
ESAIM: COCV 21 (2015) 1076–1107 ESAIM: Control, Optimisation and Calculus of Variations

DOI: 10.1051/cocv/2014059 www.esaim-cocv.org

INTERNAL CONTROLLABILITY OF THE KORTEWEG–DE VRIES EQUATION

ON A BOUNDED DOMAIN

Roberto A. Capistrano–Filho1,2, Ademir F. Pazoto1 and Lionel Rosier3

Abstract. This paper is concerned with the control properties of the Korteweg–de Vries (KdV)
equation posed on a bounded interval (0, L) with a distributed control. When the control region is an
arbitrary open subdomain (l1, l2), we prove the null controllability of the KdV equation by means of a
new Carleman inequality. As a consequence, we obtain a regional controllability result, which roughly
tells us that any target function arbitrarily chosen on (0, l1) and null on (l2, L) is reachable. Finally,
when the control region is a neighborhood of the right endpoint, an exact controllability result in a
weighted L2-space is also established.
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1. Introduction

The Korteweg–de Vries (KdV) equation can be written

ut + uxxx + ux + uux = 0,

where u = u(t, x) is a real-valued function of two real variables t and x, and ut = ∂u/∂t, etc. The equation
was first derived by Boussinesq [3] and Korteweg–de Vries [13] as a model for the propagation of water waves
along a channel. The equation furnishes also a very useful approximation model in nonlinear studies whenever
one wishes to include and balance a weak nonlinearity and weak dispersive effects. In particular, the equation
is now commonly accepted as a mathematical model for the unidirectional propagation of small amplitude long
waves in nonlinear dispersive systems.

The KdV equation has been intensively studied from various aspects of mathematics, including the well-
posedness, the existence and stability of solitary waves, the integrability, the long-time behavior, etc. (see
e.g. [12, 18]). The practical use of the KdV equation does not always involve the pure initial value problem.
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In numerical studies, one is often interested in using a finite interval (instead of the whole line) with three
boundary conditions.

Here, we shall be concerned with the control properties of KdV, the control acting through a forcing term f
incorporated in the equation:

ut + ux + uxxx + uux = f, t ∈ [0, T ], x ∈ [0, L], (1.1)

together with some boundary conditions. Our main purpose is to see whether one can force the solutions
of (1.1) to have certain desired properties by choosing an appropriate control input f . The focus here is on the
controllability issue:
Given an initial state u0 and a terminal state u1 in a certain space, can one find an appropriate control input
f so that equation (1.1) admits a solution u which equals u0 at time t = 0 and u1 at time t = T?

If one can always find a control input f to guide the system described by (1.1) from any given initial state
u0 to any given terminal state u1, then the system (1.1) is said to be exactly controllable. If the system can be
driven, by means of a control f , from any state to the origin (i.e. u1 ≡ 0), then one says that system (1.1) is
null controllable.

The study of the controllability and stabilization of the KdV equation started with the works of Russell
and Zhang [25] for a system with periodic boundary conditions and an internal control. Since then, both the
controllability and the stabilization have been intensively studied. (We refer the reader to [24] for a survey of the
results up to 2009.) In particular, the exact boundary controllability of KdV on a finite domain was investigated
in e.g. [4–6, 8, 9, 20, 22, 28]. Most of those works were concerned with the following system

{
ut + ux + uxxx + uux = 0 in (0, T )× (0, L),
u(t, 0) = g1(t), u(t, L) = g2(t), ux(t, L) = g3(t) in (0, T )

(1.2)

in which the boundary data g1, g2, g3 can be chosen as control inputs. System (1.2) was first studied by Rosier [20]
considering only the control input g3 (i.e. g1 = g2 = 0). It was shown in [20] that the exact controllability of the
linearized system holds in L2(0, L) if, and only if, L does not belong to the following countable set of critical
lengths

N :=

{
2π√

3

√
k2 + kl + l2 : k, l ∈ N

∗
}

. (1.3)

The analysis developed in [20] shows that when the linearized system is controllable, the same is true for the
nonlinear one. Note that the converse is false, as it was proved in [4–6] that the (nonlinear) KdV equation is
controllable even when L is a critical length. The existence of a discrete set of critical lengths for which the
exact controllability of the linearized equation fails was also noticed by Glass and Guerrero in [9] when g2 is
taken as control input (i.e. g1 = g3 = 0). Finally, it is worth mentioning the result by Rosier [22] and Glass and
Guerrero [8] for which g1 is taken as control input (i.e. g2 = g3 = 0). They proved that system (1.2) is then null
controllable, but not exactly controllable, because of the strong smoothing effect.

As already noticed in [22,24], system (1.2) with only the left control input g1 active behaves like a parabolic
system and is only null controllable. On the other hand, if one of the right controls g2 or g3 is active, then the
system behaves like a hyperbolic system and is exactly controllable. The fact that we have so different control
properties according to the place where the control is active is related to the propagation to the left of the high
wavenumber exponential solutions of the linearized equation (see [22]).

By contrast, the mathematical theory pertaining to the study of the internal controllability in a bounded
domain is considerably less advanced. As far as we know, the null controllability problem for system (1.1) was
only addressed in [8] when the control acts in a neighborhood of the left endpoint. On the other hand, the exact
controllability results in [14, 25] were obtained on a periodic domain.

The aim of this paper is to address the controllability issue for the KdV equation on a bounded domain with
a distributed control. Our first main result is a null controllability result valid for any localization of the control
region. Actually, a controllability to the trajectories is established.
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Theorem 1.1. Let ω = (l1, l2) with 0 < l1 < l2 < L, and let T > 0. For ū0 ∈ L2(0, L), let ū ∈
C0([0, T ]; L2(0, L)) ∩ L2(0, T ; H1(0, L)) denote the solution of

⎧
⎨

⎩

ūt + ūx + ū ūx + ūxxx = 0 in (0, T )× (0, L),
ū(t, 0) = ū(t, L) = ūx(t, L) = 0 in (0, T ),
ū(0, x) = ū0(x) in (0, L).

(1.4)

Then there exists δ > 0 such that for any u0 ∈ L2(0, L) satisfying ‖u0 − ū0‖L2(0,L) ≤ δ, there exists f ∈
L2((0, T ) × ω) such that the solution u ∈ C0([0, T ]; L2(0, L)) ∩ L2(0, T, H1(0, L)) of

⎧
⎨

⎩

ut + ux + uux + uxxx = 1ωf(t, x) in (0, T )× (0, L),
u(t, 0) = u(t, L) = ux(t, L) = 0 in (0, T ),
u(0, x) = u0(x) in (0, L),

(1.5)

satisfies u(T, ·) = ū(T, ·) in (0, L).

The null controllability is first established for a linearized system

⎧
⎨

⎩

ut + (ξu)x + uxxx = 1ωf in (0, T )× (0, L) ,
u (t, 0) = u (t, L) = ux (t, L) = 0 in (0, T ) ,
u (0, x) = u0 (x) in (0, L) ,

(1.6)

by following the classical duality approach (see [7, 15]), which reduces the null controllability of (1.6) to an
observability inequality for the solutions of the adjoint system. To prove the observability inequality, we derive
a new Carleman estimate with an internal observation in (0, T )× (l1, l2) and use some interpolation arguments
inspired by those in [8], where the authors derived a similar result when the control acts on a neighborhood
on the left endpoint (that is, l1 = 0). The null controllability is extended to the nonlinear system by applying
Kakutani fixed-point theorem.

The second problem we address is related to the exact internal controllability of system (1.1). As far as we
know, the same problem was studied only in [14, 25] in a periodic domain T with a distributed control of the
form

f(t, x) = (Gh)(t, x) := g(x)

(
h(t, x) −

∫

T

g(y)h(t, y)dy

)
,

where g ∈ C∞(T) was such that {x ∈ T; g(x) > 0} = ω and
∫

T
g(x)dx = 1, and the function h was considered

as a new control input. Here, we shall consider the system

⎧
⎨

⎩

ut + ux + uux + uxxx = f in (0, T ) × (0, L),
u(t, 0) = u(t, L) = ux(t, L) = 0 in (0, T ),
u(0, x) = u0(x) in (0, L).

(1.7)

As the smoothing effect is different from those in a periodic domain, the results in this paper turn out to be
very different from those in [14, 25]. First, for a controllability result in L2(0, L), the control f has to be taken
in the space L2(0, T, H−1(0, L)). Actually, with any control f ∈ L2(0, T, L2(0, L)), the solution of (1.7) starting
from u0 = 0 at t = 0 would remain in H1

0 (0, L) (see [8]). On the other hand, as for the boundary control, the
localization of the distributed control plays a role in the results.

When the control acts in a neighborhood of x = L, we obtain the exact controllability in the weighted Sobolev
space L2

1
L−x dx

defined as

L2
1

L−x dx :=

{
u ∈ L1

loc(0, L);

∫ L

0

|u(x)|2
L − x

dx < ∞
}

.
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More precisely, we shall obtain the following result:
Theorem 1.2. Let T > 0, ω = (l1, l2) = (L − ν, L) where 0 < ν < L. Then, there exists δ > 0 such that for
any u0, u1 ∈ L2

1
L−x dx

with

‖u0‖L2
1

L−x
dx

≤ δ and ‖u1‖L2
1

L−x
dx

≤ δ,

one can find a control input f ∈ L2(0, T ; H−1(0, L)) with supp(f) ⊂ (0, T ) × ω such that the solution u ∈
C0([0, T ], L2(0, L)) ∩ L2(0, T, H1(0, L)) of (1.7) satisfies u(T, .) = u1 in (0, L) and u ∈ C0([0, T ], L2

1
L−x dx

).

Furthermore, f ∈ L2
(T−t)dt(0, T, L2(0, L)).

In the above result, we used the notation:

L2
(T−t)dt(0, T, L2(0, L)) :=

{
f ∈ L1

loc(0, T, L2(0, L));

∫ T

0

||f(t, ·)||2L2(0,L)(T − t)dt < ∞
}

.

Actually, we shall have to investigate the well-posedness of the linearization of (1.7) in the space L2
1

L−x dx

and the well-posedness of the (backward) adjoint system in the “dual space” L2
(L−x)dx. To do this, we shall

follow some ideas borrowed from [10], where the well-posedness was investigated in the weighted space L2
x

L−x dx.

The needed observability inequality is obtained by the standard compactness-uniqueness argument, some esti-
mate obtained by the multiplier method in [20] (this estimate gives at once the global Kato smoothing effect
and some energy estimate in L2

xdx(0, L), which explains in part the choice of the spaces in Thm. 1.2), and
some unique continuation property. The exact controllability is extended to the nonlinear system by using the
contraction mapping principle.

When the control is acting far from the endpoint x = L, i.e. in some interval ω = (l1, l2) with 0 < l1 < l2 < L,
then there is no chance to control exactly the state function on (l2, L) (see e.g. [22]). However, it is possible to
control the state function on (0, l1), so that a “regional controllability” can be established:
Theorem 1.3. Let T > 0 and ω = (l1, l2) with 0 < l1 < l2 < L. Pick any number l′1 ∈ (l1, l2). Then there exists
a number δ > 0 such that for any u0, u1 ∈ L2(0, L) satisfying

||u0||L2(0,L) ≤ δ, ||u1||L2(0,L) ≤ δ,

one can find a control f ∈ L2(0, T, H−1(0, L)) with supp(f) ⊂ (0, T ) × ω such that the solution u ∈
C0([0, T ], L2(0, L)) ∩ L2(0, T, H1(0, L)) of (1.7) satisfies

u(T, x) =

{
u1(x) if x ∈ (0, l′1);
0 if x ∈ (l2, L).

(1.8)

The proof of Theorem 1.3 combines Theorem 1.1, a boundary controllability result from [20], and the use of a
cutt-off function. The issue whether u may also be controlled in the interval (l′1, l2) is open. Note that, as for
the boundary control, the internal control gives a control of hyperbolic type in the left direction and a control
of parabolic type in the right direction.

The paper is outlined as follows. In Section 2, we review some linear estimates from [8, 20] that will be
used thereafter. Section 3 is devoted to the proof of Theorems 1.1 and 1.3. It contains the proof of a new
Carleman estimate for the KdV equation with some internal observation (Prop. 3.1). In Section 4 we prove
the well-posedness of KdV in the weighted spaces L2

xdx and L2
1

L−x dx
by using semigroup theory, and derive

Theorem 1.2.

2. Linear estimates

We review a series of estimates for the system
⎧
⎨

⎩

ut + (ξu)x + uxxx = f(t, x) in (0, T ) × (0, L),
u(t, 0) = u(t, L) = ux(t, L) = 0 in (0, T ),
u(0, x) = u0(x) in (0, L)

(2.1)
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and its adjoint system. Here f = f(t, x) is a function which stands for the control of the system, and ξ = ξ(t, x)
is a given function.

2.1. The linearized KdV equation

It was noticed in [20] that the operator A = − ∂3

∂x3
− ∂

∂x
with domain

D(A) =
{
w ∈ H3(0, L); w(0) = w(L) = wx(L) = 0

}
⊆ L2(0, L)

is the infinitesimal generator of a strongly continuous semigroup of contractions in L2(0, L). More precisely, the
following result was established in [20].

Proposition 2.1. Let u0 ∈ L2(0, L), ξ ≡ 1 and f ≡ 0. There exists a unique (mild) solution u of (2.1) with

u ∈ C([0, T ]; L2(0, L)) ∩ L2(0, T, H1
0 (0, L)). (2.2)

Moreover, there exist positive constants c1 and c2 such that for all u0 ∈ L2(0, L)

‖u‖L2(0,T ;H1(0,L)) + ‖ux(., 0)‖L2(0,T ) ≤ c1 ‖u0‖L2(0,L) , (2.3)

‖u0‖2
L2(0,L) ≤

1

T
‖u‖2

L2(0,T ;L2(0,L)) + c2 ‖ux(., 0)‖2
L2(0,T ) . (2.4)

If in addition u0 ∈ D(A), then (2.1) has a unique (classical) solution u in the class

u ∈ C([0, T ]; D(A)) ∩ C1([0, T ]; L2(0, L)). (2.5)

2.2. The modified KdV equation

We introduce a system related to the adjoint system to (2.1), namely
⎧
⎨

⎩

−vt − ξvx − vxxx = f in (0, T ) × (0, L),
v(t, 0) = v(t, L) = vx(t, 0) = 0 in (0, T ),
v(T, x) = 0 in (0, L),

(2.6)

for which we review some estimates borrowed from [8].

2.2.1. Energy Estimates

We introduce the following spaces

X0 := L2(0, T ; H−2(0, L)), X1 := L2(0, T ; H2
0 (0, L)),

X̃0 := L1(0, T ; H−1(0, L)), X̃1 := L1(0, T ; (H3 ∩ H2
0 )(0, L)), (2.7)

and

Y0 := L2((0, T ) × (0, L)) ∩ C0([0, T ] ; H−1(0, L)),

Y1 := L2(0, T ; H4(0, L)) ∩ C0([0, T ] ; H3(0, L)). (2.8)

The spaces X0, X1, X̃0, X̃1, Y0, and Y1 are equipped with their natural norms. For instance, the spaces Y0 and
Y1 are equipped with the norms

‖w‖Y0
:= ‖w‖L2((0,T )×(0,L)) + ‖w‖L∞(0,T ;H−1(0,L))

and
‖w‖Y1

:= ‖w‖L2(0,T ;H4(0,L)) + ‖w‖L∞(0,T ;H3(0,L)) .
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For θ ∈ [0, 1], we define the complex interpolation spaces (see [2] and [16])

Xθ = (X0, X1)[θ], X̃θ = (X̃0, X̃1)[θ] and Yθ = (Y0, Y1)[θ].

Then,

X1/4 = L2(0, T ; H−1(0, L)), X̃1/4 = L1(0, T ; L2(0, L)) (2.9)

and

Y1/4 = L2(0, T ; H1(0, L)) ∩ C0([0, T ] ; L2(0, L)). (2.10)

Furthermore,

X1/2 = L2((0, T ) × (0, L)), X̃1/2 = L1(0, T ; H1
0 (0, L)) (2.11)

and

Y1/2 = L2(0, T ; H2(0, L)) ∩ C0([0, T ] ; H1(0, L)). (2.12)

Proposition 2.2 ([8], Sect. 2.2.2). Let ξ ∈ Y 1
4

and f ∈ X 1
4
∪ X̃ 1

4
= L2(0, T ; H−1(0, L)) ∪ L1(0, T ; L2(0, L)).

Then the solution v of (2.6) belongs to Y 1
4
, and there exists some constant C = C(||ξ||Y 1

4

) > 0 such that

‖v‖L∞(0,T,L2(0,L)) + ‖v‖L2(0,T ;H1(0,L)) + ‖vx(·, L)‖L2(0,T ) ≤ C
(
‖ξ‖Y1/4

)
‖f‖L2(0,T ;H−1(0,L)) (2.13)

and

‖v‖L∞(0,T,L2(0,L)) + ‖v‖L2(0,T ;H1(0,L)) + ‖vx(·, L)‖L2(0,T ) ≤ C
(
‖ξ‖Y1/4

)
‖f‖L1(0,T ;L2(0,L)) . (2.14)

More can be said when ξ ≡ 0. Consider the following system

⎧
⎨

⎩

−vt − vxxx = g in (0, T ) × (0, L),
v(t, 0) = v(t, L) = vx(t, 0) = 0 in (0, T ),
v(T, x) = 0 in (0, L).

(2.15)

Proposition 2.3 ([8], Sect. 2.3.1). If g ∈ X1 ∪ X̃1, then v ∈ Y1, and there exists some constant C > 0 such
that

‖v‖Y1
+ ‖vx(·, L)‖H1(0,T ) ≤ C ‖g‖X1

(2.16)

and

‖v‖Y1
+ ‖vx(·, L)‖H1(0,T ) ≤ C ‖g‖X̃1

. (2.17)

Proposition 2.4 ([8], Sect. 2.3.2). If g ∈ X1/2 ∪ X̃1/2, then v ∈ Y1/2, and there exists some constant C > 0
such that

‖v‖Y1/2
+ ‖vx(·, L)‖H1/3(0,T ) + ‖vxx(·, 0)‖L2(0,T ) + ‖vxx(·, L)‖L2(0,T ) ≤ C ‖g‖X1/2

(2.18)

and

‖v‖Y1/2
+ ‖vx(·, L)‖H1/3(0,T ) + ‖vxx(·, 0)‖L2(0,T ) + ‖vxx(·, L)‖L2(0,T ) ≤ C ‖g‖X̃1/2

. (2.19)

3. Null controllability results

This section is devoted to the proof of Theorems 1.1 and 1.3.
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3.1. Null controllability of a linearized equation

We first consider the system

⎧
⎨

⎩

ut + (ξu)x + uxxx = 1ωf(t, x) in (0, T ) × (0, L),
u(t, 0) = u(t, L) = ux(t, L) = 0 in (0, T ),
u(0, x) = u0(x) in (0, L),

(3.1)

where ξ = ξ(t, x) is a given function in Y 1
4
, and ω = (l1, l2) ⊂ (0, L). Our aim is to prove the null controllability

of (3.1). To this end, we shall establish an observability inequality for the corresponding adjoint system

⎧
⎨

⎩

−vt − ξ(t, x)vx − vxxx = 0 in (0, T ) × (0, L),
v(t, 0) = v(t, L) = vx(t, 0) = 0 in (0, T ),
v(T, x) = vT (x) in (0, L)

(3.2)

by using some Carleman inequality.

3.1.1. Carleman inequality with internal observation

Assume that ω = (l1, l2) with
0 < l1 < l2 < L.

Pick any function ψ ∈ C3([0, L]) with

ψ > 0 in [0, L]; (3.3)

|ψ′| > 0, ψ′′ < 0, and ψ′ψ′′′ < 0 in [0, L] \ ω; (3.4)

ψ′(0) < 0 and ψ′(L) > 0; (3.5)

min
x∈[l1,l2]

ψ(x) = ψ(l3) < max
x∈[l1,l2]

ψ(x) = ψ(l1) = ψ(l2), max
x∈[0,L]

ψ(x) = ψ(0) = ψ(L) (3.6)

ψ(0) <
4

3
ψ(l3), (3.7)

for some l3 ∈ (l1, l2). A convenient function ψ is defined on [0, L] \ ω as

ψ(x) =

{
εx3 − x2 − x + c1 if x ∈ [0, l1],
−εx3 + ax + c2 if x ∈ [l2, L]

with ε, a, c1, c2 > 0 conveniently chosen. Note first that ψ(l1) = ψ(l2) and ψ(0) = ψ(L) if, and only if,

a = (L − l2)
−1(l21 + l1 − εl32 − εl31 + εL3), c1 = c2 − εL3 + aL.

Then a > 0, c1 − c2 > 0 and the conditions (3.4) and (3.5) hold provided that 0 < ε ≪ 1. The conditions (3.3)
and (3.7) hold for c2 ≫ 1. Finally, the condition (3.6) is easy to satisfy.

Set

ϕ(t, x) =
ψ(x)

t(T − t)
· (3.8)

For f ∈ L2(0, T ; L2(0, L)) and q0 ∈ L2(0, L), let q denote the solution of the system

qt + qxxx = f, t ∈ (0, T ), x ∈ (0, L), (3.9)

q(t, 0) = q(t, L) = qx(t, L) = 0, t ∈ (0, T ), (3.10)

q(0, x) = q0(x), x ∈ (0, L). (3.11)

Then the following Carleman inequality holds.
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Proposition 3.1. Pick any T > 0. There exist two constants C > 0 and s0 > 0 such that any f ∈
L2(0, T ; L2(0, L)), any q0 ∈ L2(0, L) and any s ≥ s0, the solution q of (3.9)–(3.11) fulfills

∫ T

0

∫ L

0

[
sϕ|qxx|2+(sϕ)3|qx|2+(sϕ)5|q|2

]
e−2sϕdxdt+

∫ T

0

[(
sϕ|qxx|2+(sϕ)3|qx|2

)
e−2sϕ

]
|x=0

+
[
sϕ|qxx|2e−2sϕ

]
|x=L

dt

≤ C

(∫ T

0

∫ L

0

|f |2e−2sϕdxdt +

∫ T

0

∫

ω

[
sϕ|qxx|2 + (sϕ)3|qx|2 + (sϕ)5|q|2

]
e−2sϕdxdt

)
(3.12)

Actually, we shall need a Carleman estimate for (3.2) with the potential ξ ∈ Y 1
4
. Let

ϕ̃(t, x) = ϕ(t, L − x).

Corollary 3.2. Let ξ ∈ Y 1
4
. Then there exist some positive constants s̃0 = s̃0(T, ||ξ||Y 1

4

) and C = C(T, ||ξ||Y 1
4

)

such that for all s ≥ s̃0 and all vT ∈ L2(0, L), the solution v of (3.2) fulfills

∫ T

0

∫ L

0

[sϕ̃|vxx|2 + (sϕ̃)3|vx|2 + (sϕ̃)5|v|2]e−2sϕ̃dxdt

≤ C

∫ T

0

∫

ω

[sϕ̃|vxx|2 + (sϕ̃)3|vx|2 + (sϕ̃)5|v|2]e−2sϕ̃dxdt. (3.13)

Proof of Proposition 3.1. We first assume that q0 ∈ D(A) and that f ∈ C([0, T ]; D(A)), so that q ∈
C([0, T ]; D(A))∩C1([0, T ]; L2(0, L)). This will be sufficient to legitimate the following computations. The general
case (q0 ∈ L2(0, L) and f ∈ L2(0, T ; L2(0, L))) follows by density. Indeed, if we set

p(t, x) :=
√

ϕ(t, l3)e
−sϕ(t,l3)q(t, x)

then p solves (3.9)–(3.11) with q0 replaced by 0, and f replaced by

f̃ =
√

ϕ(t, l3)e
−sϕ(t,l3)f +

(
1

2
ϕt(t, l3)ϕ

− 1
2 (t, l3) − sϕt(t, l3)

√
ϕ(t, l3)

)
e−sϕ(t,l3)q,

so that (with different constants C)

∫ T

0

∫ L

0

ϕ|qxx|2e−2sϕdxdt ≤ C||p||2L2(0,T,H2(0,L)) ≤ C||f̃ ||2L2(0,T,L2(0,L)) ≤ C
(
||f ||2L2(0,T,L2(0,L)) + ||q0||2L2(0,L)

)
.

Since
||q||2L2(0,T,H1(0,L)) ≤ C

(
||f ||2L2(0,T,L2(0,L)) + ||q0||2L2(0,L)

)

we conclude that we can pass to the limit in each term in (3.12), if we take a sequence {(qn
0 , fn)}n≥0 in

D(A) × C([0, T ],D(A)) such that qn
0 → q0 in L2(0, L) and fn → f in L2(0, T, L2(0, L)).

Assume from now on that q0 ∈ D(A) and that f ∈ C([0, T ];D(A)). Let q denote the solution of (3.9)–(3.11),
and let u = e−sϕq, w = e−sϕL(esϕu), where

L = ∂t + ∂3
x. (3.14)

Straightforward computations show that

w = Mu := ut + uxxx + 3sϕxuxx +
(
3s2ϕ2

x + 3sϕxx

)
ux +

(
s3ϕ3

x + 3s2ϕxϕxx + s (ϕt + ϕxxx)
)
u. (3.15)
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Let M1 and M2 denote the formal self-adjoint and skew-adjoint parts of the operator M . We readily obtain
that

M1u := 3s (ϕxuxx + ϕxxux) +
[
s (ϕt + ϕxxx) + s3ϕ3

x

]
u, (3.16)

M2u := ut + uxxx + 3s2
(
ϕ2

xux + ϕxϕxxu
)
. (3.17)

On the other hand
||w||2 = ||M1u||2 + ||M2u||2 + 2 (M1u, M2u) (3.18)

where (u, v) =
∫ T

0

∫ L

0
uvdxdt and ||w||2 = (w, w). From now on, for the sake of simplicity, we write

∫∫
u (resp.

∫
u
∣∣L
0
) instead of

∫ T

0

∫ L

0 u(t, x)dxdt (resp.
∫ T

0 u(t, x)
∣∣L
x=0

dt). The proof of the Carleman inequality follows the
same pattern as in [17, 23]. The first step provides an exact computation of the scalar product (M1u, M2u),
whereas the second step gives the estimates obtained thanks to the pseudoconvexity conditions (3.3)–(3.7).

Step 1. Exact computation of the scalar product in (3.18).
Write

2(M1u, M2u) = 2

∫∫
[s(ϕt + ϕxxx) + s3ϕ3

x]uM2u + 2

∫∫
3s(ϕxuxx + ϕxxux)M2u =: I1 + I2.

Let
α := s(ϕt + ϕxxx) + s3ϕ3

x. (3.19)

Using (3.17), we decompose I1 into

I1 =

∫∫
2αuut +

∫∫
2αuuxxx + 3s2

∫∫
2αu(ϕ2

xux + ϕxϕxxu).

Integrating by parts with respect to t or x, noticing that u|x=0 = u|x=L = ux|x=L = 0, and that u|t=0 = u|t=T = 0
by (3.3), we obtain that

I1 = −
∫∫

αtu
2 + (3

∫∫
αxu2

x −
∫∫

αxxxu2 −
∫

αu2
x

∣∣L
0
) − 3s2

∫∫
ϕ2

xαxu2

= −
∫∫

(αt + αxxx + 3s2ϕ2
xαx)u2 + 3

∫∫
αxu2

x −
∫

αu2
x

∣∣L
0
. (3.20)

Next, we compute

I2 = 2

∫∫
3s(ϕxuxx + ϕxxux)(ut + uxxx + 3s2(ϕ2

xux + ϕxϕxxu)).

Performing integrations by parts, we obtain successively

2

∫∫
(ϕxuxx + ϕxxux)ut =

∫∫
ϕxtu

2
x,

2

∫∫
(ϕxuxx + ϕxxux)uxxx = −3

∫∫
ϕxxu2

xx +

∫∫
ϕ4xu2

x +

∫ (
ϕxu2

xx − ϕ3xu2
x + 2ϕxxuxxux

) ∣∣L
0
,

and

2

∫∫
(ϕxuxx + ϕxxux)

(
ϕ2

xux + ϕxϕxxu
)

= −3

∫∫
ϕ2

xϕxxu2
x +

∫∫ [(
ϕ2

xϕxx

)
xx

−
(
ϕxϕ2

xx

)
x

]
u2 +

∫
ϕ3

xu2
x

∣∣L
0
.

Thus

I2 = −9s

∫∫
ϕxxu2

xx +

∫∫ [
−27s3ϕ2

xϕxx + 3s(ϕxt + ϕ4x)
]
u2

x

+

∫∫
9s3
[(

ϕ2
xϕxx

)
xx

−
(
ϕxϕ2

xx

)
x

]
u2 +

∫ [
3s
(
ϕxu2

xx − ϕ3xu2
x + 2ϕxxuxuxx

)
+ 9s3ϕ3

xu2
x

] ∣∣L
0

(3.21)
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Gathering together (3.20) and (3.21), we infer that

2(M1u, M2u) =

∫∫ [
−
(
αt + αxxx + 3s2ϕ2

xαx

)
+ 9s3

((
ϕ2

xϕxx

)
xx

−
(
ϕxϕ2

xx

)
x

)]
u2

+

∫∫ [
3αx − 27s3ϕ2

xϕxx + 3s (ϕxt + ϕ4x)
]
u2

x − 9s

∫∫
ϕxxu2

xx

+

∫ [
3sϕxu2

xx +
(
9s3ϕ3

x − 3sϕxxx − α
)
u2

x + 2ϕxxuxuxx

] ∣∣L
0

(3.22)

Step 2. Estimation of each term in (3.22).
The estimates are given in a series of claims.

Claim 3.3. There exist some constants s1 > 0 and C1 > 1 such that for all s ≥ s1, we have

∫∫ [
−
(
αt + αxxx + 3s2ϕ2

xαx

)
+ 9s3

((
ϕ2

xϕxx

)
xx

−
(
ϕxϕ2

xx

)
x

)]
u2 ≥ C−1

1

∫∫
(sϕ)5u2 − C1

∫ T

0

∫

ω

(sϕ)5u2.

From (3.19), we see that the term in s5 in the brackets reads

−3s5ϕ2
x

(
ϕ3

x

)
x

= −9s5ϕ4
xϕxx = −9s5 (ψ′)4ψ′′

t5(T − t)5
·

We infer from (3.4) that for some κ1 > 0 and all s > 0

−9s5ϕ4
xϕxx ≥ κ1(sϕ)5 (t, x) ∈ (0, T )× ([0, L] \ ω).

On the other hand, we have for some κ2 > 0 and all s > 0

|αt| + |αxxx| +
∣∣9s3

((
ϕ2

xϕxx

)
xx

−
(
ϕxϕ2

xx

)
x

)∣∣ ≤ κ2s
3ϕ4 (t, x) ∈ (0, T )× (0, L),

∣∣3s2ϕ2
xαx

∣∣ ≤ κ2(sϕ)5 (t, x) ∈ (0, T ) × ω.

Claim 3.3 follows then for all s > s1 with s1 large enough and some C1 > 1.

Claim 3.4. There exist some constants s2 > 0 and C2 > 1 such that for all s ≥ s2, we have

∫∫ [
3αx − 27s3ϕ2

xϕxx + 3s(ϕxt + ϕ4x)
]
u2

x ≥ C−1
2

∫∫
(sϕ)3u2

x − C2

∫ T

0

∫

ω

(sϕ)3u2
x. (3.23)

Indeed, the term in s3 in the brackets is found to be

−18s3ϕ2
xϕxx ≥ κ3(sϕ)3 (t, x) ∈ (0, T )× ([0, L] \ ω)

for some κ3 > 0 and all s > 0, by (3.4). On the other hand, we have for some κ4 > 0 and all s > 0

|6s(ϕtx + ϕ4x)| ≤ κ4sϕ
2 (t, x) ∈ (0, T ) × (0, L),

|18s3ϕ2
xϕxx| ≤ κ4(sϕ)3 (t, x) ∈ (0, T )× ω.

Claim 3.4 follows for all s ≥ s2 with s2 large enough and some C2 > 1.

Claim 3.5. There exist some constants s3 > 0 and C3 > 1 such that for all s ≥ s3, we have

−9s

∫∫
ϕxxu2

xx ≥ C−1
3

∫∫
sϕu2

xx − C3

∫ T

0

∫

ω

sϕu2
xx. (3.24)

Claim 3.5 is clear, for ψ′′ < 0 on [0, L] \ ω.
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Claim 3.6. There exist some constants s4 > 0 and C4 > 1 such that for all s ≥ s4, we have

∫ [
3sϕxu2

xx +
(
9s3ϕ3

x − 3sϕxxx − α
)
u2

x + 2ϕxxuxuxx

] ∣∣L
0

≥ C−1
4

∫ T

0

[(
sϕu2

xx

)
|x=0

+
(
sϕu2

xx

)
|x=L

+
(
s3ϕ3u2

x

)
|x=0

]
dt.

Since ux|x=L = 0 and

[(
9s3ϕ3

x − 3sϕxxx − α
)
u2

x

]
|x=0

=
[(

8s3ϕ3
x − s (ϕt + 4ϕxxx)

)
u2

x

]
|x=0

,

we obtain with (3.5) for s ≥ s4 with s4 large enough,

[(
9s3ϕ3

x − 3sϕxxx − α
)
u2

x

] ∣∣L
0
≥ κ5

[
(sϕ)3 u2

x

]

|x=0

and
3sϕxu2

xx|L0 ≥ κ6

([
sϕu2

xx

]
|x=0

+
[
sϕu2

xx

]
|x=L

)

for some constant κ5, κ6 > 0. Finally

|[2sϕxxuxuxx]x=0| ≤
κ6

2

[
sϕu2

xx

]
|x=0

+ κ7

[
sϕu2

x

]
|x=0

for some constant κ7 > 0. Since sϕ(t, 0) ≪ (sϕ)3(t, 0) for s ≫ 1, Claim 3.6 follows.
We infer from Claims 3.3, 3.4, 3.5, and 3.6 that for some positive constants s0, C and all s ≥ s0

∫∫ [
(sϕ)5|u|2 + (sϕ)3|ux|2 + sϕ|uxx|2

]
+

∫ T

0

[(
sϕu2

xx

)
|x=0

+
(
sϕu2

xx

)
|x=L

+
(
s3ϕ3u2

x

)
|x=0

]
dt

≤ C

(∫∫
|w|2 +

∫ T

0

∫

ω

[
(sϕ)5|u|2 + (sϕ)3|ux|2 + sϕ|uxx|2

]
)

. (3.25)

Replacing u by e−sϕq yields (3.12).

�

Proof of Corollary 3.2. Note first that for ξ ∈ Y 1
4

and vT ∈ L2(0, L), one can prove that (3.2) has a unique
solution v ∈ Y 1

4
, by using the contraction mapping principle for the integral equation. Corollary 3.2 follows from

Proposition 3.1 by taking q0(x) = vT (L − x), q(t, x) = v(T − t, L − x), and f(t, x) = −ξ(T − t, L − x)qx(t, x),
assuming first that ξ ∈ Y 1

4
∩ L∞(Q) (so that f ∈ L2(Q)). Indeed, with u = e−sϕq,

w = e−sϕL(esϕu) = −ξ(T − t, L − x)(ux + sϕxu),

so that
∫∫

|w|2dxdt ≤ C

∫ T

0

∫ L

0

|ξ(T − t, L − x)|2
(
|ux|2 + |sϕxu|2

)
dxdt

≤ C

∫ T

0

||ξ(T − t)||2L2(0,L)

(
||ux||2L∞(0,L) + ||sϕxu||2L∞(0,L)

)
dt

≤ C||ξ||2L∞(0,T,L2(0,L))

∫ T

0

∫ L

0

[
u2

x + u2
xx +

s2

t2(T − t)2
(
u2 + u2

x

)]
dx. (3.26)

Combining (3.25) with (3.26), picking s ≫ 1, and replacing again u by e−sϕv(T − t, L − x) yields (3.13). The
result for ξ ∈ Y 1

4
follows by density. �
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3.1.2. Internal observation

We go back to the adjoint system (3.2). Our next goal is to remove the terms vxx and vx from the r.h.s. of
(3.13). In addition to the weight ϕ̃(t, x) = 1

t(T−t)ψ(L − x), we introduce the functions

ϕ̂(t) =
1

t(T − t)
max

x∈[0,L]
ψ(x) =

ψ(0)

t(T − t)
and ϕ̌(t) =

1

t(T − t)
min

x∈[0,L]
ψ(x) =

ψ(l3)

t(T − t)
, (3.27)

where we used (3.6). By (3.7), we have

ϕ̂(t) <
4

3
ϕ̌(t), t ∈ (0, T ). (3.28)

Lemma 3.7. Let 0 < l1 < l2 < L, ξ ∈ Y 1
4
, and s̃0 be as in Corollary 3.2. Then there exists a constant

C = C(T, ||ξ||Y 1
4

) > 0 such that for any s ≥ s̃0 and any vT ∈ L2(0, L), the solution v of (3.2) satisfies

∫

Q

{
(sϕ̌)5|v|2 + (sϕ̌)3|vx|2 + sϕ̌|vxx|2

}
e−2sϕ̂dxdt ≤ C1s

10

∫ T

0

es(6ϕ̂−8ϕ̌)ϕ̌31 ‖v(t, ·)‖2
L2(ω) dt, (3.29)

where Q = (0, T ) × (0, L) and ω = (l1, l2) ⊂ (0, L).

Proof. We follow the same approach as in [8]. From (3.13) and (3.27)–(3.28), we first obtain

∫

Q

{
s5ϕ̌5|v|2 + s3ϕ̌3|vx|2 + sϕ̌|vxx|2

}
e−2sϕ̂dxdt

≤ C

∫ T

0

∫

ω

{
s5ϕ̌5 |v|2 + s3ϕ̌3|vx|2 + sϕ̌|vxx|2

}
e−2sϕ̌dxdt =: C(I0 + I1 + I2). (3.30)

Since ϕ̌ and ϕ̂ do not depend on x, we clearly have that

I1 ≤ s3

∫ T

0

ϕ̌3e−2sϕ̌ ‖v(t, ·)‖2
H1(ω) dt (3.31)

and

I2 ≤ s

∫ T

0

ϕ̌e−2sϕ̌ ‖v(t, ·)‖2
H2(ω) dt. (3.32)

Using interpolation in the Sobolev spaces Hs(ω) (s ≥ 0), we obtain for some positive constants K1, K2

‖v(t, ·)‖H1(ω) ≤ K1 ‖v(t, ·)‖3/8

H8/3(ω)
‖v(t, ·)‖5/8

L2(ω) (3.33)

and

‖v(t, ·)‖H2(ω) ≤ K2 ‖v(t, ·)‖3/4

H8/3(ω)
‖v(t, ·)‖1/4

L2(ω) . (3.34)

Replacing (3.33) and (3.34) in (3.31) and (3.32), respectively, yields

I1 ≤ Cs3

∫ T

0

ϕ̌3e−2sϕ̌ ‖v(t, ·)‖3/4

H8/3(ω)
‖v(t, ·)‖5/4

L2(ω) dt (3.35)

and

I2 ≤ Cs

∫ T

0

ϕ̌e−2sϕ̌ ‖v(t, ·)‖3/2

H8/3(ω)
‖v(t, ·)‖1/2

L2(ω) dt. (3.36)
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Next, an application of Young inequality in (3.35) and (3.36) gives

I1 ≤ Cs3

∫ T

0

ϕ̌3e−2sϕ̌e−
3
4 sϕ̂e

3
4 sϕ̂ϕ̌− 27

8 ϕ̌
27
8 ‖v(t, ·)‖3/4

H8/3(ω)
‖v(t, ·)‖5/4

L2(ω) dt

≤ Cǫs
6

∫ T

0

es( 6
5 ϕ̂− 16

5 ϕ̌)ϕ̌51/5 ‖v(t, ·)‖2
L2(ω) dt + ǫs−2

∫ T

0

e−2sϕ̂ϕ̌−9 ‖v(t, ·)‖2
H8/3(ω) dt (3.37)

and

I2 ≤ Cs

∫ T

0

e−2sϕ̌e−
3
2 sϕ̂e

3
2 sϕ̂ϕ̌− 27

4 ϕ̌
31
4 ‖v(t, ·)‖3/2

H8/3(ω)
‖v(t, ·)‖1/2

L2(ω) dt

≤ Cǫs
10

∫ T

0

es(6ϕ̂−8ϕ̌)ϕ̌31 ‖v(t, ·)‖2
L2(ω) dt + ǫs−2

∫ T

0

e−2sϕ̂ϕ̌−9 ‖v(t, ·)‖2
H8/3(ω) dt, (3.38)

for any ǫ > 0. Note that

I0 + s6

∫ T

0

es( 6
5 ϕ̂− 16

5 ϕ̌)ϕ̌51/5 ‖v(t, ·)‖2
L2(ω) dt ≤ Cs10

∫ T

0

es(6ϕ̂−8ϕ̌)ϕ̌31 ‖v(t, ·)‖2
L2(ω) dt. (3.39)

Gathering together (3.30) and (3.37)–(3.39), we obtain

∫

Q

{
s5ϕ̌5|v|2 + s3ϕ̌3|vx|2 + sϕ̌|vxx|2

}
e−2sϕ̂dxdt

≤ Cs10

∫ T

0

es(6ϕ̂−8ϕ̌)ϕ̌31 ‖v(t, ·)‖2
L2(ω) dt + 2ǫs−2

∫ T

0

e−2sϕ̂ϕ̌−9 ‖v(t, ·)‖2
H8/3(ω) dt. (3.40)

It remains to estimate the integral term

∫ T

0

e−2sϕ̂ϕ̌−9 ‖v(t, ·)‖2
H8/3(ω) dt.

This is done by a bootstrap argument based on the smoothing effect of the KdV equation.
Let v1(t, x) := θ1(t)v(t, x) with

θ1(t) = exp(−sϕ̂)ϕ̌− 1
2 .

Then v1 satisfies the system
⎧
⎨

⎩

−v1t − v1xxx = f1 := ξθ1vx − θ1tv in (0, T )× (0, L),
v1(t, 0) = v1(t, L) = v1x(t, 0) = 0 in (0, T ),
v1(T, x) = 0 in (0, L).

(3.41)

Now, observe that, since vx(t, 0) = 0, ξ ∈ L∞(0, T, L2(0, L)) and |θ1t| ≤ Csϕ̌
3
2 exp(−sϕ̂), we have

‖f1‖2
L2((0,T )×(0,L)) ≤ C||ξ||2L∞(0,T,L2(0,L))

∫ T

0

e−2sϕ̂||vx||2L∞(0,L)dt + C

∫

Q

e−2sϕ̂s2ϕ̌3|v|2dxdt

≤ C

∫

Q

{
s2ϕ̌3|v|2 + s|vx|2 + s−1|vxx|2

}
e−2sϕ̂dxdt (3.42)

for some constant C > 0 and all s ≥ s0. Moreover, by Proposition 2.4, v1 ∈ Y1/2. Then, interpolating between

L2(0, T ; H2(0, L)) and L∞(0, T ; H1(0, L)), we infer that v1 ∈ L4(0, T ; H3/2(0, L)) and

‖v1‖L4(0,T ;H3/2(0,L)) ≤ C ‖f1‖L2((0,T )×(0,L)) . (3.43)
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Let v2(t, x) := θ2(t)v(t, x) with

θ2 = exp(−sϕ̂)ϕ̌− 5
2 .

Then v2 satisfies system (3.41) with f1 replaced by

f2 := ξθ2θ
−1
1 v1x − θ2tθ

−1
1 v1.

Observe that ∣∣θ2θ
−1
1

∣∣+
∣∣θ2tθ

−1
1

∣∣ ≤ Cs.

On the other hand, since ξ ∈ L4(0, T ; H
1
2 (0, L)) and v1x ∈ L4(0, T ; H

1
2 (0, L)) by (3.43), we infer that ξv1x ∈

L2(0, T ; H1/3(0, L)). Indeed, the product of two functions in H
1
2 (0, L) belongs to Hs(0, L) for any s < 1/2, and

in particular to H
1
3 (0, L). (This fact is proved for H

1
2 (R) in Theorem 8.3.1 of [11], and a similar result can be

deduced for H
1
2 (0, L) by using a classical extension argument.) Thus, we obtain

‖f2‖L2(0,T ;H1/3(0,L)) ≤ Cs ‖v1‖L4(0,T ;H3/2(0,L)) . (3.44)

Interpolating between (2.16) and (2.18), we have that v2 ∈ L2(0, T ; H7/3(0, L)) ∩ L∞(0, T ; H4/3(0, L)) with

‖v2‖L2(0,T ;H7/3(0,L))∩L∞(0,T ;H4/3(0,L)) ≤ C ‖f2‖L2(0,T ;H1/3(0,L)) . (3.45)

Finally, let v3 := θ3(t)v(t, x) with

θ3(t) = exp(−sϕ̂)ϕ̌− 9
2 .

Then v3 satisfies system (3.41) with f1 replaced by

f3 := ξθ3θ
−1
2 v2x − θ3tθ

−1
2 v2.

Again ∣∣θ3θ
−1
2

∣∣+
∣∣θ3tθ

−1
2

∣∣ ≤ Cs.

Interpolating again between (2.16) and (2.18), we have that

‖v3‖L2(0,T ;H8/3(0,L))∩L∞(0,T ;H5/3(0,L)) ≤ C ‖f3‖L2(0,T ;H2/3(0,L)) . (3.46)

Since ξ ∈ Y 1
4
, we have that ξ ∈ L3(0, T ; H

2
3 (0, L)). On the other hand, by (3.45),

v2x ∈ L2
(
0, T ; H4/3(0, L)

)
∩ L∞

(
0, T ; H1/3(0, L)

)
.

It follows that v2x ∈ L6(0, T, H
2
3 (0, L)). Since H

2
3 (0, L) is an algebra, we conclude that ξv2x ∈

L2(0, T, H
2
3 (0, L)). Therefore

‖f3‖L2(0,T ;H2/3(0,L)) ≤ Cs ‖v2‖L2(0,T ;H7/3(0,L))∩L∞(0,T ;H4/3(0,L)) . (3.47)

Thus we infer from (3.42)–(3.47) that for some constants C1, C2 > 0 and all s ≥ s0

‖v3‖2
L2(0,T ;H8/3(0,L)) ≤ C1s

4||f1||2L2((0,T )×(0,L))

≤ C2

∫

Q

{
s6ϕ̌3|v|2 + s5|vx|2 + s3|vxx|2

}
e−2sϕ̂dxdt. (3.48)

Hence, replacing v3 = exp(−sϕ̂)ϕ̌− 9
2 v in (3.48) yields for some constant C3 > 0

∫ T

0

e−2sϕ̂ϕ̌−9 ‖v(t, ·)‖2
H8/3(ω) dt ≤ C3s

2

∫

Q

{
(sϕ̌)5|v|2 + (sϕ̌)3|vx|2 + sϕ̌|vxx|2

}
e−2sϕ̂dxdt. (3.49)
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Then, picking ǫ = 1/(4C3) in (3.40) results in

∫

Q

sϕ̌e−2sϕ̂
{
s4ϕ̌4|v|2 + s2ϕ̌2|vx|2 + |vxx|2

}
dxdt ≤ C4s

10

∫ T

0

es(6ϕ̂−8ϕ̌)ϕ̌31 ‖v(t, ·)‖2
L2(ω) dt

for all s ≥ s̃0 and some positive constant C4 = C4(T, ||ξ||Y 1
4

). �

We are in a position to prove the null controllability of system (3.1).

Theorem 3.8. Let T > 0. Then for any ξ ∈ Y1/4 and any u0 ∈ L2(0, L), one can find a control f ∈ L2((0, T )×
ω) such that the solution u of (3.1) fulfills u(T, ·) = 0.

Proof. Scaling in (3.2) by v and (L − x)v, integrating over (0, L) and adding the two resulting equations, we
obtain

−1

2

d

dt

∫ L

0

(1 + L − x)v2dx +
1

2
v2

x(L, t) +
3

2

∫ L

0

v2
xdx =

∫ L

0

(1 + L − x)ξvvxdx. (3.50)

We estimate the term in the r.h.s. of (3.50) as

∣∣∣∣∣

∫ L

0

(1 + L − x)ξvvxdx

∣∣∣∣∣ ≤ ||(1 + L − x)ξ||L∞(0,L)||vx||L2(0,L)||v||L2(0,L)

≤ 1

2
||vx||2L2(0,L) +

1

2
(1 + L)2||ξ||2L∞(0,L)||v||2L2(0,L)

≤ 1

2
||vx||2L2(0,L) + C(L)||ξ||2H1(0,L)||v||2L2(0,L) (3.51)

where C(L) > 0. Combining (3.50)–(3.51) and using Gronwall lemma, we obtain

max
t∈[0,T ]

||v(t)||2L2(0,L) + ||vx||2L2(0,T,L2(0,L)) ≤ Ĉ(L, ||ξ||L2(0,T,H1(0,L)))||vT ||2L2(0,L) (3.52)

for some constant Ĉ(L, ||ξ||L2(0,T,H1(0,L))) > 0 which is nondecreasing in its second variable. Replacing v(t) by
v(0) and vT by v(τ) for T/3 < τ < 2T/3 in (3.52), and integrating over τ ∈ (T/3, 2T/3), we obtain that

||v(0)||2L2(0,L) ≤
3

T
Ĉ(L, ||ξ||L2(0,T,H1(0,L)))

∫ 2T
3

T
3

||v(τ)||2L2(0,L)dτ. (3.53)

Combining (3.53) with Lemma 3.7 for a fixed value of s ≥ s̃0, we derive the following observability inequality

∫ L

0

|v(0, x)|2 dx ≤ C∗

∫ T

0

‖v(t, ·)‖2
L2(ω) dt (3.54)

where C∗ = C∗(T, L, ||ξ||Y1/4
) > 0 is nondecreasing in its last variable. Using (3.54), we can deduce the existence

of a function f ∈ L2((0, T ) × ω) as in Theorem 3.8 proceeding as follows.
On L2(0, L), we define the norm

‖vT ‖B := ‖v‖L2((0,T )×ω) ,

where v is the solution of (3.2) associated with vT . The fact that || · ||B is a norm comes from (3.54) applied on
(t, T ) for 0 < t < T .

Let B denote the completion of L2(0, L) with respect to the above norm. We define a functional J on B by

J(vT ) :=
1

2
‖vT ‖2

B +

∫ L

0

v(0, x)u0(x)dx.
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From (3.54) we infer that J is well defined and continuous on B. As it is strictly convex and coercive, it admits
a unique minimum v∗T , characterized by the Euler-Lagrange equation

∫ T

0

∫

ω

v∗wdxdt +

∫ L

0

w(0, x)u0(x)dx = 0, ∀wT ∈ B, (3.55)

where w (resp. v∗) denotes the solution of (3.2) associated with wT ∈ B (resp. v∗T ∈ B). Define f ∈ L2((0, T )×ω)
by

f := 1ωv∗, (3.56)

and let u denote the solution of (3.1) associated with u0 and f . Multiplying (3.1) by w(t, x) and integrating by
parts, we obtain for all wT ∈ L2(0, L)

∫ L

0

u(T, x)wT dx =

∫ L

0

u0(x)w(0, x)dx +

∫ T

0

∫

ω

v∗wdxdt = 0, (3.57)

where the second equality follows from (3.55). Therefore u(T, ·) = 0. Finally, letting wT = v∗T in (3.55) and
using (3.54), we obtain ∫ T

0

∫

ω

|f |2dxdt ≤ C∗

∫ L

0

|u0(x)|2dx. (3.58)

�

3.2. Null controllability of the nonlinear equation

In this section we prove Theorem 1.1. This is done by using a fixed-point argument.

3.2.1. Proof of Theorem 1.1

Consider u and ū fulfilling system (1.5) and (1.4), respectively. Then q = u − ū satisfies

⎧
⎨

⎩
qt + qx + ( q2

2 + ūq)x + qxxx = 1ωf(t, x) in (0, T ) × (0, L),
q(t, 0) = q(t, L) = qx(t, L) = 0 in (0, T ),
q(0, x) = q0(x) := u0(x) − ū0(x) in (0, L).

(3.59)

The objective is to find f such that the solution q of (3.59) satisfies

q(T, ·) = 0.

Given ξ ∈ Y 1
4

and q0 := u0 − ū0 ∈ L2(0, L), we consider the control problem

qt + qx + (ξq)x + qxxx = 1ωf(t, x) in (0, T )× (0, L), (3.60)

q(t, 0) = q(t, L) = qx(t, L) = 0 in (0, T ), (3.61)

q(0, x) = q0(x) in (0, L). (3.62)

Proceeding as in the proof of Theorem 3.8, we can establish the following estimate

||q||2L∞(0,T,L2(0,L)) + ||qx||2L2(0,T,L2(0,L)) ≤ C̃(T, L, ||ξ||Y1/4
)
(
||q0||2L2(0,L) + ||f ||2L2((0,T )×ω)

)
(3.63)

We introduce the space

E := C0([0, T ]; L2(0, L)) ∩ L2(0, T ; H1(0, L)) ∩ H1(0, T ; H−2(0, L))

endowed with its natural norm
‖z‖E := ||z||Y1/4

+ ||z||H1(0,T,H−2(0,L)).
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We consider in L2((0, T )× (0, L)) the following set

B := {z ∈ E; ‖z‖E ≤ 1} .

B is compact in L2((0, T )× (0, L)), by Aubin–Lions’s lemma. We will limit ourselves to controls f fulfilling the
condition

||f ||2L2((0,T )×ω) ≤ C∗||q0||2L2(0,L) (3.64)

where C∗ := C∗(T, L, ||ū||Y1/4
+ 1

2 ). We associate with any z ∈ B the set

P (z) :=
{
q ∈ B; ∃f ∈ L2((0, T ) × ω) such that f satisfies (3.64) and

q solves (3.60)–(3.62) with ξ = ū + z
2 and q(T, ·) = 0

}
.

By Theorem 3.8, (3.58) and (3.63), we see that if ‖q0‖L2(0,L) is sufficiently small, then P (z) is nonempty for all

z ∈ B. We shall use the following version of Kakutani fixed point theorem (see e.g. [27], Thm. 9.B):

Theorem 3.9. Let F be a locally convex space, let B ⊂ F and let P : B −→ 2B. Assume that

(1) B is a nonempty, compact, convex set;
(2) P (z) is a nonempty, closed, convex set for all z ∈ B;
(3) The set-valued map P : B −→ 2B is upper-semicontinuous; i.e., for every closed subset A of F , P−1(A) =

{z ∈ B; P (z) ∩ A �= ∅} is closed.

Then P has a fixed point, i.e., there exists z ∈ B such that z ∈ P (z).

Let us check that Theorem 3.9 can be applied to P and

F = L2((0, T ) × (0, L)).

The convexity of B and P (z) for all z ∈ B is clear. Thus (1) is satisfied. For (2), it remains to check that P (z)
is closed in F for all z ∈ B. Pick any z ∈ B and a sequence

{
qk
}

k∈N
in P (z) which converges in F towards

some function q ∈ B. For each k, we can pick some control function fk ∈ L2((0, T ) × ω) fulfilling (3.64) such
that (3.60)–(3.62) are satisfied with ξ = ū + z

2 and qk(T, ·) = 0. Extracting subsequences if needed, we may
assume that as k → ∞

fk → f in L2((0, T ) × ω) weakly, (3.65)

qk → q in L2(0, T ; H1(0, L)) ∩ H1(0, T ; H−2(0, L)) weakly, (3.66)

By (3.66), the boundedness of ||qk||L∞(0,T,L2(0,L)) and Aubin–Lions’s lemma, {qk}k∈N is relatively compact in
C0([0, T ], H−1(0, L)). Extracting a subsequence if needed, we may assume that

qk → q strongly in C0([0, T ], H−1(0, L)).

In particular, q(0, x) = q0(x) and q(T, x) = 0. On the other hand, we infer from (3.66) that

ξqk → ξq in L2((0, T ) × (0, L)) weakly.

Therefore, (ξqk)x → (ξq)x in D′((0, T ) × (0, L)). Finally, it is clear that

||f ||2L2((0,T )×ω) ≤ C∗||q0||2L2(0,L)

and that q satisfies (3.60) with ξ = ū + z
2 and q(T, ·) = 0. Thus q ∈ P (z) and P (z) is closed. Now, let us check

(3). To prove that P is upper-semicontinuous, consider any closed subset A of F and any sequence
{
zk
}

k∈N
in

B such that
zk ∈ P−1(A), ∀k ≥ 0, (3.67)
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and

zk → z in F (3.68)

for some z ∈ B. We aim to prove that z ∈ P−1(A). By (3.67), we can pick a sequence
{
qk
}

k∈N
in B with

qk ∈ P (zk) ∩ A for all k, and a sequence
{
fk
}

k∈N
in L2((0, T ) × ω) such that

⎧
⎪⎪⎨

⎪⎪⎩

qk
t + qk

x +

((
ū +

zk

2

)
qk

)

x

+ qk
xxx = 1ωfk(t, x) in (0, T )× (0, L),

qk(t, 0) = qk(t, L) = qk
x(t, L) = 0 in (0, T ),

qk(0, x) = q0(x) in (0, L),

(3.69)

qk(T, x) = 0, in (0, L), (3.70)

and ∥∥fk
∥∥2

L2((0,T )×ω)
≤ C∗ ‖q0‖2

L2(0,L) . (3.71)

From (3.71) and the fact that zk, qk ∈ B, extracting subsequences if needed, we may assume that as k → ∞,

fk → f in L2((0, T ) × ω) weakly,
qk → q in L2(0, T ; H1(0, L)) ∩ H1(0, T ; H−2(0, L)) weakly,
qk → q in C0([0, T ], H−1(0, L)) strongly,
qk → q in F strongly,
zk → z in F strongly,

where f ∈ L2((0, T )× ω) and q ∈ B. Again, q(0, x) = q0(x) and q(T, x) = 0. We also see that (3.61) and (3.64)
are satisfied. It remains to check that

qt + qx +
((

ū +
z

2

)
q
)

x
+ qxxx = 1ωf(t, x). (3.72)

Observe that the only nontrivial convergence in (3.69) is that of the nonlinear term (zkqk)x. Note first that

||zkqk||L2(0,T,L2(0,L)) ≤ ||zk||L∞(0,T,L2(0,L))||qk||L2(0,T,L∞(0,L)) ≤ C,

so that, extracting a subsequence, one can assume that zkqk → f weakly in L2((0, T ) × (0, L)). To prove that
f = zq, it is sufficient to observe that for any ϕ ∈ D(Q),

∫ T

0

∫ L

0

zkqkϕdxdt →
∫ T

0

∫ L

0

zqϕdxdt,

for zk → z and qkϕ → qϕ in F . Thus

zkqk → zq in L2((0, T )× (0, L)) weakly.

It follows that (zkqk)x → (zq)x in D′((0, T )× (0, L)). Therefore, (3.72) holds and q ∈ P (z). On the other hand,
q ∈ A, since qk → q in F and A is closed. We conclude that z ∈ P−1(A), and hence P−1(A) is closed.

It follows from Theorem 3.9 that there exists q ∈ B with q ∈ P (q); that is, we have found a control
f ∈ L2((0, T ) × ω) such that the solution of (3.59) satisfies q(T, ·) = 0 in (0, L). The proof of Theorem 1.1 is
complete.

With Theorem 1.1 at hand, one can prove Theorem 1.3 about the regional controllability.
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3.3. Proof of Theorem 1.3

By Theorem 1.1, if δ is small enough one can find a control input f ∈ L2(0, T/2, L2(0, L)) with supp(f) ⊂
(0, T ) × ω such that the solution of (1.7) satisfies u(T/2, .) ≡ 0 in (0, L). Pick any number l′2 ∈ (l′1, l2) with
l′2 �∈ N . (This is possible, the set N being discrete.) By ([20], Thm. 1.3), if δ is small enough one can pick a
function h ∈ L2(T/2, T ) such that the solution y ∈ C0([T/2, T ], L2(0, l′2)) ∩ L2(T/2, T, H1(0, l′2)) of the system

⎧
⎨

⎩

yt + yxxx + yx + yyx = 0 in (T/2, T )× (0, l′2),
y(t, 0) = y(t, l′2) = 0, yx(t, l′2) = h(t) in (T/2, T ),
y(T/2, x) = 0 in (0, l′2)

satisfies y(T, x) = u1(x) for 0 < x < l′2. We pick a function µ ∈ C∞([0, L]) such that

µ(x) =

{
1 if x < l′1,

0 if x >
l′1+l′2

2

and set for T/2 < t ≤ T

u(t, x) =

{
µ(x)y(t, x) if x < l′2,
0 if x > l′2.

Note that, for T/2 < t < T , ut + uxxx + ux + uux = f with

f = µ(µ − 1)yyx + (µxxxy + 3µxxyx + 3µxyxx + µxy) + µµxy2.

Since ||y||4L4(0,T,L4(0,l′2))
≤ C||y||2L∞(0,T,L2(0,L))||y||2L2(0,T,H1(0,L)), it is clear that f ∈ L2(0, T, H−1(0, L)) with

supp(f) ⊂ (0, T )×(l1, l2). Furthermore, u ∈ C([0, T ], L2(0, L))∩L2(0, T, H1(0, L)) solves (1.7) and satisfies (1.8).

4. Exact controllability results

Pick any function ρ ∈ C∞(0, L) with

ρ(x) =

{
0 if 0 < x < L − ν,
1 if L − ν

2 < x < L,
(4.1)

for some ν ∈ (0, L).
This section is devoted to the investigation of the exact controllability of the system

⎧
⎨

⎩

ut + ux + uux + uxxx = f = (ρ(x)h)x in (0, T ) × (0, L),
u(t, 0) = u(t, L) = ux(t, L) = 0 in (0, T ),
u(0, x) = u0(x) in (0, L).

(4.2)

More precisely, we aim to find a control input h ∈ L2(0, T ; L2(0, L)) (actually, with (ρ(x)h(t, x))x in some space
of functions) to guide the system described by (4.2) in the time interval [0, T ] from any (small) given initial
state u0 in L2

1
L−x dx

to any (small) given terminal state uT in the same space. We first consider the linearized

system, and next proceed to the nonlinear one. The results involve some weighted Sobolev spaces.

4.1. The linear system

For any measurable function w : (0, L) → (0, +∞) (not necessarily in L1(0, L)), we introduce the weighted
L2-space

L2
w(x)dx = {u ∈ L1

loc(0, L);

∫ L

0

u(x)2w(x)dx < ∞}.
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It is a Hilbert space when endowed with the scalar product

(u, v)L2
w(x)dx

=

∫ L

0

u(x)v(x)w(x)dx.

We first prove the well-posedness of the linear system associated with (4.2), namely

⎧
⎨

⎩

ut + ux + uxxx = 0 in (0, T ) × (0, L),
u(t, 0) = u(t, L) = ux(t, L) = 0 in (0, T ),
u(0, x) = u0(x) in (0, L),

(4.3)

in both the spaces L2
xdx and L2

1
L−x dx

, following [10] where the well-posedness was established in L2
x

L−x dx. We

need the following result.

Theorem 4.1 (see [10]). Let W ⊂ V ⊂ H be three Hilbert spaces with continuous and dense embeddings. Let
a(v, w) be a bilinear form defined on V × W that satisfies the following properties:
(i) (Continuity)

a(v, w) ≤ M ||v||V ||w||W , ∀v ∈ V, ∀w ∈ W. (4.4)

(ii) (Coercivity)

a(w, w) ≥ m||w||2V , ∀w ∈ W. (4.5)

Then for all f ∈ V ′ (the dual space of V ), there exists v ∈ V such that

a(v, w) = f(w) ∀w ∈ W. (4.6)

Assume that, in addition to (i) and (ii), a(v, w) satisfies:
(iii) (Regularity) for all g ∈ H, any solution v ∈ V of

a(v, w) = (g, w)H ∀w ∈ W, (4.7)

belongs to W . Then equation (4.7) has a unique solution v = v(g) ∈ W . Let D(A) := {v(g); g ∈ H} ⊂ W ⊂ H
and set Av := −g for v ∈ D(A). (Note that there is a unique g ∈ H satisfying (4.7).) Then A is a maximal
dissipative operator, and hence it generates a continuous semigroup of contractions (etA)t≥0 in H.

4.2. Well-posedness in L
2
xdx

Theorem 4.2. Let A1u = −uxxx − ux with domain

D(A1) =
{
u ∈ H2(0, L) ∩ H1

0 (0, L); uxxx ∈ L2
xdx, ux(L) = 0

}
⊂ L2

xdx.

Then A1 generates a strongly continuous semigroup in L2
xdx.

Proof. Let

H = L2
xdx, V = H1

0 (0, L), W =
{
w ∈ H1

0 (0, L), wxx ∈ L2
x2dx

}
,

be endowed with the respective norms

||u||H := ||√xu||L2(0,L), ||v||V := ||vx||L2(0,L), ||w||W := ||xwxx||L2(0,L).

Clearly, V ⊂ H with a continuous (dense) embedding between two Hilbert spaces. On the other hand, we claim
that

||wx||L2 ≤ C||xwxx||L2 ∀w ∈ W. (4.8)
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Indeed, we note first that we have for w ∈ T := C∞([0, L]) ∩ H1
0 (0, L) and p ∈ R

0 ≤
∫ L

0

(xwxx + pwx)2dx =

∫ L

0

(x2w2
xx + 2pxwxwxx + p2w2

x)dx =

∫ L

0

x2w2
xxdx+

(
p2 − p

) ∫ L

0

w2
xdx+ pLw2

x(L).

Taking p = 1/2 results in ∫ L

0

w2
xdx ≤ 4

∫ L

0

x2w2
xxdx + 2L|wx(L)|2. (4.9)

The estimate (4.9) is also true for any w ∈ W , since T is dense in W . Let us prove (4.8) by contradiction.
If (4.8) is false, then there exists a sequence {wn}n≥0 in W such that

1 = ||wn
x ||L2 ≥ n||xwn

xx||L2 ∀n ≥ 0.

Extracting subsequences, we may assume that

wn → w in H1
0 (0, L) weakly

xwn
xx → 0 in L2(0, L) strongly

and hence xwxx = 0, which gives w(x) = c1x + c2. Since w ∈ H1
0 (0, L), we infer that w ≡ 0. Since wn is

bounded in H2(L/2, L), extracting subsequences we may also assume that wn
x(L) converges in R. We infer then

from (4.9) that wn is a Cauchy sequence in H1
0 (0, L), so that

wn → w in H1
0 (0, L) strongly,

and hence ||wx||L2 = limn→∞ ||wn
x ||L2 = 1. This contradicts the fact that w ≡ 0. The proof of (4.8) is achieved.

Thus || · ||W is a norm in W , which is clearly a Hilbert space, and W ⊂ V with continuous (dense) embedding.
Let

a(v, w) =

∫ L

0

vx[(xw)xx + xw]dx, v ∈ V, w ∈ W.

Let us check that (i), (ii), and (iii) in Theorem 4.1 hold. For v ∈ V and w ∈ W ,

|a(v, w)| ≤ ||vx||L2 ||xwxx + 2wx + xw||L2

≤ ||vx||L2 (‖xwxx||L2 + C‖wx||L2)

≤ C||v||V ||w||W

where we used Poincaré inequality and (4.8). This proves that the bilinear form a is well defined and continuous
on V × W . For (ii), we first pick any w ∈ T to obtain

a(w, w) =

∫ L

0

wx(xwxx + 2wx + xw)dx

=
3

2

∫ L

0

w2
xdx +

[
x

w2
x

2

]
|L0 − 1

2

∫ L

0

w2dx

≥ 3

2

∫ L

0

w2
xdx − 1

2

∫ L

0

w2dx.

By Poincaré inequality ∫ L

0

w2(x)dx ≤
(

L

π

)2 ∫ L

0

w2
x(x)dx,
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and hence

a(w, w) ≥
(

3

2
− L2

2π2

)∫ L

0

w2
xdx.

This shows the coercivity when L < π
√

3. When L ≥ π
√

3, we have to consider, instead of a, the bilinear form
aλ(v, w) := a(v, w) + λ(v, w)H for λ ≫ 1. Indeed, we have by Cauchy–Schwarz inequality and Hardy inequality

||w||2L2 ≤ ||x 1
2 w||L2 ||x− 1

2 w||L2

≤
√

L||w||H ||x−1w||L2

≤ ε||wx||2L2 + Cε||w||2H

and hence

aλ(w, w) ≥
(

3

2
− ε

2

)
||w||2V +

(
λ − Cε

2

)
||w||2H .

Therefore, if ε < 3 and λ > Cε/2, then aλ is a continuous bilinear form which is coercive.
Let us have a look at the regularity issue. For given g ∈ H , let v ∈ V be such that

aλ(v, w) = (g, w)H ∀w ∈ W,

i.e. ∫ L

0

vx((xw)xx + xw)dx + λ

∫ L

0

v(x)w(x)xdx =

∫ L

0

g(x)w(x)xdx. (4.10)

Picking any w ∈ D(0, L) results in

〈x(vxxx + vx + λv), w〉D′,D = 〈xg, w〉D′,D ∀w ∈ D(0, L), (4.11)

and hence

vxxx + vx + λv = g in D′(0, L). (4.12)

Since v ∈ H1
0 (0, L) and g ∈ L2

xdx, we have that v ∈ H3(ε, L) for all ε ∈ (0, L) and vxxx ∈ L2
xdx. Picking any

w ∈ T and ε ∈ (0, L), and scaling in (4.12) by xw yields

∫ L

ε

vx((xw)xx + xw)dx + [vxx(xw) − vx(xw)x]|Lε =

∫ L

ε

(g − λv)xwdx.

Letting ε → 0 and comparing with (4.10), we obtain

−Lvx(L)wx(L) = lim
ε→0

(
εvxx(ε)w(ε) − vx(ε)(w(ε) + εwx(ε))

)
. (4.13)

Since vxxx ∈ L2
xdx, we obtain successively for some constant C > 0 and all ε ∈ (0, L)

|vxx(ε) − vxx(L)| ≤
(∫ L

ε

x|vxxx|2dx

) 1
2
(∫ L

ε

x−1dx

) 1
2

≤ C| log ε| (4.14)

|vx(ε)| ≤ C. (4.15)

We infer from (4.14) that v ∈ H2(0, L), and hence v ∈ W . Furthermore, letting ε → 0 in (4.13) and using (4.14)–
(4.15) yields vx(L) = 0, since wx(L) was arbitrary. We conclude that v ∈ D(A1). Conversely, it is clear that
the operator A1 − λ maps D(A1) into H , and actually onto H from the above computations. Hence A1 − λ
generates a strongly semigroup of contractions in H . �



1098 R.A. CAPISTRANO–FILHO ET AL.

4.3. Well-posedness in L
2
(L−x)−1dx

Theorem 4.3. Let A2u = −uxxx − ux with domain

D(A2) = {u ∈ H3(0, L) ∩ H1
0 (0, L); uxxx ∈ L2

1
L−x dx and ux(L) = 0} ⊂ L2

1
L−x dx.

Then A2 generates a strongly continuous semigroup in L2
1

L−x dx
.

Proof. We will use Hille–Yosida theorem, and (partially) Theorem 4.1. Let

H = L2
1

L−x dx, V =

{
u ∈ H1

0 (0, L), ux ∈ L2
1

(L−x)2
dx

}
, W = H2

0 (0, L), (4.16)

be endowed respectively with the norms

||u||H = ||(L − x)−
1
2 u||L2 , ||u||V =

∥∥(L − x)−1ux

∥∥
L2 , ||u||W = ||uxx||L2 . (4.17)

From [10], we know that V endowed with || · ||V is a Hilbert space, and that

||(L − x)−2u||L2 ≤ 2

3
||(L − x)−1ux||L2 ∀u ∈ V, (4.18)

and hence

||u||H ≤
(∫ L

0

L3

(L − x)4
u2(x)dx

) 1
2

≤ 2

3
L

3
2 ||u||V ∀u ∈ V. (4.19)

Thus V ⊂ H with continuous embedding. From Poincaré inequality, we have that || · ||W is a norm on W
equivalent to the H2−norm. On the other hand, from Hardy inequality

∫ L

0

v2

(L − x)2
dx ≤ C

∫ L

0

v2
xdx ∀v ∈ H1(0, L) with v(L) = 0, (4.20)

we have that
||v||V ≤ C||v||W ∀v ∈ W. (4.21)

Thus W ⊂ V with continuous embedding. It is easily seen that D(0, L) is dense in H , V , and W . Let

a(v, w) =

∫ L

0

[
vx

(
w

L − x

)

xx

+ vx
w

L − x

]
dx (v, w) ∈ V × W.

Then

|a(v, w)| ≤
∣∣∣∣∣

∫ L

0

vx

(
wxx

L − x
+ 2

wx

(L − x)2
+ 2

w

(L − x)3
+

w

L − x

)
dx

∣∣∣∣∣

≤ ||wxx||L2

∥∥∥∥
vx

L − x

∥∥∥∥
L2

+ 2

∥∥∥∥
wx

L − x

∥∥∥∥
L2

∥∥∥∥
vx

L − x

∥∥∥∥
L2

+

∥∥∥∥
vx

L − x

∥∥∥∥
L2

(
2

∥∥∥∥
w

(L − x)2

∥∥∥∥
L2

+ ||w||L2

)

≤ C||v||V ||w||W
by (4.18), (4.19), and (4.21). This shows that a is well defined and continuous. Let us look at the coercivity of
a. Pick any w ∈ D(0, L). Then

a(w, w) =

∫ L

0

wx

(
wxx

L − x
+ 2

wx

(L − x)2
+ 2

w

(L − x)3
+

w

L − x

)
dx

=
3

2

∫ L

0

w2
x

(L − x)2
dx − 3

∫ L

0

w2

(L − x)4
dx − 1

2

∫ L

0

w2

(L − x)2
dx

≥ 1

6

∫ L

0

w2
x

(L − x)2
dx − 1

2

∫ L

0

w2

(L − x)2
dx
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where we used (4.18) for the last line. Note that, using Cauchy–Schwarz inequality and (4.18), we have that

∥∥∥∥
w

L − x

∥∥∥∥
2

L2

≤
∥∥∥(L − x)−

1
2 w
∥∥∥

L2

∥∥∥(L − x)−
3
2 w
∥∥∥

L2

≤ 2
√

L

3
||w||H ||w||V

≤ ε||w||2V +
L

9ε
||w||2H . (4.22)

If we pick ε ∈ (0, 1/3), we infer that for all w ∈ D(0, L)

a(w, w) +
L

18ε
||w||2H ≥

(
1

6
− ε

2

)
||w||2V ≥ C||w||2V . (4.23)

The result is also true for any w ∈ W , by density. This shows that the continuous bilinear form

aλ(v, w) = a(v, w) + λ(v, w)H

is coercive for λ > L/6. Let g ∈ H be given. By Theorem 4.1, there is at least one solution v ∈ V of

aλ(v, w) = (g, w)H ∀w ∈ W. (4.24)

Pick such a solution v ∈ V , and let us prove that v ∈ D(A2). Picking any w ∈ D(0, L) in (4.24) yields

vxxx + vx + λv = g in D′(0, L). (4.25)

As g ∈ L2(0, L) and v ∈ H1(0, L), we have that vxxx ∈ L2(0, L), and v ∈ H3(0, L). Pick finally w of the form
w(x) = x2(L − x)2w(x), where w ∈ C∞([0, L]) is arbitrary chosen. Note that w ∈ W and that w/(L − x) ∈
H1

0 (0, L)∩C∞([0, L]). Multiplying in (4.25) by w/(L−x) and integrating over (0, L), we obtain after comparing
with (4.24)

0 = −vx

(
w

L − x

)

x

|L0 = −vx

(
(2xL − 3x2)w + x2(L − x)wx

)
|L0 = vx(L)L2w(L).

As w(L) can be chosen arbitrarily, we conclude that vx(L) = 0. Using (4.20) twice, we infer that vx + λv ∈ H ,
and hence vxxx = g− (vx +λv) ∈ H . Therefore v ∈ D(A2). Thus, for λ > L/6 we have that A2−λ : D(A2) → H
is onto. Let us check that A2 − λ is also dissipative in H . Pick any w ∈ D(A2). Then we obtain after some
integrations by parts that

(A2w, w)H = −3

2

∫ L

0

w2
x

(L − x)2
dx + 3

∫ L

0

w2

(L − x)4
dx +

1

2

∫ L

0

w2

(L − x)2
dx − w2

x(0)

2L

and

(A2w − λw, w)H ≤ −(
1

6
− ε

2
)||w||2V − w2

x(0)

2L
≤ 0

for ε < 1/3 and λ = L/(18ε). We conclude that A2−λ is maximal dissipative for λ > L/6, and thus it generates
a strongly continuous semigroup of contractions in H by Hille–Yosida theorem. �

A global Kato smoothing effect as in [10, 20] can as well be derived.

Proposition 4.4. Let H and V be as in (4.16)–(4.17), and let T > 0 be given. Then there exists some constant
C = C(L, T ) such that for any u0 ∈ H, the solution u(t) = etA2u0 of (4.3) satisfies

||u||L∞(0,T,H) + ||u||L2(0,T,V ) ≤ C||u0||H . (4.26)
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Proof. We proceed as in [10]. First, we notice that D(A2) is dense in H , so that it is sufficient to prove the
result when u0 ∈ D(A2). Note that the estimate ||u||L∞(0,T,H) ≤ C||u0||H is a consequence of classical semigroup
theory. Assume u0 ∈ D(A2), so that ut = A2u in the classical sense. Taking the inner product in H with u
yields

(ut, u)H = −a(u, u) ≤ −C||u||2V +
L

18ε
||u||2H

where we used (4.23). An integration over (0, T ) completes the proof of the estimate of ||u||L2(0,T,V ). �

4.4. Non-homogeneous system

In this section we consider the nonhomogeneous system

ut + ux + uxxx = f(t, x) in (0, T )× (0, L), (4.27)

u(t, 0) = u(t, L) = ux(t, L) = 0 in (0, T ), (4.28)

u(0, x) = u0 in (0, L). (4.29)

We need to prove the existence of a solution u ∈ C([0, T ], L2
xdx) ∩ L2(0, T, H1(0, L)) when solely f ∈

L2(0, T, H−1(0, L)).

Proposition 4.5. Let u0 ∈ L2
xdx and f ∈ L2(0, T ; H−1(0, L)). Then there exists a unique solution u ∈

C([0, T ], L2
xdx) ∩ L2(0, T, H1(0, L)) to (4.27)–(4.29). Furthermore, there is some constant C > 0 such that

||u||L∞(0,T,L2
xdx) + ||u||L2(0,T,H1(0,L)) ≤ C

(
||u0||L2

xdx
+ ||f ||L2(0,T,H−1(0,L)

)
. (4.30)

Proof. Assume first that u0 ∈ D(A1) and f ∈ C0([0, T ],D(A1)) to legitimate the following computations.
Multiplying each term in (4.27) by xu and integrating over (0, τ) × (0, L) where 0 < τ < T yields

1

2

∫ L

0

x|u(τ, x)|2dx − 1

2

∫ L

0

x|u0(x)|2dx +
3

2

∫ τ

0

∫ L

0

|ux|2dxdt − 1

2

∫ τ

0

∫ L

0

|u|2dxdt =

∫ τ

0

∫ L

0

xufdxdt. (4.31)

〈., .〉H−1,H1
0

denoting the duality pairing between H−1(0, L) and H1
0 (0, L), we have that for all ε > 0

∫ τ

0

∫ L

0

xufdxdt =

∫ τ

0

〈f, xu〉H−1,H1
0
≤ ε

2

∫ τ

0

∫ L

0

u2
xdxdt + Cε

∫ τ

0

||f ||2H−1dt. (4.32)

For 0 < ε < L2, the last term in the l.h.s. of (4.31) is decomposed as

1

2

∫ τ

0

∫ L

0

|u|2dxdt =
1

2

∫ τ

0

∫ √
ε

0

|u|2dxdt +
1

2

∫ τ

0

∫ L

√
ε

|u|2dxdt =: I1 + I2.

We claim that

I1 ≤ ε

2

∫ τ

0

∫ L

0

|ux|2dxdt, (4.33)

I2 ≤ 1

2
√

ε

∫ τ

0

∫ L

0

x|u|2dxdt. (4.34)

For (4.33), since u(0, t) = 0 we have that for (t, x) ∈ (0, T ) × (0,
√

ε)

|u(x, t)| ≤
∫ √

ε

0

|ux|dx ≤ ε
1
4

(∫ √
ε

0

|ux|2dx

) 1
2
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and hence ∫ √
ε

0

|u|2dx ≤ ε

∫ √
ε

0

|ux|2dx

which gives (4.33) after integrating over t ∈ (0, τ). (4.34) is obvious.

Gathering together (4.31)–(4.34), we obtain for 0 < ε < L2

1

2

∫ L

0

x|u(τ, x)|2dx +

(
3

2
− ε

)∫ τ

0

∫ L

0

|ux|2dxdt

≤ 1

2

∫ L

0

x|u0(x)|2dx +
1

2
√

ε

∫ τ

0

∫ L

0

x|u|2dxdt + Cε

∫ τ

0

||f ||2H−1dt.

Picking ε ∈ (0, min(L2, 3/2)) and applying Gronwall’s lemma, we obtain

||u||2L∞(0,T,L2
xdx) + ||ux||2L2(0,T,L2(0,L)) ≤ C(T )

(
||u0||2L2

xdx
+ ||f ||2L2(0,T,H−1(0,L))

)
.

This gives (4.30) for u0 ∈ D(A1) and f ∈ C0([0, T ], D(A1)). A density argument allows us to construct a
solution u ∈ C([0, T ], L2

xdx) ∩ L2(0, T, H1(0, L)) of (4.27)–(4.29) satisfying (4.30) for u0 ∈ L2
xdx and f ∈

L2(0, T, H−1(0, L)). The uniqueness follows from classical semigroup theory. �

Our goal now is to obtain a similar result in the spaces H and V introduced in (4.16)–(4.17). To do that, we
limit ourselves to the situation when f = (ρ(x)h)x with h ∈ L2(0, T, L2(0, L)).

Proposition 4.6. Let u0 ∈ H and h ∈ L2(0, T, L2(0, L)), and set f := (ρ(x)h)x, where ρ ∈ C∞([0, L]) is as
in (4.1). Then there exists a unique solution u ∈ C([0, T ], H)∩L2(0, T, V ) to (4.27)–(4.29). Furthermore, there
is some constant C > 0 such that

||u||L∞(0,T,H) + ||u||L2(0,T,V ) ≤ C
(
||u0||H + ||h||L2(0,T,L2(0,L))

)
. (4.35)

Proof. Assume that u0 ∈ D(A2) and h ∈ C∞
0 ((0, T ) × (0, L)), so that f ∈ C1([0, T ], H). Taking the inner

product of ut − A2u − f = 0 with u in H yields

(ut, u)H = −a(u, u) + (f, u)H ≤ −C||u||2V +
L

18ε
||u||2H + (f, u)H , (4.36)

where we used (4.23) with some ε ∈ (0, 1/3). Then

|(f, u)H | =

∣∣∣∣∣

∫ L

0

(ρ(x)h)x
u

L − x
dx

∣∣∣∣∣

=

∣∣∣∣∣

∫ L

0

ρ(x)h

(
ux

L − x
+

u

(L − x)2

)
dx

∣∣∣∣∣

≤ C||h||L2

(∥∥∥∥
ux

L − x

∥∥∥∥
L2

+

∥∥∥∥
u

(L − x)2

∥∥∥∥
L2

)

≤ C||h||L2 ||u||V ,

where we used (4.18) in the last line. Thus, we have that

|(f, u)H | ≤ C

2
||u||2V + C′||h||2L2
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which, when combined with (4.36), gives after integration over (0, τ) for 0 < τ < T

||u(τ)||2H + C

∫ τ

0

||u||2V dt ≤ ||u0||2H + C′′
(∫ τ

0

||u||2Hdt +

∫ τ

0

∫ L

0

|h|2dxdt

)
.

An application of Gronwall’s lemma yields (4.35) for u0 ∈ D(A2) and h ∈ C∞
0 ((0, T ) × (0, L)). A density

argument allows us to construct a solution u ∈ C([0, T ], H) ∩ L2(0, T, V ) of (4.27)–(4.29) satisfying (4.35) for
u0 ∈ H and h ∈ L2(0, T, L2(0, L)). The uniqueness follows from classical semigroup theory. �

4.5. Controllability of the linearized system

We turn our attention to the control properties of the linear system

ut + uxxx + ux = f = (ρ(x)h)x, (4.37)

u(t, 0) = u(t, L) = ux(t, L) = 0, (4.38)

u(0, x) = u0(x). (4.39)

Theorem 4.7. Let T > 0 , ν ∈ (0, L) and ρ(x) as in (4.1). Then there exists a continuous linear operator
Γ : L2

1
L−x dx

→ L2(0, T, L2(0, L)) ∩ L2
(T−t)dt(0, T, H1(0, L)) such that for any u0, u1 ∈ L2

1
L−x dx

, the solution u

of (4.37)–(4.39) with h = Γ (u1) satisfies u(T, x) = u1(x) in (0, L).

Note that the forcing term f = (ρ(x)h)x is actually a function in L2
(T−t)dt(0, T, L2(0, L)) supported in (0, T ) ×

(L − ν, L).

Proof. By using Proposition 4.6, we can assume that u0 = 0 without loss of generality. We use the Hilbert
Uniqueness Method (see e.g. [15]). Introduce the adjoint system

− vt − vxxx − vx = 0, (4.40)

v(t, 0) = v(t, L) = vx(t, 0) = 0, (4.41)

v(T, x) = vT (x). (4.42)

If u0 ≡ 0, vT ∈ D(0, L), and h ∈ D((0, T ) × (0, L)), then multiplying in (4.37) by v and integrating over
(0, T ) × (0, L) gives

∫ L

0

u(T, x)vT (x)dx =

∫ T

0

∫ L

0

(ρ(x)h)xvdxdt = −
∫ T

0

∫ L

0

ρ(x)hvxdxdt.

The usual change of variables x → L − x, t → T − t, combined with Proposition 4.5, gives

||v||
L∞

(
0,T,L2

(L−x)dx

) + ||v||L2(0,T,H1(0,L)) ≤ C||vT ||L2
(L−x)dx

.

By a density argument, we obtain that for all h ∈ L2(0, T, L2(0, L)) and all vT ∈ L2
(L−x)dx,

〈u(T, .), vT 〉L2
1

L−x
dx

,L2
(L−x)dx

= −
∫ T

0

(h, ρ(x)vx)L2dt,

where u and v denote the solutions of (4.37)–(4.39) and (4.40)–(4.42), respectively, and 〈·, ·〉L2
1

L−x
dx

,L2
(L−x)dx

de-

notes the duality pairing between L2
1

L−x dx
and L2

(L−x)dx. We have to prove the following observability inequality

||vT ||2L2
(L−x)dx

≤ C

∫ T

0

∫ L

0

|ρ(x)vx|2dxdt (4.43)
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or, equivalently, letting w(t, x) = v(T − t, L − x),

||w0||2L2
xdx

≤ C

∫ T

0

∫ L

0

|ρ(L − x)wx|2dxdt (4.44)

where w solves ⎧
⎨

⎩

wt + wxxx + wx = 0,
w(t, 0) = w(t, L) = wx(t, L) = 0,
w(0, x) = w0(x).

(4.45)

From [20], we know that for any q ∈ C∞([0, T ] × [0, L])

−
∫ T

0

∫ L

0

(qt + qxxx + qx)
w2

2
dxdt +

∫ L

0

(
q
w2

2

)
(T, x)dx −

∫ L

0

(
q
w2

2

)
(0, x)dx

+
3

2

∫ T

0

∫ L

0

qxw2
xdxdt +

∫ T

0

(
q
w2

x

2

)
(t, 0)dt = 0.

We pick q(t, x) = (T − t)b(x), where b ∈ C∞([0, L]) is nondecreasing and satisfies

b(x) =

{
x if 0 < x < ν/4,
1 if ν/2 < x < L.

with ν ∈ (0, L). This yields

||w0||2L2
xdx

≤ C(L, ν)

∫ L

0

b(x)w2
0(x)dx

≤ C(T, L, ν)

(∫ T

0

∫ ν
2

0

w2
xdxdt +

∫ T

0

∫ L

0

w2dxdt

)
. (4.46)

If the estimate

||w0||2L2
xdx

≤ C

∫ T

0

∫ ν
2

0

w2
xdxdt (4.47)

fails, then one can find a sequence {wn
0 } ⊂ L2

xdx such that

1 = ||wn
0 ||2L2

xdx
> n

∫ T

0

∫ ν
2

0

|wn
x |2dxdt, (4.48)

where wn denotes the solution of (4.45) with w0 replaced by wn
0 . By (4.30) and (4.48), {wn} is bounded in

L2(0, T, H1(0, L)), hence also in H1(0, T, H−2(0, L)) by (4.45). Extracting a subsequence, we have by Aubin–
Lions’s lemma that wn converges strongly in L2(0, T, L2(0, L)). Thus, using (4.46) and (4.48), we see that wn

0 is
a Cauchy sequence in L2

xdx, and hence it converges strongly in this space. Let w0 denote its limit in L2
xdx, and

let w denote the corresponding solution of (4.45). Then

||w0||L2
xdx

= 1,

wn → w in L2(0, T, H1(0, L)).

But wn
x → 0 in L2(0, T, L2(0, ν/2)) by (4.48). Thus wx ≡ 0 in (0, T )×(0, ν/2), and hence w(t, x) = g(t) (for some

function g) in (0, T )× (0, ν/2). Since w satisfies (4.45), we infer from w(t, 0) = 0 that w ≡ 0 in (0, T )× (0, ν/2),
and also in (0, T ) × (0, L) by Holmgren’s theorem. This would imply that w(0, x) = 0, in contradiction with
||w0||L2

xdx
= 1. Therefore (4.47) is proved, and (4.44) follows at once.
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We are in a position to apply H.U.M. Let Λ(vT ) = (L− x)−1u(T, .) ∈ L2
(L−x)dx, where u solves (4.37)–(4.39)

with h = −ρ(x)vx. Then Λ : L2
(L−x)dx → L2

(L−x)dx is clearly continuous. On the other hand, from (4.43)

(
Λ(vT ), vT

)
L2

(L−x)dx

= 〈u(T, .), vT 〉L2
1

L−x
dx

,L2
(L−x)dx

=

∫ T

0

||ρ(x)vx||2L2dt ≥ C||vT ||2L2
(L−x)dx

,

and it follows that the map vT → Λ(vT ) is invertible in L2
(L−x)dx.

Define the map Γ : L2
1

L−x dx
→ L2(0, T, L2(0, L)) by Γ (u1) = h := −ρ(x)vx, where v is the solution of (4.40)–

(4.42) with vT = Λ−1((L − x)−1u1). Γ is continuous from L2
1

L−x dx
to L2(0, T, L2(0, L)), and the solution u

of (4.37)–(4.39) with u0 = 0 and h = Γ (u1) satisfies u(T, .) = u1. To prove that Γ is also continuous from
L2

1
L−x dx

into L2
(T−t)dt(0, T, H1(0, L)), it is sufficient to prove the following estimate

∫ T

0

||v(t)||2H2 (T − t)dt ≤ C||vT ||2L2
(L−x)dx

,

for the solutions of (4.40)–(4.42) or, alternatively, the estimate

∫ T

0

||w||2H2 tdt ≤ C||w0||2L2
xdx

(4.49)

for the solutions of (4.45). By Proposition 4.5,

∫ T

0

||w||2H1
0 (0,L)dt ≤ C||w0||2L2

xdx
. (4.50)

This yields for w0 ∈ L2(0, L)
∫ T

0

||w||2H1
0 (0,L)dt ≤ C||w0||2L2 . (4.51)

Assume now that w0 ∈ D(A), and let u0 = Aw0 = −w0,xxx −w0,x. Denote by w (resp. u) the solution of (4.45)
issuing from w0 (resp. u0). Then

Aw = −wxxx − wx = u ∈ L2(0, T, H1
0 (0, L)),

and we infer that w ∈ L2(0, T, H4(0, L)). By interpolation, this gives that w ∈ L2(0, T, H2(0, L)) if w0 ∈
H1

0 (0, L), with an estimate of the form

∫ T

0

||w||2H2(0,L)dt ≤ C||w0||2H1
0 (0,L). (4.52)

The different constants C in (4.50)–(4.52) may be taken independent of T for 0 < T < T0. Thus, using Fubini’s
theorem, we obtain

∫ T

0

s||w(s)||2H2ds =

∫ T

0

(∫ T

t

||w(s)||2H2ds

)
dt ≤ C

∫ T

0

||w(t)||2H1
0 (0,L)dt ≤ C||w0||2L2

xdx
.

This completes the proof of (4.49) and of Theorem 4.7. �
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4.6. Exact controllability of the nonlinear system

Our aim is to prove the local exact controllability in L2
1

L−x dx
of system (4.2). Note that the solutions of (4.2)

can be written as
u = uL + u1 + u2,

where uL is the solution of (4.3) with initial data u0 ∈ L2
1

L−x dx
, u1 is solution of

⎧
⎨

⎩

u1,t + u1,x + u1,xxx = f = (ρ(x)h)x in (0, T ) × (0, L),
u1(t, 0) = u1(t, L) = u1,x(t, L) = 0 in (0, T ),
u1(0, x) = 0 in (0, L)

(4.53)

with h = h(t, x) ∈ L2(0, T ; L2(0, L)), and u2 is solution of

⎧
⎨

⎩

u2,t + u2,x + u2,xxx = g(t, x) in (0, T ) × (0, L),
u2(t, 0) = u2(t, L) = u2,x(t, L) = 0 in (0, T ),
u2(0, x) = 0 in (0, L),

(4.54)

with g = g(t, x) = −uux.
The following result is concerned with the solutions of the non-homogeneous system (4.54).

Proposition 4.8.

(i) Let H and V be as in (4.16)–(4.17) If u, v ∈ L2(0, T ; V ), then uvx ∈ L1(0, T ; H). Furthermore, the map

(u, v) ∈ L2(0, T ; V )2 → uvx ∈ L1(0, T ; H)

is continuous and there exists a constant c > 0 such that

‖uvx‖L1(0,T ;H) ≤ c ‖u‖L2(0,T ;V ) ‖v‖L2(0,T ;V ) . (4.55)

(ii) For g ∈ L1(0, T ; H), the mild solution u of (4.54) given by Duhamel formula satisfies

u2 ∈ C([0, T ] ; H) ∩ L2(0, T ; V ) =: G

and we have the estimate
||u2||L∞(0,T,H) + ||u2||L2(0,T,V ) ≤ C||g||L1(0,T,H). (4.56)

Proof. For u, v ∈ V , we have

||uvx||L2
1

L−x
dx

≤ ||u||L∞

∥∥∥∥
vx√
L − x

∥∥∥∥
L2

≤ C||u||V ||v||V .

This gives (i). For (ii), we first assume that g ∈ C1([0, T ], H), so that u2 ∈ C1([0, T ], H) ∩ C0([0, T ],D(A2)).
Taking the inner product of u2,t = A2u2 + g with u2 in H yields

(u2,t, u2)H ≤ −C||u2||2V + C′||u2||2H + (g, u2)H (4.57)

where C, C′ denote some positive constants. Integrating over (0, T ) and using the classical estimate

||u2||L∞(0,T,H) ≤ C||g||L1(0,T,H)

coming from semigroup theory, we obtain (ii) when g ∈ C1([0, T ], H). The general case (g ∈ L1(0, T, H)) follows
by density. �
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Let Θ1(h) := u1 and Θ2(g) := u2, where u1 (resp. u2) denotes the solution of (4.53) (resp. (4.54)). Then Θ1 :
L2(0, T ; L2(0, L)) → G and Θ2 : L1(0, T ; L2

1
L−x dx

) → G are well-defined continuous operators, by Propositions 4.6

and 4.8.
Using Proposition 4.8 and the contraction mapping principle, one can prove as in [10, 19, 20] the existence

and uniqueness of a solution u ∈ G of (4.2) when the initial data u0 and the forcing term h are small enough.
As the proof is similar to those of Theorem 4.9, it will be omitted.

We are in a position to prove the main result of Section 4, namely the (local) exact controllability of sys-
tem (4.2).

Theorem 4.9. Let T > 0. Then there exists δ > 0 such that for any u0, u1 ∈ L2
1

L−x dx
satisfying ‖u0‖L2

1
L−x

dx

≤

δ, ‖u1‖L2
1

L−x
dx

≤ δ, one can find a control function h ∈ L2(0, T ; L2(0, L)) such that the solution u ∈ G of (4.2)

satisfies u(T, ·) = u1 in (0, L).

As in the linear case, the forcing term f = (ρ(x)h)x is actually a function in L2
(T−t)dt(0, T, L2(0, L)) supported

in (0, T ) × (L − ν, L).

Proof. To prove this result, we apply the contraction mapping principle, following closely [20]. Let F denote
the nonlinear map

F : L2(0, T ; V ) → G,

defined by
F(u) = uL + Θ1 ◦ Γ (uT − uL(T, ·) + Θ2(uux)(T, ·)) − Θ2(uux),

where uL is the solution of (4.3) with initial data u0 ∈ L2
1

L−x dx
, Θ1 and Θ2 are defined as above, and Γ is as in

Theorem 4.7.
Remark that if u is a fixed point of F , then u is a solution of (4.2) with the control h = Γ (uT − uL(T, ·) +

Θ2(uux)(T, ·)), and it satisfies
u(T, ·) = uT ,

as desired. In order to prove the existence of a fixed point of F , we apply the Banach fixed-point theorem to
the restriction of F to some closed ball B(0, R) in L2(0, T ; V ).

(i) F is contractive. Pick any u, ũ ∈ B(0, R). Using (4.35) and (4.55)–(4.56), we deduce that for some constant
C, independent of u, ũ, and R, we have

‖F(u) −F(ũ)‖L2(0,T ;V ) ≤ 2CR ‖u − ũ‖L2(0,T ;V ) . (4.58)

Hence, F is contractive if R satisfies

R <
1

4C
, (4.59)

where C is the constant in (4.58).

(ii) F maps B(0, R) into itself. Using Proposition 4.4 and the continuity of the operators Γ , Θ1, and Θ2, we
infer the existence of a constant C′ > 0 such that for any u ∈ B(0, R), we have

‖F(u)‖L2(0,T ;V ) ≤ C′
(
‖u0‖L2

1
L−x

dx

+ ‖uT ‖L2
1

L−x
dx

+ R2

)
.

Thus, taking R satisfying (4.59) and R < 1/(2C′) and assuming that ‖u0‖L2
1

L−x
dx

and ‖uT ‖L2
1

L−x
dx

are small

enough, we obtain that the operator F maps B(0, R) into itself. Therefore the map F has a fixed point in
B(0, R) by the Banach fixed-point Theorem. The proof of Theorem 4.9 is complete. �
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