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Behavioral/Cognitive

Internal and External Influences on the Rate of Sensory
Evidence Accumulation in the Human Brain

Simon P. Kelly1 and Redmond G. O’Connell2

1Department of Biomedical Engineering, City College of the City University of New York, New York, New York 10031, and 2Trinity College Institute of

Neuroscience and School of Psychology, Trinity College Dublin, Dublin 2, Ireland

We frequently need to make timely decisions based on sensory evidence that is weak, ambiguous, or noisy resulting from conditions in the

external environment (e.g., a cluttered visual scene) or within the brain itself (e.g., inattention, neural noise). Here we examine how

externally and internally driven variations in the quality of sensory evidence affect the build-to-threshold dynamics of a supramodal

“decision variable” signal and, hence, the timing and accuracy of decision reports in humans. Observers performed a continuous-

monitoring version of the prototypical two-alternative dot-motion discrimination task, which is known to strongly benefit from sequen-

tial sampling and temporal accumulation of evidence. A centroparietal positive potential (CPP), which we previously established as a

supramodal decision signal based on its invariance to motor or sensory parameters, exhibited two key identifying properties associated

with the “decision variable” long described in sequential sampling models: (1) its buildup rate systematically scaled with sensory

evidence strength across four levels of motion coherence, consistent with temporal integration; and (2) its amplitude reached a stereo-

typed level at the moment of perceptual report executions, consistent with a boundary-crossing stopping criterion. The buildup rate of the

CPP also strongly predicted reaction time within coherence levels (i.e., independent of physical evidence strength), and this endogenous

variation was linked with attentional fluctuations indexed by the level of parieto-occipital �-band activity preceding target onset. In

tandem with the CPP, build-to-threshold dynamics were also observed in an effector-selective motor preparation signal; however, the

buildup of this motor-specific process significantly lagged that of the supramodal process.

Introduction
According to sequential sampling models, accurate perceptual
decisions are achieved in the face of sensory noise by integrating
evidence over time into a “decision variable” that triggers an
action upon reaching a criterion (Smith and Vickers, 1988; Smith
and Ratcliff, 2004). Primate neurophysiology studies have estab-
lished that such a quantity is explicitly encoded in the firing rate
of neurons in frontal (Kim and Shadlen, 1999) and parietal
(Shadlen and Newsome, 2001) oculomotor areas. Two cardinal
properties identify these neuronal signals with the theoretical
decision variable: (1) they reach a stereotyped level on action
execution, indicating a boundary-crossing effect; and (2) they
build over time at a rate that scales with the strength of the sen-
sory evidence, consistent with temporal integration (Gold and
Shadlen, 2007). Although a concerted effort has been made to
isolate analogous signals in the human brain (Heekeren et al.,
2008), no study has yet identified a signal whose buildup rate

deterministically mediates the relationship between evidence
strength and reaction time (RT).

Recently, we identified a decision signal (centroparietal positivity
[CPP]) in the human EEG that exhibited a boundary-crossing rela-
tionship with perceptual reports when participants detected gradual
intensity changes in a continuously presented stimulus (O’Connell
et al., 2012). Further, we showed that this signal is supramodal: it
builds during decision formation regardless of sensory parameters
or motor requirements. However, because the sensory evidence itself
increased over time at a rate that was fixed across trials, it was not
possible to establish the dependence of buildup rate on evidence
strength. Although a monotonic relationship has been well estab-
lished in premotor decision signals in monkeys, it is uncertain
whether a distinct supramodal counterpart in humans should ex-
hibit the same relationship, especially given that CPP onset latency
appeared to be a far stronger determinant of RT than buildup rate for
the fixed contrast-change targets of our previous study (O’Connell et
al., 2012). Here, we addressed this question using a continuous-
monitoring version of the prototypical random dot motion (RDM)
(Newsome et al., 1989, Britten et al., 1992) direction-discrimination
task, in which a continuously playing dot-motion patch steps from
zero to one of four non-zero, constant coherence levels at intermit-
tent times. Seamless coherence transitions avoid sudden intensity
changes, which would otherwise elicit large sensory-evoked poten-
tials that mask simultaneously active decision processes due to global
signal summation.

Our paradigm additionally allowed us to examine the relative
timing of evidence accumulation dynamics in supramodal versus
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effector-selective decision variable signals. Which process should
evolve first is uncertain because several signals resembling the
CPP are thought to peak after the first-order decision (e.g., Nieu-
wenhuis et al., 2005; Murphy et al., 2012). Finally, we tested the
extent to which across-trial variability in CPP buildup rate pre-
dicts RT within coherence levels (i.e., independently of the phys-
ical evidence), and further, the extent to which buildup rate itself
varies with fluctuations of attentional engagement reflected in
pretarget levels of posterior �-band activity (e.g., O’Connell et al.,
2009).

Materials and Methods
Participants. Eighteen participants gave written informed consent, and
all procedures were approved by the ethical review board of the School of
Psychology, Trinity College Dublin. Ethical guidelines were in accor-
dance with the Declaration of Helsinki. All participants were between 21
and 35 years of age, had normal or corrected-to-normal vision, and had
no history of psychiatric diagnosis, sensitivity to flickering light, or head
injury. To ensure sufficient trials for all analyses, participants were only
included if, after artifact rejection and exclusion of incorrect and miss
trials, they had at least 15 trials available for each of the four coherence
levels in each of the two motion directions. This led to the exclusion of 5
participants leaving a final total of 13 (6 female).

Continuous RDM task. We used a continuous version of the classic
RDM task (Newsome et al., 1989; Britten et al., 1992) in which partici-
pants monitored a patch of incoherently moving dots for intermittent
targets defined by 1.9 s periods of coherent motion in the leftward or
rightward direction. In contrast with the typical discrete-trial RDM task
in which moving dots appear suddenly, our targets were defined by a
seamless step transition from incoherent to coherent motion, thus elim-
inating transient sensory-evoked potentials at evidence onset (see Fig.
1A). Motion direction and coherence level varied independently and
randomly on a target-by-target basis. Coherence could take one of four
values: 25%, 35%, 50%, or 70%. To facilitate measurement of a motor
preparatory signal of evidence accumulation in tandem with the supra-
modal CPP, we asked subjects to indicate leftward motion with a left-
hand button press and rightward motion with a right-hand button press
(for a similar approach, see Donner et al., 2009; de Lange et al., 2013).
Participants were instructed to respond as soon as they were sure of the
motion direction. The intertarget interval, during which incoherent
motion was continuously displayed, lasted 3.6, 6.6, or 8.4 s, chosen
randomly on a trial-by-trial basis. A total of 48 targets (6 of each
direction-coherence combination) were presented within each block
of just �7 min.

Data recording and task performance took place in a dark sound-
attenuated room with participants seated at a distance of 75 cm from the
visual display. Visual stimuli were presented against a dark gray back-
ground on a 51 cm CRT monitor operating at a refresh rate of 85 Hz and
resolution of 1280 � 960. Participants were instructed to fixate on a
centrally presented 5 � 5 pixel white square at all times during task
performance. The RDM stimulus was presented within a 5 degree aper-
ture centered on fixation. During incoherent motion, an average of 118
white dots (each 4 � 4 pixels) were placed randomly and independently
within the circular aperture on each of a sequence of 26 ms frames played
at 14.17 frames/s. This resulted in an on-off flicker at the same rate, giving
rise to a steady-state visual-evoked potential (SSVEP) in the EEG. During
coherent motion, a proportion of the dots were randomly selected on
each frame to be displaced by a fixed distance of 0.24 degrees in either the
left or right direction on the following frame, resulting in a motion speed
of 3.33 deg/s. It should be noted that SSVEP amplitude encodes the
intensity of the stimulus rather than motion coherence and therefore
does not index the encoding of sensory evidence in the RDM task as it did
in the contrast change-detection tasks of our previous study.

Participants completed two short practice sessions before data record-
ing. In the first practice, all targets were presented at a coherence of 80%
to ensure that each participant understood the nature of the task. Partic-
ipants performed the task until they were able to correctly identify 5
consecutive targets. In a second practice session, the four coherence levels

were introduced and the participant performed the task for 3 min (25
target trials) during which time verbal feedback was provided on hits,
misses, and false alarms. Participants were given a rest break of �30 s
duration after each testing block. Each participant completed 7–10
blocks of the task (mean � SD, 9.6 � 0.8).

Behavioral data analysis. Behavioral performance was analyzed by con-
ducting a repeated-measures ANOVA with factors of motion direction
(left vs right) and coherence (25%, 35%, 50%, 70%) on miss rate, RT, and
incorrect responses. We additionally fitted RT data to a drift diffusion
model to verify that, consistent with previous work (e.g., Ratcliff and
McKoon, 2008), the behavioral data are well explained by a model in
which only drift rate varies as a function of coherence. For this, we used a
drift-diffusion model-fitting procedure implemented in the DMA tool-
box (Vandekerckhove and Tuerlinckx, 2008), first with only the drift rate
parameter allowed to vary across coherence, second with only boundary
separation allowed to vary, and third with both drift rate and boundary
separation allowed to vary, to test the relative goodness-of-fit for these
three models (Bayes Information Criterion [BIC]). The other fitted pa-
rameters that were constrained to be equal across coherence levels were
the mean and range of nondecision time (the duration of all processes
apart from the decision process), intertrial range in starting-point and
across-trial drift-rate variability. Starting point (response bias) was fixed
at halfway between decision boundaries (neutral) in all model fits. Be-
cause the differences in BIC values had a clearly non-Gaussian distribu-
tion across subjects, two Wilcoxon signed-rank tests were used to test
whether the first model allowing only drift rate to vary with coherence
achieved a lower median BIC (better fit) than either of the other two
models.

EEG acquisition and preprocessing. Continuous EEG was acquired us-
ing an ActiveTwo system (BioSemi) from 128 scalp electrodes, digitized
at 512 Hz. Vertical and horizontal eye movements were recorded using
two vertical electro-oculogram (EOG) electrodes placed above and be-
low the left eye and two horizontal EOG electrodes placed at the outer
canthus of each eye, respectively. Data were analyzed using custom
scripts in MATLAB (MathWorks), drawing on EEGLAB routines for
reading data files and spherical spline interpolation of noisy channels
(Delorme and Makeig, 2004). No high-pass filter was applied either
online or offline. EEG data were rereferenced offline to the average ref-
erence and low-pass filtered up to a 45 Hz cutoff using a two-way least-
squares FIR filter. Target epochs were extracted using a window of �0.75
s to 2 s around target onset. Trials were rejected if the bipolar vertical
EOG signal (upper minus lower) exceeded an absolute value of 200 �V or
if any scalp channel exceeded 100 �V at any time during the interval
extending from the start of the epoch to 200 ms after response execution.
The resulting data were converted to current source density (CSD) (Kay-
ser and Tenke, 2006) to increase spatial selectivity and minimize volume
conduction. This step was introduced to minimize the projection of
motor preparation signals at frontocentral electrodes to the posterior
CPP electrodes (see Impact of CSD transformation).

Measurement of supramodal and effector-specific decision signals. CPP
waveforms were generated for each participant by averaging the single-
trial epochs, which were baseline-corrected relative to the 200 ms interval
ending at target onset. CPP amplitude and latency were measured from
electrodes centered on the region of maximum component amplitude
identified in the grand average scalp topography (2 electrodes closest to
standard site CPz, consistent with O’Connell et al., 2012). Response-
locked ERPs were derived by extracting epochs from �1000 to 100 ms
relative to the time of button press on each trial, retaining the same
prestimulus baseline as the stimulus-locked waveforms. The lateralized
readiness potential (LRP), an index of unimanual motor preparation
(Gratton et al., 1988; de Jong et al., 1988; Eimer, 1998), was measured by
subtracting ipsilateral from contralateral ERPs at a pair of frontocentral
electrodes close to standard sites FC3 and FC4 and averaging across
motion direction. These electrodes were selected based on inspection of
the grand-average difference topography for leftward minus rightward
motion targets at response execution (see Fig. 1D).

Impact of coherence on signal buildup rate. The impact of coherence on
signal buildup rate was examined for both the CPP and LRP, testing both
the stimulus-aligned and response-aligned waveforms in each case.
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Buildup rate was measured as the slope of a straight line fitted to the

unfiltered ERP waveform of each subject, using the interval 200 to 350 ms

for the stimulus-aligned CPP, 300 to 450 ms for the stimulus-aligned

LRP, �250 to �100 ms for the response-aligned CPP, and �300 to �150

ms for the response-aligned LRP (see Fig. 1).

Relative timing of supramodal and effector-specific decision signals. To

explore the temporal relationship between the CPP and LRP, we mea-

sured the peak amplitude of the two signals in a 100 ms window centered

on response execution for each subject and identified the first preceding

time-point in the response-aligned average at which the signals reached

half of this value (see Fig. 1C,D). To establish the time intervals over

which evidence strength impacted on the buildup rate of the CPP and

LRP signals, we measured the temporal slope of each signal in each

subject’s average waveform in a moving window of 100 ms covering

the interval from stimulus onset to response execution in 10 ms steps.

Again, buildup rate was computed as the slope of a straight line fitted

to the unfiltered signal within each temporal window. Signal buildup

rate was then regressed against coherence for each time window and

those for which the regression slope significantly differed from zero

across all subjects in the direction expected for each signal (positive

regression slopes for the positive-going CPP, negative for the

negative-going LRP, one tailed tests with p � 0.05) are marked below

the waveforms in Figure 1C, D.

Influence of attentional fluctuations on decision signal buildup rate. To

examine the relationship between RT and CPP buildup rate indepen-

dently of coherence, and link such correlated variation to pretarget EEG

indices of attentional engagement (� band activity), we conducted two

analyses. To simply test for any within-subjects relationship between RT

and CPP buildup rate and/or pretarget �, we divided the trials of each
coherence level of each subject into two RT bins based on a median split
and conducted a 2 � 4 ANOVA with the factors of RT bin and coherence,
for each of the dependent variables of CPP buildup rate and pretarget �.

Next, to establish the more fine-grained variation of CPP buildup rate
and/or pretarget � as a function of RT, we conducted a set of analyses in
which all trials of all participants were pooled to facilitate finer trial
binning. For each single trial, we computed CPP buildup rate using the
same linear fitting method and stimulus-aligned and response-aligned
intervals as above and calculated pretarget � band amplitude via the
standard FFT of a pretarget window of 777 ms (fitting exactly 9 cycles of
the SSVEP to minimize spectral leakage). We integrated spectral ampli-
tude over the � frequency range of 8 –13 Hz (more precisely 7.7–12.9 Hz
given window size) and �10 parieto-occipital electrodes covering the
area from standard 10 –20 site PO7, through POz, to PO8. Before trial
sorting, we standardized (z-score transformed) single-trial RTs within
each subject regardless of coherence to guard against the possibility that
relationships with RT could arise because of differences across, rather
than within, subjects. Trials were then divided into 6 RT bins within each
coherence level.

To examine the variation of CPP buildup with RT, we plotted the
average CPP within each of the 6 RT bins, collapsing across coherence in
each bin (see Fig. 2A, middle and right). To enable statistical testing, we
captured the relationship between RT and CPP buildup rate within co-
herence levels as the slope of a linear fit of CPP buildup rate against RT
bin. We performed a permutation test to quantify the probability that the
pattern we observed could arise by chance given the null hypothesis of no
relationship between CPP buildup rate and RT within coherence level. A
permutation test furnishes a null distribution directly from the data by
permuting the data in accordance with this null hypothesis. In the pres-
ent case, we randomly permuted the assignment of RT to trials within
each coherence level of each subject, directly simulating the scenario that,
regardless of whether there is a coherence effect and/or individual differ-
ences, the CPP buildup rate on single trials within each coherence and
subject has no relationship to RT or �. This randomization was repeated
10,000 times, and the actual observed effect was then located as a percen-
tile on the thus-formed null distribution to quantify the probability that
it arose by chance.

To examine the variation of pretarget � with RT, we repeated the
above steps for plotting and permutation testing, this time substituting

the CPP buildup rate for our single-trial pretarget � measures (see Fig.
2A, left).

Even if sorting by RT produces significant relationships with both
pretarget � and CPP buildup rate, it is possible that they have indepen-
dent but additive effects on RT and may themselves not be related. To
rule this out, we again sorted trials into 6 bins for each coherence level,
but this time sorting by CPP buildup rate rather than RT. Given that CPP
buildup rate was used as the sorting variable in this analysis, it was critical
to maximize the robustness of single-trial measurements. To this end, we
used a single-trial classifier approach developed by Parra et al. (2005). In
this procedure, a channel-weight vector “w” (i.e., a “direction” in the
128-channel data) is derived in the multivariate ERP data, which maxi-
mizes the accuracy of classification between two training sets, in this case,
activity at the time of decision commitment versus during the intertarget
interval. Importantly, we used data samples in the intertrial interval that
were baseline-corrected in the same way as the samples extracted from
decision commitment time (i.e., using a baseline interval a comparable
amount of time before the training samples), so that spurious slow drift
in some electrodes could not skew the discriminating direction in the
data. Specifically, whereas the “decision-formation” training samples
were extracted from unfiltered signals in the window �180 to �80 ms
before response execution, baseline-corrected relative to the 200 ms
pretarget window as usual, the “no-decision” training samples were ex-
tracted from the window �100 to 0 relative to target onset, baseline-
corrected relative to the interval �750 to �650 ms. The discriminating
vector “w” was derived independent of coherence, and separately for
each individual subject, and was then applied to extract a single decision
signal component from both the stimulus-aligned and response-aligned
128-channel single-trial data before pooling. Subject-wise z-scoring,
pooling, sorting, and binning by CPP buildup rate then proceeded in the
same way as for the RT binning procedure, with the exception that out-
lying values of CPP buildup rate were avoided by trimming the top and
bottom 2.5% of trials. A permutation test was again used to quantify the
probability that the observed pattern arose by chance, this time with
10,000 random reassignments of CPP buildup rate to trials within each
coherence level of each subject.

Results
Behavior
Thirteen subjects performed a continuous version of the RDM
task in which 1.9 s periods of coherent motion at 25%, 35%, 50%,
or 70% occurred intermittently within a continuous stream of
otherwise incoherent motion (Fig. 1A). In contrast with discrete,
forced-choice versions of this task (e.g., Ratcliff and McKoon,
2008), errors on our continuous version arise far more often from
missing the temporally unpredictable, seamless transition to co-
herent motion and failing to respond by the end of the coherent
motion interval than from incorrect choices on detected targets
(�1.5% of trials at any single coherence level, with no main effect
of coherence). Increasing the strength of sensory evidence re-
sulted in fewer misses (Fig. 1B; F(3,36) � 42.1, p � 0.001) and
faster RTs (Fig. 1C; F(3,36) � 149.6, p � 0.001) with no main effect
of motion direction or motion direction by coherence interaction
in either case.

Fitting individual behavioral data to a drift-diffusion model
with only the drift rate parameter allowed to vary across coher-
ence levels (using the DMA toolbox of Vandekerckhove and Tu-
erlinckx, 2008) resulted in the expected increase of drift rate with
coherence. A within-subjects comparison of goodness-of-fit
(BIC) revealed that this model provided a significantly better fit
across subjects than a model where only the decision boundary
separation was allowed to vary across coherences (Wilcoxon
signed rank test for zero median of the BIC difference, p �

0.0005). Because the BIC incorporates a penalty term for the
number of free parameters, the model fit with freely varying drift
rate also produced a better average BIC than a model in which
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both drift rate and boundary separation were free to vary across
coherence levels (p � 0.0005).

Impact of coherence on neural evidence accumulation
Coherent motion elicited the same rising positivity over centro-
parietal scalp as was observed for gradual stimulus feature
changes in our previous study (O’Connell et al., 2012) (Fig. 1C).
The CPP topography, amplitude, onset latency, and peak latency
did not differ for leftward and rightward motion (all p � 0.05);
therefore, waveforms are collapsed across direction throughout.
As intended, the seamless transitions from incoherent to coher-
ent motion eliminated sensory-evoked deflections from the cen-
troparietal ERP allowing the evolution of the CPP to be traced
from its onset to its peak. Although coherence discontinuously
stepped from zero to a constant non-zero level, the CPP exhibited
a gradual buildup that reached a stereotyped potential at the time
of commitment (Fig. 1C). In accordance with the integration
principle of sequential sampling models, the buildup rate of the
CPP increased in proportion with the strength of coherent mo-
tion. This effect was significant not only in the stimulus-aligned
average (F(3,36) � 6.7, p � 0.01) but also in the response-aligned
average (F(3,36) � 4.3, p � 0.05), which, unlike the stimulus-
aligned trace, is unaffected by differences in RT distributions
across the four coherence levels (Fig. 1C).

Motor preparation lags supramodal evidence accumulation

The preparatory activity of contralateral premotor regions was

measured via the LRP. The LRP is observed in the interval pre-

ceding voluntary hand movements and arises from the lateraliza-

tion of ERP activity during activation of a unimanual action

(Gratton et al., 1988; de Jong et al., 1988; Eimer, 1998). Although

the LRP exhibited the same build-to-threshold dynamics as the

CPP and a similar dependence of buildup rate on evidence

strength in both stimulus (F(3,36) � 5.0, p � 0.01) and response-

aligned (F(3,36) � 4.0, p � 0.05) averages, it lagged the CPP in

terms of both the time at which the buildup reached half of its

peak (by 113 � 87 ms, t(12) � 4.6, p � 0.001) and the time at

which a linear regression of signal buildup rate onto coherence in

contiguous 100 ms windows spanning the poststimulus epoch,

first reached statistical significance (170 ms for the CPP vs 320 ms

for the LRP; Fig. 1D). To verify that the temporal differences

between the two signals were not the result of increased noise in

the LRP, we also measured the CPP at two symmetric pairs of

electrodes that were anterior and posterior to its centroparietal

maximum to artificially reduce the signal-to-noise ratio of the

CPP to below that of the LRP. Again, we found that the CPP

reached half of its peak voltage significantly earlier than the LRP

(by 78 � 101 ms, t(12) � 2.8, p � 0.05).

Figure 1. Integration-to-threshold dynamics during motion discrimination in the human brain. A, Schematic of the continuous RDM task. Participants monitored a centrally presented dot

kinetogram for step transitions from random to coherent motion. B, RT (left) and miss rate (right) decreased as a function of coherence across the 13 subjects. Error bars indicate SEM. C, CPP

waveforms aligned to stimulus onset (left) and response execution (middle) and signal scalp topography (right, color bar represents signal amplitude). D, LRP waveforms aligned to stimulus onset

(left) and response execution (middle) measured as the contralateral minus ipsilateral potential difference over frontocentral sites, and the scalp topography of the difference between left motion

and right motion trials at the time of response execution (right). Both signals exhibit a gradual buildup whose rate is proportional to the strength of coherent motion and which terminates at a

stereotyped potential. Markers running along the bottom of plot C and D indicate the center of 100 ms time windows in which a linear contrast of signal slope as a function of coherence reached

significance (one-tailed based on prediction of faster signal buildup with increasing coherence, p � 0.05), and arrows indicate the point at which each signal reaches half of its peak voltage

(averaging across coherences), highlighting that the evidence-dependent buildup of the supramodal CPP precedes that of the effector-selective LRP.

Kelly and O’Connell • Parsing Neural Evidence Accumulation in Humans J. Neurosci., December 11, 2013 • 33(50):19434 –19441 • 19437



Internal influences on accumulation rate
To examine endogenous determinants of decision RT, we con-
ducted a within-subjects analysis in which each participant’s tri-
als were sorted into equal-sized fast and slow RT bins (based on a
median split) at each coherence level and separately averaged.
This analysis revealed that steeper buildup of the CPP was asso-
ciated with significantly faster RT within a given coherence level
(stimulus-locked, F(3,36) � 19.3, p � 0.001; response-locked,
F(3,36) � 5.6, p � 0.05; Fig. 2A). To more finely establish the
variation in buildup rate as a function of RT, we conducted an
additional single-trial analysis using pooled data from all 13 par-
ticipants. Pooled trials were sorted within each coherence level
according to individually z-scored RT and then divided into six
equal-sized percentile bins. Figure 2B shows CPP waveforms for
all 6 bins, with coherence collapsed within each bin, illustrat-
ing a clear increase in buildup rate for trials with decreasing
RT. We quantified this effect as the slope of a line fitted to CPP
buildup rate against RT bin. A permutation test based on shuf-
fling RT across trials within coherence levels and subjects (see
Materials and Methods) confirmed that this effect signifi-
cantly ( p � 0.0001) deviated from the null distribution
formed by RT shuffling for both the stimulus-locked and
response-locked waveforms.

The relatively global nature of EEG confers the advantage of
enabling constituent decision processes to be examined in paral-
lel, including processes that play an important supporting role
such as attention. Although attentional engagement was not ex-
plicitly manipulated in this study, the amplitude of the � rhythm
(8 –13 Hz) measured over posterior scalp sites is well known to
provide a sensitive index of attention deployed across modalities

(Foxe et al., 1998) and across visual locations (Kelly et al., 2006;
Thut et al., 2006), and has been shown to increase significantly
over several seconds leading up to an attentional lapse on a con-
tinuous detection task (O’Connell et al., 2009). Standard Fourier
analysis of the 750 ms preceding target onset revealed that a sim-
ilar spectral signature of attentional disengagement preceded tar-
gets with longer RTs. Specifically, pretarget �-band amplitude
increased with increasing RT bin in both the within-subjects (two
RT bins per subject as above with � distributions normalized by
log-transforming, F(1,12) � 4.95, p � 0.05; Fig. 2A, left) and
pooled (permutation test as above, p � 0.0001; Fig. 2B, left)
analyses. This effect cannot be attributed to a general decrease in
arousal or a shift of attention away from the stimulus location
because the amplitude of the occipital SSVEP, which was elicited
by flickering the dots at a constant rate of 14 Hz, did not decrease
systematically as a function of RT (Fig. 2).

A further pooled analysis confirmed that the same relation-
ships between �-band power, CPP buildup rate, and RT were
preserved when CPP buildup rate was used as the sorting variable
(Fig. 3). Within each coherence level, single trials were sorted as a
function of CPP buildup rate and divided into six equal-sized
bins. Trials in the corresponding bins at each coherence level
were then pooled and averaged for this plot. Faster CPP buildup
rates were preceded by decreased activity in the 8 –13 Hz � band
over parieto-occipital electrodes (permutation test, p � 0.0001;
Fig. 3A) and followed by faster RTs (p � 0.0001; Fig. 3B). Ideally,
� activity would be used as the sorting variable when relating
prestimulus � to CPP buildup rate and RT because it is � that
comes first in time. However, in these data, sorting single trials as
a function of � activity produced no effect on RT or CPP buildup

Figure 2. Internal influences on decision speed. A, For each participant, single trials within each coherence level were sorted as a function of RT and divided into equal-sized fast and slow bins

based on a median split. Faster RTs were preceded by decreased activity in the 8 –13 Hz � band over parieto-occipital electrodes (left). CPP waveforms aligned to stimulus onset (middle) and

response (right) show that faster buildup rates led to faster RTs. Markers running along the bottom of each plot indicate the center of 100 ms time windows in which signal buildup rate significantly

differed as a function of RT (one-tailed based on prediction of faster RTs with increasing buildup rate, p � 0.05). B, Within each coherence level, single trials were pooled across subjects and sorted

as a function of RT and divided into six equal-sized bins. Trials in the corresponding bins were then averaged across coherence levels for the plots in this figure. In keeping with the results of the

within-subject analysis in A, faster RTs were preceded by decreased activity in the 8 –13 Hz � band over parieto-occipital electrodes (see topography inset). Again, RT clearly decreases with CPP

buildup rate.
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rate. The absence of even an RT effect, despite the fact that sorting
by both RT and CPP buildup rate revealed substantial effects on
�, indicates that our single-trial measurements of � were not
robust on the level that permits capturing attentional fluctua-
tions on a single-trial basis.

Impact of CSD transformation
Without CSD transformation, the amplitude of the CPP at the
time of the decision report apparently decreased as a function of
coherence. However, a regression analysis revealed that coher-
ence did not explain a significant amount of variance in CPP
amplitude (r 2 change � 0.001, F(1,157) change � 0.04, p � 0.6)
after accounting for the influence of RT (r 2

� 0.182, F(1,158) � 35,
p � 0.001, based on pooling of single-trial values within each
coherence level and dividing into 40 equal-sized bins; Fig. 4A). To
investigate the origins of this RT-related effect, the regression of
RT against amplitude was repeated at all electrodes and the to-
pography of the resultant � weights revealed a distinct negative
going frontocentral signal that reached more negative amplitudes
at RT for slower trials (Fig. 4B). Together, these results indicate
that the differences in CPP amplitude across coherence levels

were the result of spatial overlap with this
anterior signal, which may correspond to
the contingent negative variation or to the
bereitschaftspotential, two frontocentral
negativities associated with the anticipation
of a volitional movement (Brunia and van
Boxtel, 2001; Baker et al., 2012). To resolve
this issue, we applied CSD transformation,
which sharpens topographical resolution by
computing a second spatial derivative and
thus reduces overlap between distinct topo-
graphical foci. Here CSD transformation re-
duced the influence of the frontocentral
negativity on centroparietal electrodes and
eliminated the amplitude differences across
coherence levels for the CPP, consistent
with sequential sampling model predictions
and the behavioral modeling results re-
ported above.

Discussion
We have demonstrated that decision-
related activity measured in the classically
derived human event-related potential
over centroparietal scalp exhibits two key
defining properties of the theoretical “de-
cision variable” of sequential sampling
models: (1) a buildup rate that scales with
the strength of sensory evidence and (2) a
threshold relationship to perceptual re-
ports. Although numerous studies have
identified EEG and MEG signals whose
amplitude correlates in some way with de-
cision making performance and/or fitted
parameters of sequential sampling mod-
els, such as the drift-diffusion model (e.g.,
Philiastides et al., 2006; Donner et al.,
2009; Ratcliff et al., 2009; de Lange et al.,
2010; Bode et al., 2012; van Vugt et al.,
2012), this is the first study to directly val-
idate the core prediction of evidence
strength-dependent temporal integration
in a unitary human brain signal. A general

implication of these findings is that the CPP provides access to
specific parameters of the decision making process (evidence ac-
cumulation rate and decision criterion) in the human brain via
simple, single-trial signal measurements (slope and amplitude).
More specifically, the present results speak to the issues of how
endogenous fluctuations combine with exogenous factors in in-
fluencing decision formation and how evidence is accumulated
on multiple levels from the abstract, supramodal level to the
effector-specific.

Variations in the quality of sensory evidence can originate not
only from the physical environment but also from within the
brain itself (Parker and Newsome, 1998; Sadaghiani et al., 2010).
A key challenge is to disentangle these sources of variability and
elucidate the nature of their influence on the decision making
process (Hesselmann et al., 2010; de Lange et al., 2013). In addi-
tion to its strong sensitivity to the quality of the physical evidence,
we found that the buildup rate of the CPP was subject to substan-
tial within-coherence variability that determined the timing of
decision reports on a trial-to-trial basis. The buildup rate of the
CPP itself bore an inverse relationship with the level of �-band

Figure 3. Variability in timing of perceptual reports explained by trial-to-trial changes in decision signal buildup rate. A, Faster

CPP buildup rates were preceded by decreased activity in the 8 –13 Hz � band over parieto-occipital electrodes. B, Faster CPP

buildup rates were followed by faster RTs.

Figure 4. A distinct slow negative potential over frontocentral scalp. A, Without applying a CSD transformation, the peak

amplitude of the CPP appeared to increase as a function of coherence. This scatter plot of centroparietal amplitude at RT against RT

itself indicates that this arises from a trend of decreasing amplitude with RT, not with coherence. Colored lines indicate the linear

fit for the relationship between RT and amplitude at each coherence level, which appear colinear. B, Topography of the mean

difference in CPP amplitude across consecutive pairs of coherence levels, revealing that the decrease in amplitude with RT is driven

by a distinct negative-going frontocentral scalp potential, which spatially spreads to centroparietal electrodes in the absence of

CSD transformation.
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activity immediately before evidence onset, a relationship that
cannot be attributed to any exogenous factors because visual
stimulation was held stationary during the intertarget interval.
Whereas many previous studies have reported associations be-
tween the level of prestimulus activity in the � band and the
timing or accuracy of behavioral performance (e.g., van Dijk et
al., 2008; Kelly et al., 2009; O’Connell et al., 2009; Bengson et al.,
2012), the present finding goes further by establishing the specific
aspect of information processing that is augmented by pretarget
attentional state to bring about these behavioral effects. It re-
mains to be determined whether the attentional fluctuations in-
dexed in pretarget � impact on accumulation rate directly or
indirectly by influencing the initial encoding of sensory evidence
(Brunton et al., 2013) or its weighting before integration (Wyart
et al., 2012).

Unlike any other integrate-to-threshold signal observed in
monkeys or humans, the CPP is fully abstracted from sensory and
motor requirements (O’Connell et al., 2012). Although empirical
observations of decision variable signals in the monkey brain
have been limited to effector-selective regions, it is increasingly
acknowledged that the full extent of behavioral flexibility inher-
ent in human decision making cannot be achieved by a purely
intentional framework where sensory evidence is directly incor-
porated into a motor plan (Heekeren et al., 2008; Bennur and
Gold, 2011; Freedman and Assad, 2011; Wyart et al., 2012).
Rather, it requires a hierarchical architecture within which evi-
dence can be accrued at multiple levels of abstraction (Cisek,
2012; Dehaene and Sigman, 2012). Here we offer new insights by
showing that the brain’s representation of accrued evidence at the
abstract, supramodal level is as closely tied to the quality of sen-
sory evidence and the timing of decision reports as effector-
selective signals have been shown to be in monkeys. Further, by
tracking an effector-selective decision variable signal with the
same temporal resolution in parallel, we have been able to estab-
lish that the buildup of accrued evidence at the abstract level
significantly leads the buildup at the motor preparatory level,
implying that the supramodal decision variable may intermediate
between sensory encoding and motor planning. Despite the tem-
poral lag, the two signals exhibit a simultaneous boundary cross-
ing effect at commitment. This observation gives further insight
into the form of the function relating abstract to premotor deci-
sion signals; in particular, it places the constraint that the latter
cannot be the integral of the former because an equivalent
boundary-crossing effect across coherences could not be ob-
served for both signals in that case. At the same time, the substan-
tial buildup in LRP before the CPP reaching its threshold level
rules out a strictly serial interpretation of decision making (Stern-
berg, 1969) but rather supports the notion that sensory evidence
flows continuously to the human motor system throughout de-
cision formation (Selen et al., 2012).

The imperative to link human ERP components to the infor-
mation processing stages intervening between sensation and re-
sponse has a decades-long history. Indeed, the centroparietal
“P300” or “P3b” component, which we have pointed out bears a
strong resemblance to the CPP (O’Connell et al., 2012), was
linked to decision making very soon after its discovery in 1965: it
is evoked exclusively by task-relevant events requiring decisions
(Sutton et al., 1965; Hillyard et al., 1971; Rohrbaugh et al., 1974);
it discriminates hits from misses in a signal detection framework
(Hillyard et al., 1971); and its latency varies closely with RT under
conditions where accuracy is emphasized (Kutas et al., 1977) as
well as with factors affecting the duration of stimulus evaluation,
such as visual “noise” (McCarthy and Donchin, 1981). However,

over the ensuing years, a consensus regarding the precise role
played by the P300 in decision making has failed to emerge
(Donchin and Coles, 1988; Kok, 2001; Nieuwenhuis et al., 2005;
Verleger et al., 2005; Polich, 2007). This is in large part the result
of the problem of global signal summation in typical discrete ERP
paradigms (Magliero et al., 1984), in which functionally discrete
signals overlap and therefore cannot be readily disentangled. In
our current and previous study (O’Connell et al., 2012), the sim-
ple approach of eliminating sudden intensity transients at target
onset has provided an unprecedented, unobscured view of the
centroparietal decision signal and has enabled a concrete link to
be made with the theoretical decision variables that lie at the
center of well-established, mechanistic explanatory models.
More generally, the current findings call for a novel view of the
P300 component as a dynamically evolving decision process
rather than as the culmination of a unitary event and highlight the
prospect that a reevaluation of past P300 findings in this new light
may inform models of human decision making as well as guide
the next empirical steps.

References
Baker KS, Piriyapunyaporn T, Cunnington R (2012) Neural activity in read-

iness for incidental and explicitly timed actions. Neuropsychologia 50:
715–722. CrossRef Medline

Bengson JJ, Mangun GR, Mazaheri A (2012) The neural markers of an im-
minent failure of response inhibition. Neuroimage 59:1534 –1539.
CrossRef Medline

Bennur S, Gold JI (2011) Distinct representations of a perceptual decision
and the associated oculomotor plan in the monkey lateral intraparietal
area. J Neurosci 31:913–921. CrossRef Medline

Bode S, Sewell DK, Lilburn S, Forte JD, Smith PL, Stahl J (2012) Predicting
perceptual decision biases from early brain activity. J Neurosci 32:12488 –
12498. CrossRef Medline

Britten KH, Shadlen MN, Newsome WT, Movshon JA (1992) The analysis
of visual motion: a comparison of neuronal and psychophysical perfor-
mance. J Neurosci 12:4745– 4765. Medline

Brunia CH, van Boxtel GJ (2001) Wait and see. Int J Psychophysiol 43:59 –
75. CrossRef Medline

Brunton BW, Botvinick MM, Brody CD (2013) Rats and humans can opti-
mally accumulate evidence for decision-making. Science 340:95–98.
CrossRef Medline

Cisek P (2012) Making decisions through a distributed consensus. Curr
Opin Neurobiol 22:927–936. CrossRef Medline

Dehaene S, Sigman M (2012) From a single decision to a multi-step algo-
rithm. Curr Opin Neurobiol 22:937–945. CrossRef Medline

de Jong R, Wierda M, Mulder G, Mulder LJ (1988) Use of partial stimulus
information in response processing. J Exp Psychol Hum Percept Perform
14:682– 692. CrossRef Medline

de Lange FP, Jensen O, Dehaene S (2010) Accumulation of evidence during
sequential decision making: the importance of top-down factors. J Neu-
rosci 30:731–738. CrossRef Medline

de Lange FP, Rahnev DA, Donner TH, Lau H (2013) Prestimulus oscillatory
activity over motor cortex reflects perceptual expectations. J Neurosci
33:1400 –1410. CrossRef Medline

Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis
of single-trial EEG dynamics including independent component analysis.
J Neurosci Methods 134:9 –21. CrossRef Medline

Donchin E, Coles MGH (1988) Is the P300 component a manifestation of
context updating? Brain Behav Sci 11:357–374. CrossRef

Donner TH, Siegel M, Fries P, Engel AK (2009) Buildup of choice-
predictive activity in human motor cortex during perceptual decision
making. Curr Biol 19:1581–1585. CrossRef Medline

Eimer M (1998) The lateralized readiness potential as an on-line measure of
central response activation processes. Behav Res Methods Instruments
Computers 30:146 –156. CrossRef

Foxe JJ, Simpson GV, Ahlfors SP (1998) Parieto-occipital approximately 10
Hz activity reflects anticipatory state of visual attention mechanisms.
Neuroreport 9:3929 –3933. CrossRef Medline

Freedman DJ, Assad JA (2011) A proposed common neural mechanism for

19440 • J. Neurosci., December 11, 2013 • 33(50):19434 –19441 Kelly and O’Connell • Parsing Neural Evidence Accumulation in Humans

http://dx.doi.org/10.1016/j.neuropsychologia.2011.12.026
http://www.ncbi.nlm.nih.gov/pubmed/22245011
http://dx.doi.org/10.1016/j.neuroimage.2011.08.034
http://www.ncbi.nlm.nih.gov/pubmed/21889992
http://dx.doi.org/10.1523/JNEUROSCI.4417-10.2011
http://www.ncbi.nlm.nih.gov/pubmed/21248116
http://dx.doi.org/10.1523/JNEUROSCI.1708-12.2012
http://www.ncbi.nlm.nih.gov/pubmed/22956839
http://www.ncbi.nlm.nih.gov/pubmed/1464765
http://dx.doi.org/10.1016/S0167-8760(01)00179-9
http://www.ncbi.nlm.nih.gov/pubmed/11742685
http://dx.doi.org/10.1126/science.1233912
http://www.ncbi.nlm.nih.gov/pubmed/23559254
http://dx.doi.org/10.1016/j.conb.2012.05.007
http://www.ncbi.nlm.nih.gov/pubmed/22683275
http://dx.doi.org/10.1016/j.conb.2012.05.006
http://www.ncbi.nlm.nih.gov/pubmed/22704054
http://dx.doi.org/10.1037/0096-1523.14.4.682
http://www.ncbi.nlm.nih.gov/pubmed/2974876
http://dx.doi.org/10.1523/JNEUROSCI.4080-09.2010
http://www.ncbi.nlm.nih.gov/pubmed/20071538
http://dx.doi.org/10.1523/JNEUROSCI.1094-12.2013
http://www.ncbi.nlm.nih.gov/pubmed/23345216
http://dx.doi.org/10.1016/j.jneumeth.2003.10.009
http://www.ncbi.nlm.nih.gov/pubmed/15102499
http://dx.doi.org/10.1017/S0140525X00058027
http://dx.doi.org/10.1016/j.cub.2009.07.066
http://www.ncbi.nlm.nih.gov/pubmed/19747828
http://dx.doi.org/10.3758/BF03209424
http://dx.doi.org/10.1097/00001756-199812010-00030
http://www.ncbi.nlm.nih.gov/pubmed/9875731


categorization and perceptual decisions. Nat Neurosci 14:143–146.
CrossRef Medline

Gold JI, Shadlen MN (2007) The neural basis of decision making. Annu Rev
Neurosci 30:535–574. CrossRef Medline

Gratton G, Coles MG, Sirevaag EJ, Eriksen CW, Donchin E (1988) Pre- and
post-stimulus activation of response channels: a psychophysiological
analysis. J Exp Psychol Hum Percept Perform 14:331–344. CrossRef
Medline

Heekeren HR, Marrett S, Ungerleider LG (2008) The neural systems that
mediate human perceptual decision making. Nat Rev Neurosci 9:467–
479. CrossRef Medline

Hesselmann G, Sadaghiani S, Friston KJ, Kleinschmidt A (2010) Predictive
coding or evidence accumulation? False inference and neuronal fluctua-
tions. PLoS One 5:e9926. CrossRef Medline

Hillyard SA, Squires KC, Bauer JW, Lindsay PH (1971) Evoked potential
correlates of auditory signal detection. Science 172:1357–1360. CrossRef
Medline

Kayser J, Tenke CE (2006) Principal components analysis of Laplacian
waveforms as a generic method for identifying ERP generator patterns: I.
Evaluation with auditory oddball tasks. Clin Neurophysiol 117:348 –368.
CrossRef Medline

Kelly SP, Lalor EC, Reilly RB, Foxe JJ (2006) Increases in � oscillatory power
reflect an active retinotopic mechanism for distracter suppression during
sustained visuospatial attention. J Neurophysiol 95:3844 –3851. CrossRef
Medline

Kelly SP, Gomez-Ramirez M, Foxe JJ (2009) The strength of anticipatory
spatial biasing predicts target discrimination at attended locations: a high-
density EEG study. Eur J Neurosci 30:2224 –2234. CrossRef Medline

Kim JN, Shadlen MN (1999) Neural correlates of a decision in the dorsolat-
eral prefrontal cortex of the macaque. Nat Neurosci 2:176 –185. CrossRef
Medline

Kok A (2001) On the utility of P3 amplitude as a measure of processing
capacity. Psychophysiology 38:557–577. CrossRef Medline

Kutas M, McCarthy G, Donchin E (1977) Augmenting mental chronome-
try: the P300 as a measure of stimulus evaluation time. Science 197:792–
795. CrossRef Medline

Magliero A, Bashore TR, Coles MG, Donchin E (1984) On the dependence
of P300 latency on stimulus evaluation processes. Psychophysiology 21:
171–186. CrossRef Medline

McCarthy G, Donchin E (1981) A metric for thought: a comparison of P300
latency and reaction time. Science 211:77– 80. CrossRef Medline

Murphy PR, Robertson IH, Allen D, Hester R, O’Connell RG (2012) An
electrophysiological signal that precisely tracks the emergence of error
awareness. Front Hum Neurosci 6:epub. CrossRef Medline

Newsome WT, Britten KH, Movshon JA (1989) Neuronal correlates of a
perceptual decision. Nature 341:52–54. CrossRef Medline

Nieuwenhuis S, Aston-Jones G, Cohen JD (2005) Decision making, the P3,
and the locus coeruleus-norepinephrine system. Psychol Bull 131:510 –
532. CrossRef Medline

O’Connell RG, Dockree PM, Robertson IH, Bellgrove MA, Foxe JJ, Kelly SP
(2009) Uncovering the neural signature of lapsing attention: electro-
physiological signals predict errors up to 20 s before they occur. J Neurosci
29:8604 – 8611. CrossRef Medline

O’Connell RG, Dockree PM, Kelly SP (2012) A supramodal accumulation-
to-bound signal that determines perceptual decisions in humans. Nat
Neurosci 15:1729 –1735. CrossRef Medline

Parker AJ, Newsome WT (1998) Sense and the single neuron: probing the

physiology of perception. Annu Rev Neurosci 21:227–277. CrossRef

Medline

Parra LC, Spence CD, Gerson AD, Sajda P (2005) Recipes for the linear

analysis of EEG. Neuroimage 28:236 –241. CrossRef Medline

Philiastides MG, Ratcliff R, Sajda P (2006) Neural representation of task

difficulty and decision making during perceptual categorization: a timing

diagram. J Neurosci 26:8965– 8975. CrossRef Medline

Polich J (2007) Updating P300: an integrative theory of P3a and P3b. Clin

Neurophysiol 118:2128 –2148. CrossRef Medline

Ratcliff R, McKoon G (2008) The diffusion decision model: theory and data

for two-choice decision tasks. Neural Comput 20:873–922. CrossRef

Medline

Ratcliff R, Philiastides MG, Sajda P (2009) Quality of evidence for percep-

tual decision making is indexed by trial-to-trial variability of the EEG.

Proc Natl Acad Sci U S A 106:6539 – 6544. CrossRef Medline

Rohrbaugh JW, Donchin E, Eriksen CW (1974) Decision making and the

P300 component of the cortical evoked response. Percept Psychophys

15:368 –374. CrossRef

Sadaghiani S, Hesselmann G, Friston KJ, Kleinschmidt A (2010) The rela-

tion of ongoing brain activity, evoked neural response, and cognition.

Front Syst Neurosci 4:20. CrossRef Medline

Selen LP, Shadlen MN, Wolpert DM (2012) Deliberation in the motor sys-

tem: reflex gains track evolving evidence leading to a decision. J Neurosci

32:2276 –2286. CrossRef Medline

Shadlen MN, Newsome WT (2001) Neural basis of a perceptual decision in

the parietal cortex (area LIP) of the rhesus monkey. J Neurophysiol 86:

1916 –1936. Medline

Smith PL, Ratcliff R (2004) Psychology and neurobiology of simple deci-

sions. Trends Neurosci 27:161–168. CrossRef Medline

Smith PL, Vickers D (1988) The accumulator model of two-choice discrim-

ination. J Math Psychol 32:135–168. CrossRef

Sternberg S (1969) The discovery of processing stages: extensions of

Donder’s method. Acta Psychologica 30:276 –315.

Sutton S, Braren M, Zubin J, John ER (1965) Evoked potential correlates of

stimulus uncertainty. Science 150:1187–1188. CrossRef Medline

Thut G, Nietzel A, Brandt SA, Pascual-Leone A (2006) �-Band electroen-

cephalographic activity over occipital cortex indexes visuospatial atten-

tion bias and predicts visual target detection. J Neurosci 26:9494 –9502.

CrossRef Medline

van Dijk H, Schoffelen JM, Oostenveld R, Jensen O (2008) Prestimulus os-

cillatory activity in the � band predicts visual discrimination ability.

J Neurosci 28:1816 –1823. CrossRef Medline

van Vugt MK, Simen P, Nystrom LE, Holmes P, Cohen JD (2012) EEG

oscillations reveal neural correlates of evidence accumulation. Front Neu-

rosci 6:epub. CrossRef Medline

Vandekerckhove J, Tuerlinckx F (2008) Diffusion model analysis with

MATLAB: a DMAT primer. Behav Res Methods 40:61–72. CrossRef

Medline

Verleger R, Jaskowski P, Wascher E (2005) Evidence for an integrative role

of P3b in linking reaction to perception. J Psychophysiol 19:165–181.

CrossRef

Wyart V, de Gardelle V, Scholl J, Summerfield C (2012) Rhythmic fluctua-

tions in evidence accumulation during decision making in the human

brain. Neuron 76:847– 858. CrossRef Medline

Kelly and O’Connell • Parsing Neural Evidence Accumulation in Humans J. Neurosci., December 11, 2013 • 33(50):19434 –19441 • 19441

http://dx.doi.org/10.1038/nn.2740
http://www.ncbi.nlm.nih.gov/pubmed/21270782
http://dx.doi.org/10.1146/annurev.neuro.29.051605.113038
http://www.ncbi.nlm.nih.gov/pubmed/17600525
http://dx.doi.org/10.1037/0096-1523.14.3.331
http://www.ncbi.nlm.nih.gov/pubmed/2971764
http://dx.doi.org/10.1038/nrn2374
http://www.ncbi.nlm.nih.gov/pubmed/18464792
http://dx.doi.org/10.1371/journal.pone.0009926
http://www.ncbi.nlm.nih.gov/pubmed/20369004
http://dx.doi.org/10.1126/science.172.3990.1357
http://www.ncbi.nlm.nih.gov/pubmed/5580218
http://dx.doi.org/10.1016/j.clinph.2005.08.034
http://www.ncbi.nlm.nih.gov/pubmed/16356767
http://dx.doi.org/10.1152/jn.01234.2005
http://www.ncbi.nlm.nih.gov/pubmed/16571739
http://dx.doi.org/10.1111/j.1460-9568.2009.06980.x
http://www.ncbi.nlm.nih.gov/pubmed/19930401
http://dx.doi.org/10.1038/5739
http://www.ncbi.nlm.nih.gov/pubmed/10195203
http://dx.doi.org/10.1017/S0048577201990559
http://www.ncbi.nlm.nih.gov/pubmed/11352145
http://dx.doi.org/10.1126/science.887923
http://www.ncbi.nlm.nih.gov/pubmed/887923
http://dx.doi.org/10.1111/j.1469-8986.1984.tb00201.x
http://www.ncbi.nlm.nih.gov/pubmed/6728983
http://dx.doi.org/10.1126/science.7444452
http://www.ncbi.nlm.nih.gov/pubmed/7444452
http://dx.doi.org/10.3389/fnhum.2012.00065
http://www.ncbi.nlm.nih.gov/pubmed/22470332
http://dx.doi.org/10.1038/341052a0
http://www.ncbi.nlm.nih.gov/pubmed/2770878
http://dx.doi.org/10.1037/0033-2909.131.4.510
http://www.ncbi.nlm.nih.gov/pubmed/16060800
http://dx.doi.org/10.1523/JNEUROSCI.5967-08.2009
http://www.ncbi.nlm.nih.gov/pubmed/19571151
http://dx.doi.org/10.1038/nn.3248
http://www.ncbi.nlm.nih.gov/pubmed/23103963
http://dx.doi.org/10.1146/annurev.neuro.21.1.227
http://www.ncbi.nlm.nih.gov/pubmed/9530497
http://dx.doi.org/10.1016/j.neuroimage.2005.05.032
http://www.ncbi.nlm.nih.gov/pubmed/16084117
http://dx.doi.org/10.1523/JNEUROSCI.1655-06.2006
http://www.ncbi.nlm.nih.gov/pubmed/16943552
http://dx.doi.org/10.1016/j.clinph.2007.04.019
http://www.ncbi.nlm.nih.gov/pubmed/17573239
http://dx.doi.org/10.1162/neco.2008.12-06-420
http://www.ncbi.nlm.nih.gov/pubmed/18085991
http://dx.doi.org/10.1073/pnas.0812589106
http://www.ncbi.nlm.nih.gov/pubmed/19342495
http://dx.doi.org/10.3758/BF03213960
http://dx.doi.org/10.3389/fnsys.2010.00020
http://www.ncbi.nlm.nih.gov/pubmed/20631840
http://dx.doi.org/10.1523/JNEUROSCI.5273-11.2012
http://www.ncbi.nlm.nih.gov/pubmed/22396403
http://www.ncbi.nlm.nih.gov/pubmed/11600651
http://dx.doi.org/10.1016/j.tins.2004.01.006
http://www.ncbi.nlm.nih.gov/pubmed/15036882
http://dx.doi.org/10.1016/0022-2496(88)90043-0
http://dx.doi.org/10.1126/science.150.3700.1187
http://www.ncbi.nlm.nih.gov/pubmed/5852977
http://dx.doi.org/10.1523/JNEUROSCI.0875-06.2006
http://www.ncbi.nlm.nih.gov/pubmed/16971533
http://dx.doi.org/10.1523/JNEUROSCI.1853-07.2008
http://www.ncbi.nlm.nih.gov/pubmed/18287498
http://dx.doi.org/10.3389/fnins.2012.00106
http://www.ncbi.nlm.nih.gov/pubmed/22822389
http://dx.doi.org/10.3758/BRM.40.1.61
http://www.ncbi.nlm.nih.gov/pubmed/18411528
http://dx.doi.org/10.1027/0269-8803.19.3.165
http://dx.doi.org/10.1016/j.neuron.2012.09.015
http://www.ncbi.nlm.nih.gov/pubmed/23177968

