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ABSTRACT

Inspired by the possibility to experimentally manipulate and enhance chemical reactivity in helium nanodroplets, we investigate the effective
interaction and the resulting correlations between two diatomic molecules immersed in a bath of bosons. By analogy with the bipolaron,
we introduce the biangulon quasiparticle describing two rotating molecules that align with respect to each other due to the effective attrac-
tive interaction mediated by the excitations of the bath. We study this system in different parameter regimes and apply several theoretical
approaches to describe its properties. Using a Born–Oppenheimer approximation, we investigate the dependence of the effective inter-
molecular interaction on the rotational state of the two molecules. In the strong-coupling regime, a product-state ansatz shows that the
molecules tend to have a strong alignment in the ground state. To investigate the system in the weak-coupling regime, we apply a one-phonon
excitation variational ansatz, which allows us to access the energy spectrum. In comparison to the angulon quasiparticle, the biangulon
shows shifted angulon instabilities and an additional spectral instability, where resonant angular momentum transfer between the molecules
and the bath takes place. These features are proposed as an experimentally observable signature for the formation of the biangulon quasi-
particle. Finally, by using products of single angulon and bare impurity wave functions as basis states, we introduce a diagonalization
scheme that allows us to describe the transition from two separated angulons to a biangulon as a function of the distance between the two
molecules.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5144759., s

I. INTRODUCTION

Effective interactions between quantum particles play an
important role in several areas in physics. One of the most promi-
nent effective interactions is the Coulomb potential, which emerges
in quantum electrodynamics from the exchange of virtual pho-
tons in the non-relativistic limit.1 Other important examples are
provided by bath-mediated interactions, for example, the phonon-
mediated interaction between two polarons,2 that is, between
two electrons in a crystal that are dressed by a cloud of lat-
tice excitations. This effective attractive interaction can balance
the Coulombic repulsion between the electrons and results in the

formation of the bipolaron quasiparticle3,4—a bound state that has
been proposed as one of the mechanisms behind high-temperature
anomalous superconductivity.5 In the case of sufficiently strong
electron–phonon interactions, also more complex polaronic struc-
tures such as electronic Wigner crystals,6–8 polaron molecules,
and clusters9–11 can form. Moreover, the electron–phonon cou-
pling has been used to explain the thermodynamic and optical
properties of quantum dot devices.12,13 Finally, attractive electron
interactions mediated by phonons are found to be able to over-
come the direct Coulomb repulsion in deformable molecular quan-
tum dots, paving the way for the realization of polaronic memory
resistors.14,15
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In the context of ultracold atoms, various theoretical meth-
ods have been developed to study bath-mediated correlations in
Bose–Einstein condensates in the case of attractive/repulsive cou-
plings16,17 and for weakly18/strongly interacting systems.19–22 Effec-
tive quasiparticle–quasiparticle interactions have been investigated
using variational methods,3,4 Dyson’s equation,23 and a scattering
matrix approach,24,25 to name only a few. Besides electron–phonon
coupling, other kinds of indirect interactions play a key role in quan-
tum systems, such as the Ruderman–Kittel–Kasuya–Yosida inter-
action,26,27 giving rise to complex magnetic phases such as spin
glasses.28

In this paper, we analyze the effective interaction between
two diatomic molecules mediated by a bosonic bath. Unlike elec-
trons or ground-state atoms, the low-energy degrees of freedom
for molecules involve rotations, leading to an exchange of angu-
lar momentum between the molecule and the bath. Recently, it has
been shown that individual molecules interacting with a bosonic
bath form angulon quasiparticles—rigid rotors dressed by a cloud
of excitations carrying angular momentum.29–32 The results of this
theory are in good agreement with a wide range of experimental
data including static and dynamicmolecular properties.33–37 In addi-
tion to this, it was shown that due to the non-Abelian SO(3) alge-
bra and the discrete energy spectrum inherent to rotations, novel
phenomena such as effective magnetic monopoles38 and anomalous
electrostatic screening39 can emerge. During recent years, molecular
complexes in He nanodroplets have been created (see, e.g., Refs. 40–
43), and techniques to control molecular alignment in helium have
been developed.34,36,37 These and other experimental advances pave
the way to control and enhance chemical reactivity inside superfluids
at the microscopic level.

This motivates us to investigate the effective phonon-mediated
interactions between two molecules immersed in a bosonic bath.
To investigate the system in various parameter regimes, we apply
different theoretical approaches based on angulon theory and sev-
eral approximations, such as a product-state ansatz, a one-phonon-
excitation variational approach, and a diagonalization scheme based
on single angulon basis states.

All approaches we use in this paper suggest the appearance of a
correlated state that we call the biangulon. It consists of two diatomic
molecules that align with respect to each other due to the effective
phonon-mediated interaction. We characterize this effective inter-
action within the Born–Oppenheimer approximation and show that
it depends on both the angular momentum quantum number L and
the magnetic quantum numberM of each of the two molecules and
that it favors states whose phonon clouds overlap strongly with the
molecules. Within the Pekar approximation,44 we show that two
diatomic molecules show a strong alignment in the strong-coupling
regime. Subsequently, employing a one-phonon ansatz, we find that
the biangulon shows two spectral instabilities in the weak-coupling
regime as well as a shift of the angulon instabilities. These features
are proposed as an experimental signature for the formation of a
biangulon. Finally, a diagonalization scheme based on a single angu-
lon and bare rotor basis functions is used to investigate a system,
where the coupling between the bath and one of the two impuri-
ties is weaker than the one of the other. In this situation, we study
the transition from separated angulons to a biangulon by calculating
the wavefunction and the rotational correlations between the two
molecules.

II. THE MODEL

We consider two rigid linear molecules (i = 1, 2), whose posi-
tion is fixed in space at (0, 0, ±d/2) in the laboratory frame with
coordinates {X, Y, Z}, (see Fig. 1). The rotational kinetic energy of
the ith molecule is given by31

Ĥ(i)mol = Bi Ĵ
2
i , (1)

where we denote the rotational constant and the angularmomentum
operator of the ith molecule by Bi and Ĵi, respectively. Here and in
the rest of this paper, we assume that the two molecules have the
same rotational constant B = B1 = B2.

The molecules are immersed in a bath of phonons, whose
kinetic energy is given by

Ĥbos =∑
k

ω(k)b̂†

kb̂k. (2)

By ω(k) with k = |k|, we denote the phonon dispersion relation,

which will be specified later, and b̂†

k, b̂k with ∥b̂k, b̂†
q∥ = (2π)3δ(k−q)

are the usual bosonic creation and annihilation operators of an
excitation with momentum k, respectively.

We assume the coupling between the impurities and the
phonons to be linear in the phonon field. In the molecular coordi-
nate frame with coordinates {xi, yi, zi} (see Fig. 1), their interaction
is therefore given by

Ĥ(i)int =∑
k

V(k, θ̂i, ϕ̂i)b̂†

k + H.c. (3)

with the effective interaction potentialV(k, θ̂i, ϕ̂i). A detailedmicro-
scopic derivation of an effective interaction of the form (3) for
the case of an impurity immersed in a Bose–Einstein condensate
is presented in Refs. 29 and 31. The interaction (3) also serves
as a reliable phenomenological model for molecules immersed in
helium nanodroplets.33–37 In this paper, we focus on intermolecular
forces mediated by phonons and therefore neglect direct molecule–
molecule interactions, such as electrostatic, induction, and disper-
sion potentials,45 which can, however, be added to the theory in

FIG. 1. Schematic illustration of two rotating molecular impurities interacting with a
bosonic atom. The origin of the laboratory frame, {X, Y, Z}, is chosen in the middle
between the two molecules on the Z-axis. Anisotropic molecule–boson interactions
are defined in the molecular coordinate frames labeled by {xi , y i , zi } (i = 1, 2).
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a straightforward manner. In the case of two non-polar diatomic
molecules at a moderate distance, the only potentially relevant inter-
action we neglect is the screened (by the helium atoms) van der
Waals interaction between the molecules.

As schematically depicted in Fig. 1, the two molecules are
placed along the Z axis at the points (0, 0, ±d/2) so that the Hamil-
tonian of the full system in the laboratory frame, {X, Y, Z}, is
given by

Ĥ = BĴ
2
1 + BĴ

2
2 +∑

k

ω(k)b̂†

kb̂k

+∑
k

[V(k, θ̂1, ϕ̂1)e−i k⋅d2 + V(k, θ̂2, ϕ̂2)ei k⋅d2 ]b̂†

k + H.c. (4)

To obtain this representation, we applied the translation operator

T̂(r) = exp(−ir ⋅ ∑k kb̂
†

kb̂k) to the interaction term in Eq. (3) (see
also Ref. 46).

III. ANGULONS AND BIANGULONS

If the distance between the two molecules is sufficiently large,
each single impurity can be described by a (appropriately translated)
Hamiltonian of the form

Ĥ(i) = BĴ
2
i +∑

k

ω(k)b̂†

kb̂k +∑
k

V(k, θ̂i, ϕ̂i)b̂†

k + H.c., (5)

describing one rotating impurity immersed in the bosonic bath. It
has been shown that the above Hamiltonian allows for a descrip-
tion of the rotating impurity in terms of the angulon quasiparticle in
many different experimental settings, ranging from ultracold gases47

to helium nanodroplets.33 The concept of the biangulon quasiparti-
cle we propose in this paper is based on the analysis of the Hamil-
tonian (4). If the two molecules come close enough together, they
will be subject (as we will see below) to an effective attractive inter-
action mediated by the bosonic bath. As a consequence, a correlated
state, where both rotors are dressed by the bath and at the same time
strongly interact with each other, is formed. This correlated state is
characterized by the fact that the two rotating molecules align with
respect to each other such that the phonon cloud of each molecule
overlaps with that of the other molecule. This behavior is very dif-
ferent from that of two uncorrelated (or weakly correlated) angulons
and can be found in the regimes of moderate and strong coupling.

The system of the two impurities placed at (0, 0, ±d/2) is rota-
tionally symmetric around the z axis, and hence, the biangulon
quasiparticle can be characterized by the magnetic quantum num-
ber M of the entire system. This should be compared to the angu-
lon, where one has a full rotational symmetry and the total angular
momentum L is also a good quantum number.

In the case of two polarons, a bipolaron can form if the effective
interaction between the two impurities allows for a bound state.48

Since our molecules have a frozen center-of-mass motion, this defi-
nition is clearly not appropriate, and we therefore opt for the defini-
tion above. In practice, we expect the two definitions to coincide if
the effective attractive interaction between the molecules allows for
a bound state.

In Secs. IV–VI, we will quantitatively study the above
two-impurity system and its properties with various theoretical
approaches and in different parameter regimes.

IV. PRODUCT-STATE ANSATZ

A. Phonon-mediated intermolecular forces

When the characteristic timescale of the phonons is much
shorter than that of molecular rotations, one can assume that the
phonons adjust instantaneously to changes of the molecular orienta-
tion in space and a Born–Oppenheimer approximation is valid. This
corresponds to a product-state ansatz

∣ψb⟩ = ∣mol⟩Û∣0⟩. (6)

Analogous to the Pekar ansatz for polarons,2,44 the unitary Û in the
above equation is chosen as

Û = exp[−∑
k

( ⟨ f̂ ⟩
ω(k) b̂†

k −
⟨ f̂ ⟩∗
ω(k) b̂k)], (7)

where

⟨ f̂ ⟩ = ⟨mol∣V(k, θ̂1, ϕ̂1)e−i k⋅d2 + V(k, θ̂2, ϕ̂2)ei k⋅d2 ∣mol⟩. (8)

We stress that the description of the bath in terms of the coherent
stateÛ|0⟩ in Eq. (6) takes an arbitrary number of phonon excitations
into account.

Since we are interested in angular momentum exchange
between the molecules and the environment, it is convenient to
expand the bosonic field operators in the angular momentum
basis as

b̂†

k =
(2π)3/2

k
∑
λμ

b̂†

kλμi
λY∗λμ(θk,ϕk) (9)

(see Ref. 31). Here, b̂†

kλμ creates a phonon with radial momentum k,

angular momentum λ, and projection onto the z-axis μ. By Yλμ(θk,
ϕk), we denote the spherical harmonics. Additionally, θk and ϕk are
the angles determined by k in spherical coordinates, and k denotes
its absolute value. The inverse relation reads

b̂†

kλμ =
k(2π)3/2 ∫ dϕkdθk sin(θk)b̂†

ki
−λYλμ(θk,ϕk). (10)

We also write the interaction potential as

V(k, θ̂i, ϕ̂i) =∑
λμ

(2π)3/2i−λUλ(k)
k

Yλμ(θk,ϕk)Y∗λμ(θ̂i, ϕ̂i), (11)

where the potential has been expanded in partial wave components
Uλ(k).

31

For specific molecular rotational states |mol⟩ = |L1M1L2M2⟩,
where Li and Mi denote the angular momentum quantum number
and the magnetic quantum number of the ith molecule, the energies
EBA = ⟨ψb|Ĥ|ψb⟩ of the Hamiltonian (4) can be readily calculated.
Applying the same approach to a single molecular impurity in a

state |LiMi⟩, one obtains the energy E(i)A of one angulon quasiparti-
cle. In order to measure the strength of the interaction between two
angulons, we define the effective angulon–angulon interaction as

ΔE = EBA − E
(1)
A − E

(2)
A . (12)

A similar definition for two polarons can be found in Refs. 3 and 4.
Here and in what follows, we choose parameters that are well

suited to describe two molecular impurities immersed in a bath of
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superfluid 4He. More precisely, we choose the phonon dispersion

relation as ω(k) = √ε(k)(ε(k) + 2gbbn), where ε(k) = k2/2m and
gbb = 4πa/m with the scattering length a and the mass m of the
helium atoms. The function ω(k) is an approximation to the dis-
persion relation of sound waves in liquid helium, which is valid at
low momenta. By n, we denote the density of the helium atoms. To
describe a typical atom–molecule interaction, we choose

Uλ(k) = uλ( 8nk2ε(k)∥ω(k)(2λ + 1)∥)
1/2

∫ drr2fλ(r)jλ(kr) (13)

with Gaussian form factors fλ(r) = (2π)−3/2e−r2/(2r2λ). Here, jλ(kr)
denotes the spherical Bessel function. The coupling strengths and
the potential radii are chosen as u0 = u2 = 218B, uλ = 0 if
λ ≠ 0, 2 and r0 = r2 = 1.5(mB)−1/2, respectively.29,49 We also
choose a = 3.3(mB)−1/2, which reproduces the speed of sound
in superfluid helium for a molecule whose rotational constant is
B = 2π × 1 GHz.29,50

In Fig. 2, we show the dimensionless effective interaction
ΔẼ =ΔE/B as a function of (a) the dimensionless molecule–molecule
distance d̃ = d(mB)−1/2 and (b) the dimensionless bath density

FIG. 2. Dimensionless angulon–angulon interaction ΔẼ = ΔE/B [Eq. (12)] calcu-
lated using the product-state ansatz [Eq. (6)] as a function of (a) the dimensionless

molecule–molecule distance d̃ = d(mB)−1/2 and (b) the dimensionless bath den-

sity ñ = n(mB)−3/2. We have chosen ñ = 1 for the bath density in (a) and d̃ = 1 for
the distance between the molecules in (b). The black solid line, blue dashed line,
magenta dotted line, and red dashed–dotted line have been computed with the
molecular states |L1M1L2M2⟩ = |0000⟩, |1000⟩, |1100⟩, and |1010⟩, respectively.
The squared absolute value of the wave functions related to the different molecular
states (with colors as introduced in the legend) is schematically shown in (c). For
more information, see the text.

ñ = n(mB)−3/2. The squared absolute value of the wave functions
related to the different molecular states (with colors as introduced in
the legend) is schematically shown in (c). In (a), the density is ñ = 1,

and in (b), the molecule–molecule distance is fixed as d̃ = 1. When
the two molecules are placed far away from each other or when the
surrounding bath is sufficiently dilute, the effective interaction is
small and the system resembles two separate angulons.

Outside this parameter regime, we observe an attractive inter-
action between the two rotors (ΔẼ < 0), which results from the linear
coupling in the Hamiltonian (4). It is sensitive to the rotational state
of the two molecules and takes its largest values when the overlap
of the phonon density of each of the two molecules with that of the
other molecule is maximal. Accordingly, it depends also on the mag-
netic quantumnumbersM1 andM2. For example, the effective inter-
action between molecules in the state |L1M1L2M2⟩ = |1000⟩ (blue
dashed line in Fig. 2) is stronger than the one between molecules
in the state |1100⟩ (magenta dotted line). The interaction energy
of the latter state is even weaker than the one of the state |0000⟩
(black solid line), and the state |1010⟩ shows the largest interaction
energy among the ones that have been considered (see also Fig. 2(c)
for the shapes of the orbitals related to these molecular states).
The anisotropy of the molecular wave function of one molecule is
responsible for a similar anisotropy of its phonon cloud. The inter-
action energy is large if this anisotropy causes a strong overlap of the
molecule phonon cloud with that of the other molecule. In general,
the states with M1 = M2 = 0 show the largest effective interaction.
Such an effective interaction clearly favors a biangulon-like behavior
if the impurities are sufficiently close.

The saturation of the effective interaction for large densities ñ
in Fig. 2(b) is a consequence of the fact that the phonon dispersion

relation ω(k) and ∣⟨ f̂ ⟩∣2 are both proportional to
√
ñ in this regime

[see Eqs. (11), (13), and (15) in Sec. IV B]. The states |1, 1, 1, 1⟩ and
|1, 1, 1, −1⟩ have the same interaction energy, that is, the effective
interaction is not sensitive to whether the twomolecules rotate in the
same or in opposite directions. Since both molecules have the same
rotational constant B, one obtains the same result if their quantum
numbers are exchanged.

B. Relative molecular orientation in the ground state

In this section, we study the ground state of two molecules
immersed in the bath of phonons within the Pekar approxima-
tion. Accordingly, we minimize the expectation of the Hamiltonian
(4) over the molecular part of the wave function in (6), similar to
Ref. 44. This approximation is expected to be valid in the strong-
coupling regime.51,52

More precisely, we expand the molecular wave function in
angular momentum eigenfunctions as

∣mol⟩ = ∑
L1 ,M1 ,L2 ,M2

sL1 ,M1 ,L2 ,M2 ∣L1M1⟩∣L2M2⟩. (14)

In the following, we abbreviate c = (L1,M1, L2,M2). When we insert
(14) into (6) and compute with this wave function the expectation
value of Ĥ [Eq. (4)], we obtain the Pekar functional

EBA(s) =∑
c

(B∥L1(L1 + 1) + L2(L2 + 1)∥∣sc∣2 −∑
k

∣⟨ f̂ ⟩∣2
ω(k) ) (15)
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as well as the biangulon energy

EBA = min
∑c ∣sc ∣

2
=1

EBA(s). (16)

Similarly, we find the energy EA of one impurity within the Pekar
approximation, and we have

ΔE = EBA − 2EA. (17)

To minimize EBA(s) numerically, we introduce the cutoff L1,
L2, |M1|, |M2| ≤ 4 for the values of the angular momentum quan-
tum number. The minimization is then carried out with a stochastic
simulated annealing procedure based on moves that can reach any
allowed value of the variational coefficients.53 More details on the
procedure can be found in the Appendix.

For a better understanding of the resulting state, we also con-
sider the alignment cosine

⟨cos2 θ1⟩ =∑
c,c′

s̃∗c′ s̃c⟨L′1M′1∣ cos2 θ1∣L1M1⟩δL′2 ,L2δM′2M2
, (18)

where s̃ denotes the minimizer of EBA. The expectation value on
the left-hand side is taken with respect to the state |ψb⟩ in Eq. (6),
where the molecular wave function is replaced by the wave func-
tion in Eq. (14) with coefficients given by s̃. From our computa-
tions, we see that the minimizer of EBA is a product state that is
symmetric in the two impurities (for the case B = B1 = B2). This
implies that ⟨cos2θ1⟩ = ⟨cos2θ2⟩, and hence, we can use Eq. (18)
to measure the anisotropy of the molecular orientation of both
molecules.

In Fig. 3, we show the contour plot of (a) the alignment
cosine ⟨cos2θ1⟩ and (b) the dimensionless effective interaction
ΔẼ = ΔE/B as a function of the dimensionless molecule–molecule
distance d̃ = d(mB)−1/2 and the dimensionless bath density
ñ = n(mB)−3/2. In (c), we show schematic figures of the wave func-

tions of the twomolecules for the parameters ñ = 1 and d̃ = 0.3 (left),
d̃ = 3 (middle) and d̃ = 8 (right). As one would expect,
the effective interaction is an increasing function of the bath
density and a decreasing function of the distance between the
impurities.

For large distances, the ground state is given by the impurity
wave function |L1M1L2M2⟩ = |0000⟩, and the two molecules form
two isolated angulon quasiparticles with no preferential orientation.
In this case, the alignment cosine equals 1/3 [see Fig. 3(b)]. If they
come closer together, contributions with nonzero angular momen-
tum and Mi = 0 for i = 1, 2 become relevant [compare with (c)].
This is in accordance with the analysis in Sec. IV A (see Fig. 2)
where we found that such states maximize the overlap of the phonon
cloud of each of the two impurities with that of the other impu-
rity and therewith also their attractive interaction. This behavior is
also captured by the alignment cosine, which takes its largest values

around d̃ = 3. In this region, the two impurities form a biangulon
quasiparticle, which is characterized by the fact that their relative
orientation is strongly correlated and that their phonon densities are
highly anisotropic.

If the distance is further decreased, the phonon clouds are
already substantially overlapping with themolecules if the molecular
wave function is almost rotationally symmetric and an anisotropy of

FIG. 3. Contour plot of (a) the alignment cosine ⟨cos2θ1⟩ [Eq. (18)] and (b) the

dimensionless effective interaction ΔẼ = ΔEBA/B [Eq. (17)] of one of the molecules
computed within the Pekar approximation as a function of the dimensionless

molecule–molecule distance d̃ = d(mB)−1/2 and dimensionless bath density

ñ = n(mB)−3/2. (c) Schematic figures of the wave functions of the two molecules

for the parameters ñ = 1 and d̃ = 0.3 (left), d̃ = 3 (middle), and d̃ = 8 (right). For
more details, see the text.

the molecular orientation is no longer beneficial. This is indicated

by ⟨cos2θ1⟩ → 1/3 for small d̃. In other words, the short distance
behavior of the two impurities is a perturbation of the extreme case

d̃ = 0, where the model has full rotational symmetry. In practice,
one would need to numerically evaluate the intermolecular interac-
tions from the quantum chemistry perspective, taking into account
the overlap of themolecular electronic states, in order to describe the

relevant physics in the regime of very small d̃ correctly. In addition,
attractive and repulsive potentials could lead to chemical reactions.
The inclusion of these effects goes, however, beyond the scope of this
paper.

Finally, let us note that the Gaussian form factors and our
choice of the dispersion relation imply that the effective interaction

is an exponentially decaying function of the distance d̃. This can
be seen as follows: We have already noted that the molecular wave

function is given by sc = δL1 ,0δM1 ,0δL2 ,0δM2 ,0 if d̃ is chosen sufficiently
large [compare with Fig. 3(b)]. In this case, we can write the effective
interaction as

ΔE = −
1

2π
∑
k

U2
0(k)
ω(k) [∑λ (2λ + 1)jλ(kd/2)2(1 + (−1)λ) − 1]. (19)
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With ∑λ(2λ + 1)jλ(x)
2 = 1 and ∑λ(−1)λ(2λ + 1)jλ(x)2 = sin 2x

2x ,54

Eq. (19) simplifies to

ΔE = −
1

2π
∑
k

U2
0(k)
ω(k) sin(kd)

kd
. (20)

Our choice of the form factor in Sec. IV A implies that

U0(k) = u0(8nk2ε(k)
ω(k) )

1/2
r40e
−r20k

2/2

25/2π
. (21)

We insert (21) and ω(k) from Sec. IV A into (20). An application of
Ref. 55 (Theorem IX.13 therein) shows the claim.

It should also be noted that for the Fröhlich parameters
ω(k) = ω0 and U0(k) = U0, one finds the well-known behavior52

ΔE ∝
1

d̃
. (22)

V. ONE-PHONON-EXCITATION VARIATIONAL ANSATZ

The product-state ansatz of Sec. IV describes molecular impu-
rities dressed by an arbitrary number of phonons in a coherent state
[cf. Eq. (7)]. Minimization over the impurity wave function yields
the Pekar approximation, which is expected to be valid for strong
molecule–bath interactions.51,52 When the molecule–bath interac-
tion is weak, however, we expect only a small number of phonons to
be excited. It is the aim of this section to investigate such a situation
in detail.

More precisely, we are going to use a one-phonon-excitation
variational ansatz, that is, we will allow for at most one phonon in the
system. Such an ansatz has been successfully applied in several dif-
ferent contexts (see Refs. 29, 56, and 57). For a system of two rotat-
ing molecules immersed in a bosonic bath, this variational ansatz
reads

∣ψ1-ph⟩ = g∣L1M1⟩∣L2M2⟩∣0⟩ +∑
c
βc∣ j1m1⟩∣ j2m2⟩b̂†

k∣0⟩, (23)

where c = (j1, m1, j2, m2, k), and the sum over k is actually an
integral. The variational coefficients g and βc are chosen such that
the magnetic quantum number M = M1 + M2 of the whole sys-
tem is a good quantum number and such that |g|2 + ∑c|βc|

2 = 1
holds. The first term in Eq. (23) describes two free rotors and a
bosonic bath in its vacuum state. In the second term, a phonon
with momentum k is excited and introduces correlations between
the two molecules and the bath. We expect the ansatz (23) to be
a good approximation in situations where the helium density ñ is
sufficiently dilute and/or when the distance between the two impu-
rities is such that we still have moderate correlations between them.
Accordingly, it describes either a weakly correlated biangulon or two
weakly interacting angulons.

When we compute the expectation value of Ĥ (4) in the
state |ψ1-ph⟩ and minimize the functional F(ψ1-ph) = ⟨ψ1-ph|Ĥ
− E|ψ1-ph⟩ with respect to the variational coefficients, we obtain the
self-consistent equation

EBA = BL1(L1 + 1) + BL2(L2 + 1) − ΣBA
L1M1L2M2

(EBA) (24)

for the energy EBA. Here, the self-energy ΣBA
L1M1L2M2

(EBA) is given by

Σ
BA
L1M1L2M2

(EBA)
=∑

kλj1

2λ + 1

4π

U2
λ(k)[Cj10

L10,λ0
]2

Bj1(j1 + 1) + BL2(L2 + 1) + ω(k) − EBA
+∑

kλj2

2λ + 1

4π

U2
λ(k)[Cj20

L20,λ0
]2

BL1(L1 + 1) + Bj2(j2 + 1) + ω(k) − EBA
+ ∑

kλλ′μ

CL10
L10,λ0

CL1M1

L1M1 ,λμ
CL20
L20,λ′0

CL2M2

L2M2 ,λ′μ
Γλ,λ′(k,d)

BL1(L1 + 1) + BL2(L2 + 1) + ω(k) − EBA (25)

and

Γλ,λ′(k,d) = iλ−λ′
¿ÁÁÀ(2λ + 1)(2λ′ + 1)(4π)2 Uλ(k)Uλ′(k)∫ dϕk

×∫ dθk sin θk[eik⋅dYλ,μ(θk,ϕk)Y∗λ′ ,μ(θk,ϕk) + c.c.].
(26)

By Cl1m1

l2m2 ,l3m3
, we denote the Clebsch–Gordan coefficients.58

A. The spectral function and instabilities

As for a single molecule immersed in a bosonic bath,31 the self-
consistent equation (24) gives us access to the biangulon spectral
function

AL1L2(E) = Im∥GBA
L1M1L2M2

(E + i0+)∥, (27)

where

GBA
L1M1L2M2

(E) = 1

BL1(L1 + 1) + BL1(L1 + 1) − E − ΣBA
L1M1L2M2

(E)
(28)

denotes the retarded Green’s function, and therewith to the energy
spectrum of the system.

One of the most striking features of the angulon quasiparticle
is the onset of an intermediate instability regime, where resonant
transfer of angular momentum between the molecule and the bath
drastically decreases the quasiparticle weight.29 This phenomenon
has been observed experimentally.35 In order to make our results
comparable to the case of one molecular impurity, we choose in this
section the same parameters as in Fig. 2 of Ref. 29. In Fig. 4, we study
the biangulon spectral function (27) as a function of the dimen-
sionless energy ẼBA and (a) the dimensionless molecule–molecule

distance d̃ as well as (b) the dimensionless bath density ñ. In (a), we

have chosen ln(ñ) = −3, while d̃ = 0.6 in (b). The states are labeled
according to the first term in (23). The biangulon instabilities are
highlighted by the red dotted circles. The degeneracy of different
M = M1 + M2 states is lifted by the interaction. To keep the figures
accessible, we, however, only consider state withM1 = 0 =M2 here.
This is, on the one hand, because the quasiparticle instabilities for
states with M1, M2 ≠ 0 are very similar to the ones for states with
Mi = 0 and, on the other hand, because their energies are very close.

In Fig. 4(a), we see that the biangulon instabilities are only

slowly changing with the distance d̃ between the two impurities
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FIG. 4. Spectral function Aj1 j2(ẼBA) [Eq. (27)] of the biangulon as a function of the

dimensionless energy ẼBA and (a) the dimensionless molecule–molecule distance

d̃ as well as (b) the dimensionless bath density ñ for different angular momentum
states L1 and L2 with M1 = 0 = M2. The states are labeled according to the first
term in (23), and we use the notation |L1L2⟩ = |L1, M1 = 0, L2, M2 = 0⟩. In (a), the

bath density is chosen as ln(ñ) = −3 and the distance in (b) is given by d̃ = 0.6.
Biangulon instabilities are highlighted by red dotted circles. For details, see the
text.

and appear in a wide region of distances. In this regime, a descrip-
tion of the system in terms of the biangulon quasiparticle, or for
larger distances in terms of two separate angulons, breaks down. For
larger distances, this can be explained as follows: The two impuri-
ties are weakly interacting and therefore almost independent. If the
parameters are such that one of the two impurities experiences an
angulon instability, the quasiparticle picture breaks down and a fur-
ther increase in themolecule–molecule distance does not change this
situation.

We note that the instability region, as a function of the adimen-
sional density ñ, has approximately the same size as in the single
angulon case (see Fig. 2 of Ref. 29). We observe, however, that the
instability for the biangulon appears at lower densities. For instance,
the instability of a single angulon in the molecular state |LM⟩ = |10⟩
is located around ln(ñ) = −5 (see Fig. 2 in Ref. 29), while Fig. 4(b)
shows that the instability is shifted to the region around ln(ñ) = −6
when another molecule in the state |LM⟩ = |00⟩ is put at a distance
d̃ = 0.6 from the first one. Furthermore, two spectral instabilities can
be found in the biangulon spectrum where there is only one in the
case of the angulon: In Fig. 4(b), we see a first instability of the state

|L1L2⟩ = |21⟩ around ln(ñ) = −6 and a second around ln(ñ) = −4.
These two instabilities correspond to phonons excited by molecules
with different angular momentum quantum numbers (in this case,
L = 1 and L = 2). We can distinguish the two instabilities because
compared to the situation in Fig. 2 of Ref. 29, the relevant angu-
lon instabilities are shifted. Both features the shift of the spectral
instabilities and the appearance of a second instability can be used
in experiments as a measure for correlations between the two impu-
rities and therewith as a signature for the formation of the biangulon
quasiparticle.

We note that the spectral instability of the state |L1L2⟩ = |10⟩
appears at ln(ñ) = −5.2 if d̃ = 10 and not at ln(ñ) = −5 (see Fig. 2
of Ref. 29), as one would expect for two (almost) non-interacting
impurities. This shift is a consequence of our one-phonon excitation
variational ansatz, which forces the impurities to share one phonon
also if they are far apart from each other. The result is a slightly dif-
ferent dressing of the two impurities by the phonon compared to
the case of a single angulon (described by a one-phonon variational
ansatz) and explains the above deviation. A careful discussion of this
effect can be found in Sec. V B.

B. Effective interaction

Let us also consider the effective interaction between the
impurities,

ΔE = EBA − E
(1)
A − E

(2)
A , (29)

where E(i)A denotes the energy of the ith impurity computed with
a one-phonon-excitation variational ansatz (see Refs. 29 and 31).
In Fig. 5, we show ΔE as a function of the dimensionless dis-

tance d̃ for the same quantum numbers as in Fig. 2, where the
Born–Oppenheimer approximation has been considered. As one
can expect from our discussion there, ΔE depends on the magnetic
quantum numbers of the molecules. The qualitative behavior of

FIG. 5. Effective interaction ΔẼ obtained with the one-phonon-excitation varia-
tional ansatz (23) for molecular states |L1M1L2M2⟩ = |0000⟩ (black solid line),
|1000⟩ (blue dashed line), |1100⟩ (magenta dotted line), and |1010⟩ (red dashed-

dotted line) as a function of the dimensionless molecule–molecule distance d̃. The
states are labeled according to the first term in Eq. (23). The bath density is chosen
such that ln(ñ) = 0. For more details, see the text.
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the effective interaction is the same as in the case of the Born–
Oppenheimer approximation, that is, the state |1010⟩ has the largest
effective interaction, followed by |1000⟩ and |0000⟩, and the effec-
tive interaction is the smallest in case of |1100⟩. As above, we labeled
states according to the first term in Eq. (23). In particular, states with
M1 = 0 =M2 have a larger effective interaction than states withM1,
M2 ≠ 0. The intuition behind this has been explained in detail in
Sec. IV A. In contrast to the strong coupling case, the effective inter-
action does not go to zero for large molecule–molecule distances.
As we will see below, this is due to the fact that one phonon cannot
dress two impurities in the same way as one phonon dresses a single
impurity.

To investigate this in some more detail, we have a closer look
at the self-energy Σ

BA
L1M1L2M2

(EBA) in Eq. (25) in the limit d → ∞.
The first two terms in this equation are the self-energy contribu-
tions of the two molecules, while the third term is related to the
effective interaction between them. Since this last term vanishes
for d → ∞, we only need to consider the first two terms. To keep
things simple, we also assume that the two molecules are in the same
angular momentum state, i.e., L1 = L2 = l and M1 = M2 = m. The
self-consistent equation (24) for the energy thus reads

ẼBA(Uλ) = 2Bl(l + 1) −∑
kλl′

2λ + 1

4π

×

2U2
λ(k)[Cl′0

l0,λ0]2
Bl′(l′ + 1) + Bl(l + 1) + ω(k) − ẼBA(Uλ) , (30)

where ẼBA(Uλ) = limd→∞ EBA(Uλ). We want to compare the solu-
tion of this equation to the energy of two separate molecules, that
is, to twice the energy of one molecule dressed by one phonon.
Such a system has been considered in Ref. 29, and the self-consistent
equation for the energy is given by

EA(Uλ) = Bl(l + 1) −∑
kλl′

2λ + 1

4π

U2
λ(k)∥Cl′0

l0,λ0∥2
Bl′(l′ + 1) + ω(k) − EA(Uλ) (31)

in this case. One easily checks that a solution of (30) can be written
in terms of a solution of (31) as

ẼBA(Uλ) = Bl(l + 1) + EA(√2Uλ). (32)

Here, EA(√2Uλ) is the energy of one single molecule but with the

interaction potential
√
2Uλ instead of Uλ in the relevant Hamilto-

nian. One also checks that the right-hand side of Eq. (32) is strictly
larger than 2EA(Uλ). These results can be explained with the follow-
ing simple physical picture: The phonon in the system is located with
probability 1/2 close to one molecule and with probability 1/2 close
to the other molecule. This results in an effective potential, which is,
compared to the case of one molecule and one phonon, reduced by

a factor of 1/√2 coming from the phonon wave function. The fact
that we have a linear coupling and that there are two such interac-

tion terms, one for each molecule, explains the factor of
√
2 = 2/√2

in front of the interaction potential.
The above physical picture is also present in the wave function

of the system. If we substitute the relation between the variational

coefficients

−βj1m1j2m2k/g = e−i
1
2
k⋅d⟨j1m1∣V̂ ∣L1M1⟩δj2L2δm2M2

Bj1(j1 + 1) + Bj2(j2 + 1) + ω(k) − EBA
+

ei
1
2
k⋅d⟨j2m2∣V̂ ∣L2M2⟩δj1L1δm1M1

Bj1(j1 + 1) + Bj2(j2 + 1) + ω(k) − EBA , (33)

which follows from the first variation of the energy, into the ansatz
[Eq. (23)], we find

∣ψc⟩ = 1√
2
[∣L1M1⟩⊗ ∣ψA

L2M2
(−d)⟩ + ∣ψA

L1M1
(d)⟩⊗ ∣L2M2⟩]. (34)

Here, ∣ψA
LM⟩ denotes the wave function of one single angulon and

reads

∣ψA
LM(d)⟩ = g√

2
∣LM⟩∣0⟩ + g√

2
∑
j1k

fL1 ,j1 ,L2(k,d)∣ j1m1⟩b̂†

k∣0⟩ (35)

with

fl1 ,l2 ,l3(k,d) = 2ei
1
2
k⋅d⟨l2∣V̂ ∣l1⟩

Bl3(l3 + 1) + Bl2(l2 + 1) + ω(k) − EBA . (36)

The wave function of the two impurities in Eq. (34) is given by
an equal weight superposition of a tensor product of one dressed
and one bare molecule, that is, the phonon is with probability 1/2
located close to the first molecule and with probability 1/2 close to
the second.

From this simple example, we learn that one phonon cannot
dress each of the two molecules in the same way as one phonon
would dress one single molecule. Accordingly, the effective interac-
tion ΔE (29) does not go to zero as d →∞ (see Fig. 5). We checked
that this is still true if we consider a trial state with two phonons of
the form

∣ψ⟩ = g∣L1M1⟩∣L2M2⟩∣0⟩ +∑β∣ j1m1⟩∣ j2m2⟩b̂†

k∣0⟩
+∑ γ∣ j′1m′1⟩∣ j′2m′2⟩b̂†

k1
b̂†

k2
∣0⟩, (37)

with variational coefficients g, β, and γ, to compute EBA [and a trial
state with one phonon (or with two phonons) to compute EA,1 and
EA,2]. That is, as the above physical picture suggests, two phonons
do not dress each of the two molecules (for d →∞) as one phonon
dresses (or two phonons dress) a single impurity. In order to obtain
an effective potential with the property limd→∞ΔE = 0, one would
need to consider a sufficiently large number of phonons to com-
pute EBA. In the case of a one-phonon or a two-phonon variational
state,

ΔE = EBA − lim
d→∞

EBA (38)

is therefore clearly a better definition for the effective interaction
between the two impurities than Eq. (29). Based on the above analy-
sis, we expect that a trial state with one or two phonons yields a good
approximation if the distance d between the two impurities is not
too large.

VI. THE ANGULON DIAGONALIZATION TECHNIQUE

In the one-phonon variational ansatz in Eq. (23), we fix the
angular momentum quantum numbers L1, M1, L2, M2 in the first

J. Chem. Phys. 152, 164302 (2020); doi: 10.1063/1.5144759 152, 164302-8

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics

ARTICLE scitation.org/journal/jcp

term on the right-hand side. It is important to note, however,
that the magnetic quantum number M of the whole system is its
only good quantum number. In this section, we ask the question
whether the ansatz in Eq. (23) is a good approximation also for small
molecule–molecule distances and therefore choose a class of trial
states, which allows for a substantial mixing of the different basis
states |L1,M1, L2,M2⟩ with fixedM1 +M2 =M in the term propor-
tional to the quasiparticle weight. To simplify the calculations, we
assume that the interaction of one of the impurities with the bath is
weaker than that of the other impurity. This could correspond, e.g.,
to the case of one heavier and one lighter molecule. The system is
described by the wave function

∣ψd⟩ = ∑
L,M,j,m

α
L,M
j,m ∣ψA

L,M⟩∣ jm⟩. (39)

Here, αL,Mj,m are variational coefficients that obey the usual normaliza-

tion condition and assure thatM +m = M̃ holds with some fixed M̃.
Additionally,

∣ψA
LM⟩ =√ZL∣LM⟩∣0⟩ +∑

kλj1

βkλj1C
LM
j1m1 ,λμ∣ j1m1⟩b̂†

kλμ∣0⟩ (40)

denotes the wave function of one single angulon with angular
momentum quantum numbers L, M. We obtain the coefficients
in Eq. (40) by considering the relevant one-impurity system (see
Ref. 29). The impurity described by the first tensor factor in Eq. (39)
is the one with stronger molecule–bath interaction, and therefore, it
is assumed to be already dressed by the phonon in the system. The
second impurity is described by a free rotor. Due to the generality of
the variational coefficients, the above ansatz allows for a substantial
mixing of different free rotor states in the part of the wave function
with no phonons. Using it, we can therefore describe the transi-
tion from two weakly coupled angulons, where the wave function
is approximately given by ∣ψA

L,M⟩∣ jm⟩ for some quantum numbers L,
M, j and m, to a strongly correlated biangulon quasiparticle, where
more than one of the coefficients αL,Mj,m are unequal to zero. The above
ansatz efficiently describes phonon-induced interactions between
the two molecules as long as the weakly interacting impurity has a
substantial overlap with the phonon density located around the first
molecule.

In Fig. 6, we show an example of such a phonon density. More
precisely, we show the angle-averaged phonon density

ρLM(r) = ∫ dϕrdθr⟨ψA
L,M ∣b̂†

r b̂r∣ψA
L,M⟩

=∑
λμ

⟨ψA
L,M ∣b̂†

rλμb̂rλμ∣ψA
L,M⟩, (41)

of one single impurity described by the angulon wave function

[Eq. (40)]. Here, b̂†
r creates one phonon at position r, and we used

b̂†
r =

1

r
∑
λμ

b̂†

rλμY
∗

λμ(θr,ϕr) (42)

[see Eq.(31)]. The operator b̂†

rλμ creates one phonon at distance r

from the origin with angular momentum quantum numbers λ and

μ. It can be written in terms of the operators b̂†

kλμ as

b̂†

rλμ =

√
2

π
r∫ kdkjλ(kr)b̂†

kλμ, (43)

FIG. 6. Angle-averaged phonon density ρLM (r) (41) around one single molecule

sitting at r = 0 as a function of the dimensionless distance r̃ = r(mB)−1/2 to
the origin. We have chosen u0 = u1 = u2 = 218B, uλ = 0 for λ ≥ 3 and r̃0 = r̃1
= r̃2 = 1.5(mB)−1/2, r̃λ = 0 if λ ≥ 3 as well as ñ = 1. The quantum numbers of
the angulon are L = 0, M = 0 (black solid line), L = 1, M = 0 (red dashed line), and
L = 2, M = 0 (blue dotted line). For more information, see the text.

where jλ(kr) denotes the spherical Bessel function.
54 The parameters

are chosen to be u0 = u1 = u2 = 218B, uλ = 0 for λ ≥ 3 and r̃0 = r̃1
= r̃2 = 1.5(mB)−1/2, r̃λ = 0 if λ ≥ 3. The density is given by ñ = 1,
and the quantum numbers of the angulon are chosen as L = 0,
M = 0 (black solid line), L = 1, M = 0 (red dashed line), and L = 2,
M = 0 (blue dotted line). As long as the distance between the two

impurities is below d̃ ≈ 6 for this choice of the parameters, the
ansatz (39) allows us to capture the interactions between the two
impurities.

For mathematical convenience, we assume from now on that
the stronger interacting impurity is sitting at the origin of the lab-
oratory frame and that the weaker interacting impurity is located at
(0, 0, d). To diagonalize the biangulonHamiltonian (4) with the basis
set (39), we write it as Ĥ = ĤA + ĤI, where

ĤA = B1 Ĵ
2
1 + B2 Ĵ

2
2 +∑

k

ω(k)b̂†

kb̂k +∑
kλμ

[V(k, θ̂1, ϕ̂1)b̂†

k + H.c.] (44)

and

ĤI =∑
k

[V(k, θ̂2, ϕ̂2)eik⋅db̂†

k + H.c.]. (45)

TheHamiltonian ĤA describes a single angulon29,33 and a bare rotat-
ing molecule and can therefore be considered as diagonal within our
approximation scheme. This allows us to write the matrix elements
of the biangulon Hamiltonian Ĥ with respect to the basis states in
Eq. (39) as

HL′M′j′m′

LMjm = [EL,M
A + Bj(j + 1)]δL′ ,LδM′ ,Mδj′ ,jδm′ ,m

+⟨ψA
L′ ,M′ ∣⟨ j′m′∣ĤI∣ jm⟩∣ψA

L,M⟩. (46)

In order to obtain the energies and eigenfunctions, we diagonalize
the Hamiltonian matrix (46) numerically with the angular momen-
tum cutoff L, L′, j, j′, |M|, |M′|, |m|, |m′| ≤ 2.

As parameters, we choose uλ ,1 = 2uλ ,2, where the second index
refers to the first and the second impurity, u0,1 = u1,1 = u2,1 = 218B
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and ñ = 1. We label eigenstates by their dominant basis vector

contribution at d̃ = 10, that is, at that distance, the eigenfunction∣ψA
L,M ; j,m⟩ approximately equals ∣ψA

L,M⟩∣ j,m⟩. The results of the diag-
onalization are presented in Fig. 7. In Fig. 7(a), we show the energy
of the ground state ∣ψA

0,0; 0, 0⟩ and six excited states. States that dif-
fer only by the magnetic quantum number of the two molecules are
degenerate if the distance between them is sufficiently large because
EL,M
A = EL,−M

A . This degeneracy is lifted when the particles start to

substantially interact around d̃ ≈ 6. In this regime, the eigenval-
ues related to ∣ψA

1,0; 0, 0⟩ (red solid line) and ∣ψA
2,0; 0, 0⟩ (black solid

line) start to split from those related to ∣ψA
1,±1; 0, 0⟩ (red dashed

line),∣ψA
2,±1; 0, 0⟩ (black dashed line), and ∣ψA

2,±2; 0, 0⟩ (black dotted

line), respectively. The states ∣ψA
1,±1; 1,∓1⟩ remain degenerate.

In Figs. 7(b)–7(e), we show the squared overlap of the eigenstate∣ψA
2,0; 0, 0⟩ (b), ∣ψA

1,±1; 1,∓1⟩ (c), ∣ψA
1,0; 1, 0⟩ (d), and ∣ψA

0,0; 0, 0⟩ (e) with
the different basis states. We note that all these states haveM + m =
0. The gray lines show the occupation of all other basis vectors. As
can be seen from these figures, different eigenstates of the Hamilto-
nian matrix (46) show different behavior during the transition from
two separate angulons to a biangulon if the distance between them is
decreased. The states ∣ψA

1,±1; 1,∓1⟩ and ∣ψA
1,0; 0, 0⟩, for example, show

a sharp transition, while this transition is less pronounced for the

FIG. 7. (a) The dimensionless biangulon energy of the ground state and of six
excited states obtained by diagonalizing the biangulon Hamiltonian (4) with the
base vectors used in (39). In (b)–(e), we show the squared overlap of the eigen-
state ∣ψA

2,0; 0, 0⟩ (b), ∣ψA
1,±1; 1,∓1⟩ (c), ∣ψA

1,0; 1, 0⟩ (d), and ∣ψA
0,0; 0, 0⟩ (e) with the

different basis states. The bath density has been chosen as ñ = 1. The gray lines
show the occupation all other basis vectors. For more information, see the text.

state ∣ψA
2,0; 0, 0⟩, and it is almost not present in the case of the ground

state ∣ψA
0,0; 0, 0⟩. This behavior is a result of the SO(3) algebra of angu-

lar momentum ruling the interaction between the two impurities.
More precisely, the contribution of each different angular momen-

tum basis state to a matrix element of the form ⟨V(k, θ̂2, ϕ̂2)eik⋅d⟩
shows a different dependence on the molecule–molecule distance d.
How these contributions are mixed is determined by the Clebsch–
Gordan coefficients and therefore by the SO(3) algebra. In general,
we can say that the states with M = 0 = m and L ≠ j show the
most pronounced angulon to biangulon transitions. In the case of
M = 0 = m, the wave function is with good approximation, a super-
position of two basis states. As an example, we consider states of the
form

∣ψA
L,0; j, 0⟩ ≈ c1(d)∣ψA

L,0⟩∣ j, 0⟩ + c2(d)∣ψA
j,0⟩∣L, 0⟩ (47)

[compare with Figs. 7(b) and 7(d)]. This representation implies that
the angularmomentum is transferred from one impurity to the other
during the transition from two separated angulons to a biangulon
quasiparticle. The fact that exactly these two basis states appear in
Eq. (47) is again a result of the SO(3) algebra of angular momentum.
For several other basis states, we find a similar but less pronounced
angulon–biangulon transition. The weakest transition can be seen in
states of the form ∣ψA

L,0;L, 0⟩.
In order to investigate the transition from two angulons to a

biangulon for states that show a pronounced transition in more
detail, we consider correlation functions of the form

FÔ =
⟨Ô1Ô2⟩ − ⟨Ô1⟩⟨Ô2⟩⟨Ô1Ô2⟩max − ⟨Ô1⟩max⟨Ô2⟩max

, (48)

where ⟨⋅⟩ denotes the expectation with respect to one of the eigen-
functions of the two impurity problem and Ôi, i = 1, 2, is an
operator acting on the ith impurity. As an example, we consider
eigenstates that can with a good approximation be written as a
distance-dependent superposition of two basis states |v⟩ and |w⟩,
that is, states of the form

∣ψd⟩ ≈ c1(d)∣v⟩ + c2(d)∣w⟩ (49)

[compare with Eq. (47)]. The normalization in Eq. (48) is chosen
such that |FÔ| takes values between zero and one. More precisely, we
assume that the expectation ⟨⋅⟩max is taken with respect to the state

∣ψmax⟩ = 1√
2
(∣v⟩ + ∣w⟩). (50)

In the cases we consider, the state |ψmax⟩ maximizes the correlation
function among normalized states of the form given by Eq. (49).
Since the different eigenfunctions of the Hamiltonianmatrix (46) we
consider here have different dominant basis vectors in their expan-
sion, we also have to use different operators Ô to measure their
correlations.

The correlation functions related to four eigenstates of the
Hamiltonian matrix can be found in Fig. 8. We have chosen Ô
= cos(θ), ∣ψA

1,0; 0, 0⟩ (red solid line), Ô = cos2(θ), ∣ψA
2,0; 0, 0⟩ (black

solid line), Ô = sin(θ)e±iφ, ∣ψA
1,1; 0, 0⟩ (red dashed line), and Ô

= sin2(θ)e±i2φ, ∣ψA
2,2; 0, 0⟩ (black dotted line). The interaction

between the impurities is attractive, and hence, all correlation
functions are positive. The particular patterns that these functions
show are related to the shape of our interaction potential. All
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FIG. 8. Correlation function FÔ [Eq. (48)] as a function of the dimensionless

molecule–molecule distance d̃. The parameters are the same as in Fig. 7. The
colors of the graphs refer to the same states as in Fig. 7(a). For the operator Ô
and for the state ⟨⋅⟩, we made the following choice: Ô = cos(θ), ∣ψA

1,0; 0, 0⟩ (red

solid line), Ô = cos2(θ), ∣ψA
2,0; 0, 0⟩ (solid black line), Ô = sin(θ)e± iφ, ∣ψA

1,1; 0, 0⟩

(red dashed line), and Ô = sin2(θ)e± i 2φ, ∣ψA
2,2; 0, 0⟩ (black dotted line). For more

information, see the text.

correlation functions indicate that after the onset of interactions
between the two impurities around d̃ ∼ 6, the eigenstates of the
Hamiltonian matrix (46) we considered in Fig. 8 quickly start to be
substantially entangled and correlated when the distance between
them is further reduced—a clear signature that a biangulon quasi-
particle forms.

A similar but less pronounced behavior can be found for sev-
eral other eigenstates. The states ∣ψA

L,0;L, 0⟩ show, however, almost

no correlations and have ∣ψA
L,0⟩∣L, 0⟩ as a dominant basis vector for

all distances. The weakest correlation can be found in the ground
state. The fact that its wave function is with good approximation
given by ∣ψA

0,0⟩∣0, 0⟩ is in accordance with the analysis in the strong-
coupling regime in Sec. IV B, where we found that the ground state
is a product of two (the same) impurity wave functions. Here, the
system looked like a biangulon quasiparticle because of the substan-
tial anisotropy of themolecular orientations and because the phonon
cloud related to one molecule had a substantial overlap with that of
the other molecule (and the other way round). Due to the simplicity
of our approach, this is clearly not captured by the analysis in this
section. To take such effects into account, which would allow us to
investigate the transition from two separate angulons to a biangu-
lon also for the states ∣ψA

L,0;L, 0⟩ in more detail, we would need to
allow for more basis states in the expansion of the molecular states.
Additionally, we would need to treat also the phonon wave function
variationally. This, however, is beyond the scope of this paper.

VII. CONCLUSION

By applying translation operators to the previously introduced
angulon Hamiltonian, we obtained the Hamiltonian describing two
rotating molecules immersed in a bosonic bath. This model was
studied in different parameter regimes and using several theoret-
ical approaches. In all the parameter regimes, we found that the
molecules align with respect to each other as a result of the phonon

mediated effective attractive interaction (12) between them. To
describe the resulting correlated state, we introduced the biangulon
quasiparticle. In analogy to the bipolaron quasiparticle, it describes
two rotating molecules dressed by bosonic excitations.

We first considered the regime where the molecular rotation is
much slower than the characteristic timescale of the phonons. In this
situation, the phonon cloud adjusts itself instantaneously to changes
of the molecular orientation and a Born–Oppenheimer approxima-
tion is valid. Within this approach, we showed that the effective
intermolecular force mediated by the phonons is sensitive to the
rotational state of both molecules and takes its largest values when
the overlap of the phonon density with each of the two molecules is
maximal. Accordingly, the states with magnetic quantum numbers
M1 = 0 = M2, which preserve the symmetries of the Hamiltonian,
show the largest effective interaction.

The ground state of the system in the strong-coupling regime
has been investigated by minimizing the related Pekar functional.
In this model, the two molecules co-align in order to maximize the
overlap with the phonon cloud. If the molecules have no permanent
dipole moments, the screened van der Waals interaction we have
neglected in our analysis has little dependence on the angle between
the molecules. Accordingly, we expect the alignment of diatomic
molecules in helium droplets to be observable in experiments similar
to the single-molecule case.34,36,37,41

In the opposite regime, where the impurity-bath coupling is
relatively weak, we investigated the system with the help of a one-
phonon excitation variational ansatz, which allowed us to access the
excitation spectrum of the biangulon. In comparison to the angu-
lon spectrum, we observed an additional spectral instability, where
a resonant angular momentum transfer between molecules and the
bath takes place, as well as a shift of the angulon spectral instabil-
ities due to the presence of the second molecule. The same argu-
ments as at the end of the previous paragraph lead us to expect that
this behavior is qualitatively the same if a screened van der Waals
interaction between the two molecules is taken into account. If one
varies the density of the doped molecular impurities in the solvent
from a dilute to a moderately dense regime, we therefore expect to
observe the shifts of their spectral instabilities in their spectra as a
signature for the formation of the biangulon quasiparticle. Addi-
tionally, we pointed out that in our model, one or two phonons
cannot dress two molecules that are far apart from each other as
one phonon dresses one single molecule, which leads to a subtlety in
the definition of the effective phonon-mediated interaction for large
distances.

Finally, by using products of angulon and bare rotor states as
basis states, we investigated the system in the situation where the
interaction of one of the two impurities with the bath is substantially
weaker than that of the other. This approach allowed us to study the
transition from two separated angulons to a biangulon quasiparti-
cle as a function of the distance between the two molecules. In the
parameter regime where a biangulon has formed, the wavefunction
is a superposition of at least two of the above basis states. Accord-
ingly, angular momentum is transferred between the two molecules,
and the state is strongly correlated. This has to be contrasted with
the appearance of two uncorrelated or weakly correlated angulons at
a larger molecule–molecule distance.

The above results can be applied to molecules immersed
in superfluid helium droplets40 or in atomic Bose–Einstein
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condensates31 and can be extended to systems where the impurity
particles are Rydberg atoms59,60 or defects in solids.61
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APPENDIX: SIMULATED ANNEALING

The stochastic simulated annealing method that we applied
to minimize ground energy equation (16) is based on repeated
application of the following two moves:

1. Rotation of a variational coefficient in the complex plane, i.e., sc
→ sc exp(iφ), where the quantum numbers c = (L1,M1, L2,M2)
and the phase φ have been chosen from a random distribution.

2. Moving part of the complexmodulus of a coefficient to another
coefficient, i.e., going from a configuration of two coeffi-
cients that we parameterize in the polar representation as
sc = ρ exp(iφ), sc′ = (ρ′)exp(iφ′) to a different configuration
sc = (ρ − δ)exp(iφ), sc′ = (ρ′ + δ)exp(iφ′), where again the
quantum numbers c and c′, as well as δ, are chosen randomly.

It can be easily seen that these two moves span the whole
parameter space while automatically enforcing the normalization
condition. In the spirit of simulated annealing methods, each move
is accepted or rejected by evaluating the Boltzmann factor of the
energy difference using a monotonously decreasing effective tem-
perature. We have verified that this procedure is solid, yielding a
good estimate of the ground state energy at the level of maximum
Li = 4 (containing 1764 variational coefficients), independently of
the starting configuration, in agreement with non-stochastic meth-
ods that are usually slower and limited to much smaller cutoffs.
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