the SPICE models were calculated numerically.
As numerical noise imposes problems in the evaluation of
the second and third derivative with successive differences, a
more sophisticated method was used. For every value of,
a polynomial was fitted to a number of points around this
value and then the derivatives of the polynomial were taken
analytically [18].

As can be seen in Fig. 3, model BSIM3 version 3 provides
smooth derivatives, as one would expect from a physical model,
and the simple model is in close agreement with it. In Fig. 4
we observe that the– curve and the first derivative gener-
ated with the BSIM3 version 2 model coincide with those of
the simple model. However, the use of a different equation for
the weak, moderate, and strong inversion in the BSIM3 ver-
sion 2 model becomes apparent in the second and third deriva-
tives, where discontinuities appear at the transitions. We will see
below the effect of these discontinuities on the distortion simu-
lation of the switching pair.

III. SWITCHING PAIR DISTORTION AT LOW FREQUENCIES

A. Low-Frequency Large-Signal Equations

Consider the single-balanced mixer of Fig. 2. The operating
point of the transistors of the switching pair varies periodically
with time. In the following analysis we need to be able to find

Fig. 4. I–V curve and first three derivatives for a 0.8-�m CMOS technology.
The solid line is the simple model and the dashed line is obtained from the
BSIM3 version 2 model.

this operating point for a given bias current and instanta-
neous LO voltage . The output conductance of the de-
vices is neglected and the load at the drains of M1 and M2 is
assumed such that they remain in saturation during the whole
LO period. This assumption is usually satisfied since if the tran-
sistors of the switching pair enter the triode region, the common-
source node becomes a high impedance point and performance
is degraded because of reactive effects. If
is the – relation of a transistor as given by (1) and (2), the
large-signal behavior of the switching pair is described by the
following:

(6)

(7)

where , , and and
are the gate-source voltages of M1 and M2, respectively.

Substituting from (7) to (6), we obtain one nonlinear equation
with as an unknown which can be solved rapidly with an
iterative numerical method.

From (7) and (6) we observe that the drain current of each
transistor does not depend on , and therefore to the extent
of validity of the transistor model used here, the behavior of
the switching pair is independent of the body effect and the
common-mode LO voltage. The same conclusion was reached
in [8], but without taking into account the subthreshold region
of operation.

B. Distortion Calculations

At low frequencies the switching pair is a memoryless
system. Neglecting the output resistance of the transconduc-
tance stage, the output current, defined as the difference of the
drain currents of M1 and M2, is a function of the instantaneous
values of the output current of the transconductance stage and
the LO voltage:

(8)
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Fig. 5. Typical shape of waveformsp (t), p (t), andp (t).

where , denote values without input signal present, and
, denote incremental values. Sinceis small, a third-order

Taylor expansion provides

(9)

or

(10)

where , , are periodic waveforms of which a
typical shape is shown in Fig. 5. The value of these waveforms
is easily determined when one of the transistors is off. For ex-
ample, when M2 is off and . When
instantaneously , , and

, because of symmetry. When the conductance of both
M1 and M2 is significant, , , and depend on the
bias current , the LO voltage , and the device character-
istics.

With some manipulation, waveforms , , and
can be expressed in terms of the derivatives of the– function

with respect to as follows:

(11)

(12)

(13)

The derivatives of are denoted with the symbol followed
by an index, whose first character (1 or 2) denotes the transistor
(M1 or M2 respectively) and the number of V’s following de-
notes the order of the derivative.

Without loss of generality, , , and can be con-
sidered odd functions of time and can be expanded in a series of
sinusoids. In this case (10) provides

(14)

where is the th coefficient of the waveform in the
series, and is the LO frequency. The mixer is usually used
for upconversion or downconversion by one LO multiple and
in this case the distortion behavior of the switching pair in the
frequency band of interest can be described by a time-invariant
power series1

(15)

where

(16)

and is the LO period. If consists of two tones of equal
magnitude at two closely spaced frequenciesand

(17)

and the generated third-order intermodulation is

(18)

For high LO amplitude, resembles a square waveform
and approaches . Assuming that the time interval (see
Fig. 5), during which and are nonzero, is small com-
pared to the whole period and that during this time the LO
voltage is a linear function of time with slope, it can be shown
that the coefficients and decrease inversely proportional to
the square of . Indeed, for for example, approximating the
sinusoid with its argument, (16) provides

(19)

where is some LO cutoff voltage above which the con-
duction of one of the two devices is insignificant and is
zero. Simulation with sinusoidal LO waveform of amplitude
shows that indeed intermodulation asymptotically reduces pro-
portionally to for high values of while it drops at a
higher rate for moderate values of. For the rest of the paper,
the LO waveform will be considered sinusoidal andwill de-
note its amplitude.

Figs. 6 and 7 show the quantity (in dB,
calculated as 20 log ) versus bias current simulated with
SpectreRF using the BSIM3 version 3 and BSIM3 version 2
model, respectively, and also as obtained from the simple model.
This quantity corresponds to the intermodulation value for

1Equation (15) as well as (26) below are ‘loose,’ in the sense that the left and
right side refer to the output and input frequency bands, respectively.
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Fig. 6. Comparison of prediction (solid line) and simulation (dashed line)
using the BSIM3 version 3 model, of the low-frequency intermodulation versus
bias current for a switching pair of the 0.25�m technology and channel width
100�m. The LO amplitude is 1 V.

Fig. 7. Comparison of prediction (solid line) and simulation (dashed line)
using the BSIM3 version 2 model, of the low-frequency intermodulation versus
bias current for a switching pair of the 0.8�m technology and channel width
100�m. The LO amplitude is 1 V.

equal to 1A, assuming that the system remains weakly non-
linear. If for example is 1 mA, one must subtract 120 dB
from the value read from these figures. The transistor width was
in both cases equal to 100m and the LO amplitude was 1 V.
The simulation result in Fig. 6 is a smooth curve, in very close
agreement with the prediction of the simple model. However,
the BSIM3 version 2 model used in Fig. 7 is inappropriate for
distortion simulation of the switching pair, as the discontinuities
in the second and third derivatives of the– curve observed
in Fig. 4 create large errors. Very high numerical accuracy is
needed to reduce discontinuities in the intermodulation curve
versus bias current and obtain the curve of Fig. 7, and even then
the result shows large discrepancies from the simple model pre-
diction. As we shall see, the latter agrees well with measure-
ments.

The intermodulation prediction is largely insensitive to the
value of parameter . Fig. 8 shows predicted intermodulation
as a function of bias for three different values of , 26, 38, and
50 mV, versus bias. Instead of bias current we express here bias
in terms of where is the LO voltage value sufficient

Fig. 8. Low-frequency intermodulation of a switching pair for different values
of the parameter�� . The intermodulation value is almost insensitive to this
parameter.

to completely switch off one of the two devices (neglecting the
subthreshold conduction2 ), and has been found in [8] to be

(20)

The conversion gain of the switching pair has been found ap-
proximately equal to

(21)

In [8] the subthreshold conduction was neglected and param-
eter normalization was used to express the performance of the
switching pair as a function of fewer independent parameters.
For this purpose, all currents were multiplied with and
all voltages were multiplied with. Even though this normaliza-
tion is not exact in the present analysis because the subthreshold
region of operation is taken into account, we can conjecture that
the intermodulation can be approximately expressed in terms of
similarly normalized quantities. Evaluation of the intermodula-
tion as described previously shows that indeed this is the case.
Fig. 9 shows the value of the quantity
versus , for and for three different values of

. We observe that the three curves approximately coincide for
moderate values of which are most often used in practice,
while they differ for very low and very high values of .
The agreement is better for higher LO amplitudes because these
correspond to higher bias currents in this graph and the sub-
threshold region has a smaller effect. This observation allows
us to give normalized intermodulation graphs.

In order to reduce the range of the intermodulation values and
improve the readability of the normalized graphs we express
intermodulation in terms of the quantity

(22)

The result is shown in Fig. 10 which was generated with=
36 mV and = 1 V. The ratio can be calculated from this
graph.

2VoltageV is generally higher thanV because of the subthreshold con-
duction.
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Fig. 9. Normalized intermodulation for a fixed value of�V but three different
values ofV : 0.5, 1, and 3 V.

Fig. 10. Normalized intermodulation versusV =V .

C. Cascading the Driver Stage and the Switching Pair

Let us assume now that the nonlinearity of the transconduc-
tance stage is described by a power series as follows:

(23)

where is the input voltage. Cascading the power series of
the transconductance stage with that of the switching pair, the
output current can be related to the input voltage with a new
time-varying power series. Substituting (23) in (10) we obtain

(24)

Using the expansion of , , and in a series of
sinusoids as in (14) we obtain

(25)

If frequency translation by one LO multiple is of interest, the
distortion performance can be described by a time-invariant
power series

(26)

where

(27)

(28)

(29)

Observe that these coefficients can be obtained directly by cas-
cading the power series (23) and (15).

The total mixer third-order intermodulation is now given by

(30)

where in the last expression is the amplitude of each input
tone in the intermodulation test and the second term on the right
side of (29) has been neglected as small. The total mixer inter-
modulation is approximately equal to the sum of the intermod-
ulation values that the driver stage and the switching pair would
generate if the other stage were ideal.

D. Distortion of Differential Versus Single-Ended Output

A differential output was considered above for the single-bal-
anced mixer of Fig. 2 but it can be shown that if the LO wave-
form is symmetric around zero, the distortion behavior is exactly
identical if the output is taken single-ended. Assume that ifis
taken as output, the mixer distortion performance is described
by a time-varying power series

(31)

and let us denote the Fourier coefficients of the waveform
by . It is easy to see that if the LO waveform is symmetric,
the relevant power series for is

(32)

and that the Fourier coefficients of the waveform
are , where for frequency translation by one LO mul-
tiple . The coefficients of the corresponding time-in-
variant power-series for differential output are twice these for
single-ended output, and the generated distortion in the two
cases is identical. A similar argument holds at high frequen-
cies where Volterra series replace the power series. A similar
approach shows that the distortion of the Gilbert cell is iden-
tical if single-ended or differential output is obtained. In fact for
the Gilbert cell this statement can be shown true even if the LO
waveform is not symmetric.

IV. HIGH FREQUENCIES

A. Numerical Calculations

Time-varying Volterra series can be used at high frequen-
cies to analyze the high-frequency intermodulation performance
of the switching pair. We will consider now the effect of the
gate-source capacitors of the transistors M1 and M2,and ,
respectively, and the total capacitance from the common-source
node to ground consisting of the source–body capacitance
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Fig. 11. Switching pair as considered in the high-frequency analysis.

of M1 and M2 and the drain–body capacitance of M3, as shown
in Fig. 11. We will neglect the gate–drain capacitances and as-
sume that the LO voltage is perfectly sinusoidal, generated by
an ideal voltage source while the common LO voltage is a con-
stant. Denoting again the– relation of a transistor with

, with no small signal present, the equation describing the
switching pair at high frequencies is

(33)

where , , and are the charges of the capacitors, ,
and , respectively, and ,
have been defined before. The capacitances satisfy

(34)

(35)

(36)

where is the body–source voltage of M1 and M2. Capac-
itance is the sum of an area and a sidewall junction capaci-
tance and each of its components is given by an expression of
the form

(37)

where the symbols , , and have the usual meaning. Ca-
pacitances and are dependent on the region of operation
and will be approximated by

(38)

which provides a smooth transition from the overlap capaci-
tance in subthreshold to the capacitance value in satura-
tion . From (37) and (38), analytical expressions for the
derivatives of the capacitances with respect to their voltage ar-
guments can be obtained. From (33), (34)–(36), and expressing

, , and in terms of and the common

source potential , we obtain

(39)

Substituting

(40)

(41)

where is the common LO voltage considered constant,
(39) becomes a nonlinear differential equation with periodic
boundary conditions which must be solved to find the periodic
steady-state operating point of the devices. This was accom-
plished by discretizing (39), and solving for the vector of the
values of over one period, using a Newton–Raphson method
as described in [19]. A software package for sparse matrix ma-
nipulation [21] was employed. The body effect was neglected
and the threshold voltage was considered a constant. We will
adopt this approximation for the rest of the analysis, and will
comment on the role of the body effect later.

When a small-signal current is present at the transcon-
ductance stage output, voltages, , and will change to

, , and , respectively. Taking a third-order
Taylor expansion of (33) and removing the large-signal part of
the equation we obtain

(42)

where

(43)

(44)

(45)

(46)

(47)

(48)

and , , , , , and denote the first
and second derivatives of the capacitances, , and , with
respect to their voltage arguments in (34)–(36). The incremental
voltage is related to the incremental currentwith a time-
varying Volterra series, as

(49)

Substituting (49) into (42), equating terms of similar power of
, and using the usual notation foras a sum of sinusoids [1],

we obtain (50)–(52), shown at the bottom of the next page. In
these equations, the bar above certain terms denotes as usual
the average over all the terms that result from all possible per-
mutations of the frequency arguments [1]. These are linear dif-
ferential equations with periodic boundary conditions and were
solved as described in [20] for the case of a periodic ac analysis,
by discretizing them and solving one algebraic sparse linear
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system of equations. Once the time-varying Volterra series that
relates with is known (coefficients , , and ), it can
be cascaded with the time-varying power series which relates
with the output current , whose coefficients are

(53)

(54)

(55)

in order to relate with as follows:

(56)

Above

(57)

(58)

(59)

As with low frequencies, time-invariant Volterra coefficients
, , and that describe intermod-

ulation in the frequency band of interest can be extracted by
taking the first Fourier coefficients of , ,
and , respectively. Assume that theth time-
varying Volterra coefficient has the following Fourier expan-
sion:

(60)

where a dot has replaced the frequency arguments. For a down-
converter must be used if the input signal frequency
is higher than , or its conjugate if is lower than . For an
upconverter must be used when the output frequency is
higher than while the conjugate of must be used if

theoutput frequency is lower than ,but theresult isessentially
the same if the input signal frequency is low compared to.3

If consists of two tones of equal magnitude as in (17) where
and is the input signal frequency, the third-

order intermodulation generated by the switching pair can now
be calculated as

(61)

where we have used the notation and
. It is easy to see that to evaluate these coef-

ficients we need , , , and
. Hence we must solve (50) once, (51) twice,

and (52) once.
The total mixer distortion can be found by cascading the

power series or Volterra series that describes the transcon-
ductance stage with the time-invariant Volterra series derived
for the switching pair. Assuming that the Volterra series that
describes the transconductance stage is

(62)

the Volterra coefficients that describe the total mixer distortion
are

(63)

(64)

(65)

(66)

(67)

To calculate , besides and
we need and which

implies that , , , and
must also be calculated. Approximately, the second-order

3We mention that P (t; f ; � � � ; f ) = P (t;�f ; � � � ;�f ) and
P (f ; � � � ; f ) = P (�f ; � � � ;�f ), where here the bar denotes the
complex conjugate.

(50)

(51)

(52)
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Fig. 12. High-frequency intermodulation prediction (solid line) and
simulation with spectreRF (dashed line) for a switching pair operating as a
downconverter, versus bias current and for several LO frequencies. The model
corresponds to a 0.25�m technology, the channel width is 100�m, and the
the LO amplitude is 1 V.

Fig. 13. High-frequency intermodulation versus LO amplitude, for a fixed bias
current and several LO frequencies.

interaction can be neglected and the total mixer distortion
can be given as the sum of the intermodulation generated by
the transconductance stage and the switching pair separately,
in a similar fashion to (30) for the low-frequency case. It is
worth noting, however, in the example of Fig. 21, that when
the high-frequency switching-pair nonlinearity dominates
the mixer distortion, the interaction between the two stages
partially improves linearity and the total mixer intermodulation
is lower than that of the switching pair alone. This behavior is
not observed at low frequencies.

B. Results and Comments

Fig. 12 shows intermodulation for downconversion operation,
as predicted with the above method and as simulated with Spec-
treRF, versus bias current and for several values of the LO fre-
quency. The quarter-micron technology whose BSIM3 version
3 model is available was used, the channel width was 100m
and the LO amplitude was 1 V. Similar simulation with the
BSIM3 version 2 model results in a high-frequency intermodu-
lation curve with large discontinuities, caused by discontinuities
in the derivatives of the gate–source capacitance of this model.

Fig. 13 shows intermodulation for the same switching pair of
the same 0.25-m technology, performing downconversion as

Fig. 14. The third-order time-varying Volterra coefficientP (t; f ; f ;�f )
for fixed LO frequencyf = 4 GHz, bias currentI = 8 mA, and two different
LO amplitudesV = 0.8 V and 2 V.

a function of the LO amplitude for a fixed bias current
mA and several LO frequencies. We observe that contrary

to the low-frequency case where the intermodulation improves
monotonically as the LO amplitude increases, at high frequen-
cies there exists an optimal value after which the intermodu-
lation increases. The same behavior is observed for upconver-
sion and has also been reported for bipolar transistor switching
pairs in [10], [11]. Because of the higher voltage swing of the
common-source node when the LO amplitude is high, higher
current is injected by the parasitic capacitances which accentu-
ates the high-frequency phenomena and alters the periodic op-
erating point of the devices. Fig. 14 shows the real part of the
third-order time-varying Volterra coefficient
of an upconverter over one LO period, for two different values
of the LO amplitude, 0.8 and 2 V, and for the same bias cur-
rent 8 mA and LO frequency 4 GHz (for upconversion the com-
plex exponentials of (50)–(52) approach 1 and the time-varying
Volterra coefficients are mostly real).

Let us qualitatively comment on the role of the body effect.
We have already established in Section III-A that at low fre-
quencies the behavior of the switching pair is largely insensi-
tive to the body effect. Observe that in the– relation of the
transistor, the sum appears. Whenever because of a
change in the LO voltage or the transconductance stage current
a change in occurs, the change in is smaller in the
presence of body effect than in its absence, because part of the
variation in is contributed by the change in . Re-
duced swing means that at high frequencies the body effect
effectively reduces the value of the capacitance connected to the
common-source node approximately by the quantity
where is the ratio of the small-signal body transconductance
over the small-signal gate transconductance (althoughdepends
on , for simplicity it is considered here a constant). A typical
value for the quantity is 0.9 and this modification to
the capacitance value causes only a minor change to the distor-
tion prediction. However, it has been taken into account in the
predicted curves shown in this paper.

Finally, let us comment on some assumptions adopted about
the local oscillator. The presence of a time-varying common LO
voltage results in an additional voltage swing of the common
source node and enhances the reactive effects which appear at
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Fig. 15. Comparison of the-high frequency intermodulation prediction using
realistic voltage-dependent capacitor models (solid line), a fixed-value capacitor
connected from the common-source node to ground (short dashed line), and
the simple approximation in which0:25C is a gate-source capacitor and
0:75C is a fixed capacitor to ground (long dashed line).

lower frequencies. This was also verified experimentally. The
assumption about the approximately sinusoidal shape of the LO
voltage waveform is usually realistic at high frequencies. In the
case that a tuned loadLC buffer provides the LO signal, the LO
waveform remains approximately sinusoidal as long as the load
capacitance is not dominated by the time-varying gate–source
capacitances. The presence of an output impedance of the local
oscillator causes small error in the predicted intermodulation
value if the actual applied LO waveform amplitude is considered
in the prediction.

C. High-Frequency Intermodulation in Terms of Normalized
Parameters

The calculation of the switching-pair intermodulation at high
frequencies is very fast when compared with the performance
of a circuit simulator. It requires, however, the use of numer-
ical methods and is not easily applicable by a designer. For this
reason we will attempt to capture the intermodulation perfor-
mance of the switching pair in graphs of normalized variables.

Having the ability to rapidly evaluate the intermodulation of
the switching pair, we can experiment with the related param-
eters. Neglecting the terms involving derivatives of the capac-
itances in (50)–(52) does not appreciably change the predic-
tion, while replacing all the time-varying capacitors by one of
constant value from the common-source node to ground
causes only a small inaccuracy. Since for the largest part of the
LO period one of M1 and M2 is cut-off, a reasonable value for

is the sum of the total junction capacitance to ground, the
gate–source capacitance of one of the two transistors in satura-
tion, and the gate–source overlap capacitance of the other tran-
sistor. To generate the following graphs of normalized variables
we will make the arbitrary but better than the constant capaci-
tance approximation that 0.25 is a gate–source capacitance
dependent on the transistor region of operation as in (38), and
the rest, 0.75 , is a constant capacitance to ground. Fig. 15
shows intermodulation of a switching pair operating as a down-
converter versus LO frequency, for a fixed capacitor connected
to the common-source node, for the simple model that arbi-
trarily breaks down as just described, and for the more

Fig. 16. High-frequency intermodulation versus bias current for several values
of the parametersC f and� for V = 1 V.

complete model of voltage-dependent capacitors described in
Section IV-A. In this simulation, the quarter-micron technology
was used, the channel width was 100m, the LO amplitude was
1 V, and several values of the bias current are shown. It is worth
noticing in this graph that for relatively high bias current, the
high frequency deterioration up to very high frequencies is al-
most negligible.

Fig. 16 shows intermodulation of the switching pair operating
as a downconverter versus bias current for a fixed LO amplitude
of 1 V, for several values of the parameter, and for several
values of the parameter , including the one that corre-
sponds to dc. We observe that the intermodulation at any given
frequency can be viewed as the sum of its value at low frequen-
cies and a high-frequency component. In addition, the high-fre-
quency component does not significantly depend on parameter
, and can be approximately calculated from the particular case

of which corresponds to square-law devices. For very
high frequencies, however, the curves for differentvalues start
to deviate. For V, the curve for
stands higher than that for V by approximately 6 dB.

For reasonably high LO amplitudes, and when capacitive ef-
fects are significant, we can assert that the subthreshold conduc-
tion of the devices does not significantly affect the mixer be-
havior. From (40) and (41), the common source potential equals

(68)

where is the common LO voltage. Using the latter in (39),
assuming square-law devices and neglecting the subthreshold
conduction, we obtain the equations that determine the high-
frequency intermodulation

(69)

(70)

where is the step function which equals its argument if it
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Fig. 17. Normalized high-frequency intermodulation for a downconverter and
square-law devices.

Fig. 18. Normalized high-frequency intermodulation for an upconverter and
square-law devices.

is positive and is zero otherwise. Equivalently

(71)

(72)

where the normalized time variable has also been
introduced. It is now apparent that the high-frequency part of
the intermodulation can approximately be expressed in terms of
two parameters, and .
Fig. 17 shows normalized intermodulation
for downconversion operation in terms of the two parameters.
These particular curves were obtained for LO amplitude 1 V,
but close agreement is observed if the calculations are repeated
with a different one. The same normalization can be shown to

Fig. 19. Measurement setup.

be valid for an upconverter. Letting , we obtain the corre-
sponding graphs shown in Fig. 18. In these normalized graphs
the body effect is neglected, but can be approximately accounted
for by reducing the capacitance value as discussed previously in
Section IV-B.

V. MEASUREMENTS

To experimentally verify the validity of our results, third-
order input intercept point (IIP) measurements were taken from
a single-balanced active CMOS mixer fabricated in the Philips
Qubic2 process. The measurement setup is shown in Fig. 19.
The LO frequency was 375 MHz, the input signal consisted of
two tones around 395 MHz spaced 60 kHz apart, and the output
was obtained at 20 MHz. The input was resistively matched to
50 .

The width of the transconductance stage transistor was
100 m, that of the switching pair devices was 200m, while
minimum channel length 0.8m was used for all the transis-
tors. An – curve was obtained using the available SPICE
model, and the parameters V , mA/V ,
and mV were extracted with curve fitting for a
100- m-wide device. The capacitances were also estimated
from the available SPICE model and provided a total effec-
tive capacitance of approximately 0.8 pF, connected to the
common-source node. For the total mixer intermodulation
prediction, the nonlinearity of the transconductance stage was
provided by a power series which can be easily derived from
the expressions given in the Appendix.

Fig. 20 shows measurements and prediction of IIPversus
bias current for a fixed LO amplitude of 1 V. Very good agree-
ment is observed. Also shown are the individual contributions
of the transconductance stage and the switching pair, as well
as the contribution that the switching pair would have at low
frequencies. The switching pair nonlinearity dominates at high
bias current. At low bias current, where the switching-pair per-
formance deteriorates compared to dc, the performance of the
transconductance stage is also poor, and as a result the total
mixer intermodulation prediction is almost identical with that
at low frequencies.



1472 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 35, NO. 10, OCTOBER 2000

Fig. 20. Intermodulation measurements versus bias current for a fixed LO
amplitudeV = 1 V.

Fig. 21. Intermodulation measurements versus LO amplitude for a fixed bias
currentI = 1:5 mA.

The high frequency effects are better demonstrated in Fig. 21
where the bias current is fixed at the low value of 1.5 mA and
the LO amplitude is swept from 0.5 to 2 V. The individual con-
tributions of the transconductance stage and the switching pair,
together with the total mixer IIPat low frequencies, are shown.
Clearly the large LO amplitude causes high-frequency deteri-
oration. Again, very good agreement between prediction and
measurement is observed.

VI. CONCLUSION

A nonlinearity analysis of the CMOS transistor switching
pair has been performed. We demonstrated that in the frequency
band of interest its nonlinearity can be accurately described by
a regular power series, or Volterra series at high frequencies,
and we described how the coefficients of these series can be
calculated. As a result of our analysis we produced normalized
graphs from which the active-mixer intermodulation can be pre-
dicted for any technology parameters and operating conditions.
Using these, the designer can rapidly estimate the suitability of
a given CMOS process for a given set of mixer specifications,
and can accelerate the design cycle. Several useful results were
derived in the course of the analysis. The importance of a phys-
ical CMOS transistor model, describing weak, moderate, and
strong inversion with a single analytical equation was demon-
strated and a simple appropriate model was discussed and used.

APPENDIX

If is the – relation of a transistor in saturation
as given by (1) and (2), with direct differentiation we find

(73)

(74)

(75)

where

(76)

(77)

(78)

are the first three derivatives ofwith respect to ,

(79)

(80)

(81)

are the first three derivatives of with respect to , and

(82)
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