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Abstract: This paper presents an algorithm based on a combination of Discrete Wavelet 
Transforms and neural networks for detection and classification of internal faults in a two-
winding three-phase transformer. Fault conditions of the transformer are simulated using 
ATP/EMTP in order to obtain current signals. The training process for the neural network and 
fault diagnosis decision are implemented using toolboxes on MATLAB/Simulink. Various cases 
and fault types based on Thailand electricity transmission and distribution systems are studied 
to verify the validity of the algorithm. It is found that the proposed method gives a satisfactory 
accuracy, and will be particularly useful in a development of a modern differential relay for a 
transformer protection scheme. 
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1. INTRODUCTION 
 
Protective devices are an important part for 

detecting fault conditions in a power system. The 
appropriate protection scheme must be selected to 
ensure the safety of power apparatus and reliability of 
the system. Generally, power transformers can be 
protected by overcurrent relays, pressure relays and 
differential relays depending on purposes [1]. For 
differential protection, the differential current, which 
is generated by a comparison between the primary 
current and the secondary current detected via current 
transformers, is required. The differential protection is 
aimed at detecting internal faults in transformer 
windings. In a normal operation or in a fault condition 
due to the external short circuits, the differential 
current is relatively small, and the differential relay 
should not function [1,2]. However, there are some 
factors that can cause a needless operation of the 
differential protection such as effects from 
magnetizing inrush current. To avoid the malfunction 
of the differential relay, the discrimination between 
internal faults, magnetizing inrush current and 
external short circuit current is required [1-3]. Several 
transformer models and decision algorithms have been 
proposed and discussed for such a task [4-6]. Recently, 
with the advance of signal processing technologies 

and artificial intelligent tools, the development of 
more sophisticated protection systems as well as fault 
diagnosis for the power transformer has been 
progressed with the applications of wavelet transform 
(WT) and artificial neural networks (ANNs) [7-10]. 

This paper presents an application of Wavelet 
transform and a decision algorithm based on back 
propagation neural networks in order to detect the 
internal faults at the windings of a two-winding 
transformer. The transformer model with the stray 
capacitances is used so that internal fault signals with 
high frequency components can be calculated. The 
simulations, analysis and diagnosis are performed 
using ATP/EMTP and MATLAB. The current 
waveforms obtained from ATP/EMTP are extracted to 
several scales with the Wavelet transform, and the 
coefficients of the first scale from the Wavelet 
transformer are investigated. The comparison of the 
coefficients is performed and used as an input for 
training processes of the neural networks. The 
construction of the decision algorithm is detailed and 
implemented with various case studies based on 
Thailand electricity transmission and distribution 
systems. 

 
2. WAVELET TRANSFORMS 

 
Normally, the traditional method of signal analysis 

is based on Fourier transforms. Fourier transform is a 
process of multiplying a signal by a sinusoid in order 
to determine frequency contents of a signal. The 
output of the Fourier transform is sinusoids of 
different frequencies. It is found that Fourier 
transform is not appropriate to analyse faults in a 
power system with transient based protection methods, 
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because in such a system the desirable information 
may be located in both the frequency domain and the 
time domain. Due to the limits of Fourier transforms 
in applications with transient signals, Wavelet 
transforms has been proposed as an alternative tool in 
signal analysis. A wavelet is a small-localized wave of 
a particular shape and finite duration that has an 
average value of zero. The wavelet transform is a tool 
that cuts up data or functions or operators into 
different frequency components, and then studies each 
component with a resolution matched to its scale [11, 
12]. The advantage of the transform is that the band of 
analysis can be fine adjusted so that high frequency 
components and low frequency components are 
detected precisely. Results from the wavelet transform 
are shown on both the time domain and the frequency 
domain. The wavelet transform can expand signals in 
term of using a shift in time or translation as well as 
compression in time or dilation of a fixed wavelet 
function named as the mother wavelet [9]. The 
wavelet transform, which has a change in the analysis 
scaled by the factor of two, is called discrete wavelet 
transform (DWT) as in (1). 
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= mother wavelet (in this paper, 

Daubechies 4 is selected as a mother wavelet.) 
 
3. TRANSFORMER WINDING MODELS 

 
For a computer model of a two-winding three-phase 

transformer having primary and secondary windings 
in each phase, BCTRAN is a well-known subroutine 
on ATP/EMTP. To study internal faults of the 
transformer, Bastard et al proposed modification of 
the BCTRAN subroutine. Normally, the BCTRAN 
uses a matrix of inductances with a size of 6x6 to 
represent a transformer, but with the internal fault 
conditions the matrix is adjusted to be a size of 7x7 
for winding to ground faults and of 8x8 for interturn 
faults [4]. In the research work of Bastard et al [4], the 
model was proved to be validate and accurate due to a 
comparison with measurement results. However, the 
effects of high frequency components which may 
occur during the faults are not included in such a 
model. Islam and Ledwich [5] described the 
characteristics of high frequency responses of a 
transformer due to various faults. It has been shown 
that the fault types and fault locations have an 
influence on the frequency responses of the 
transformer [5]. In addition, it has been proved that 
transient based protections using high frequency 
components in fault currents can be applicable in 

locating and classifying faults on transmission lines 
[13,14]. It is, therefore, useful to investigate the high 
frequency components superimposed on the fault 
current signals for a development of a transient based 
protection for a transformer. As a result, in this paper 
the combination of the transformer models proposed 
by Bastard et al [4] as shown in Fig. 1, with the high 
frequency model including capacitances of the 
transformer recommended by IEEE working group 
[15] as shown in Fig. 2, are used for simulations of 
internal faults at the transformer windings. 

From Fig. 1, for the phase winding of the 
transformer with internal faults, the winding is 
divided into two parts in the case of winding to 
ground faults, and three parts in the case of interturn 
faults.  

The capacitances shown in Fig. 2 are as follows: 
Chg = stray capacitance between the high voltage 

winding and ground 
Clg = stray capacitance between the low voltage 

winding and ground 
Chl = stray capacitance between the high voltage 

winding and the low voltage winding. 
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Fig. 1. The modification on ATP/EMTP model for a

three-phase transformer with internal faults[4].
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Fig. 2. A two-winding transformer with the effects of

stray capacitances[15]. 
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4. CASE STUDIES AND FAULT DETECTION 
ALGORITHMS 

 
A 50 MVA, 115/23 kV two-winding three-phase 

transformer was employed in simulations with all 
parameters and configuration provided by a 
manufacturer [16]. The scheme under investigations is 
a part of Thailand electricity transmission and 
distribution system as depicted in Fig. 3. It can be 
seen that the transformer as a step down transformer is 
connected between two subtransmission sections. The 
primary and secondary current waveforms, then, can 
be simulated using ATP/EMTP, and these waveforms 
are imported into MATLAB/Simulink for a 
construction of fault diagnosis process. 

To implement the transformer model and cover all 
regions of operating conditions training and testing 
data were simulated with various changes in system 
parameters as follows: 
- The angles on phase A voltage waveform for the 
instants of fault inception were 30o and 210o. 
- Two types for internal faults at the transformer 
windings (both primary and secondary) which are 
winding to ground faults and interturn faults, were 
investigated. 
- For the winding to ground faults, the fault locations 
were designated on any phases of the transformer 
windings (both primary and secondary) at the length 
of 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80% and 
90% measured from the line end of the windings. 
- For the interturn faults, the position of point a on the 
transformer winding, as shown in Fig. 1, was varied at 
the length of 10%, 20%, 30%, 40%, 50%, 60%, 70% 
and 80% measured from the line end of the windings. 
- For the interturn faults, the position of point b on the 
transformer winding, as shown in Fig. 1, was varied at 
the length of 10%, 20%, 30%, 40%, 50%, 60%, 70% 
and 80% measured from the line end of the windings. 
- Fault resistance was 5 Ω. 

With fault signals obtained from the simulations, 
the differential currents, which are a deduction 
between the primary current and the secondary current 
in all three phases as well as the zero sequence, are 
calculated, and the resultant current signals are 
extracted using the Wavelet transform. The 
coefficients of the signals obtained from the Wavelet 
transform are squared for a more explicit comparison. 
Fig. 4 illustrates an example of an extraction using 
Wavelet transform for the differential currents and 
zero sequence current from scale1 to scale 5 for a case 
of phase A to ground fault at 40% in length of the high 
voltage winding.  

After applying the Wavelet transform to the 
differential currents, the comparison of the 
coefficients from each scale is considered so that the 
fault classifications can be analysed. In case of 
internal faults and external faults Wavelet transform is 

applied to the quarter cycle of current waveforms after 
the fault inception. With several trial and error 
processes, the decision algorithm on the basis of 
computer programming technique is constructed. The 
most appropriate algorithm for the decision with all 
results from the case studies of the system under the 
investigations can be concluded as follows[17]: 

For detecting the phase with a fault condition,  
for td = 0.000005 : 0.000005 : 0.1 

    if     )X*5(X diff
td)max(0 

diff
t1)(td →+ ≥  

             then       1=diff
chkX  

          else 
           0=diff

chkX  
          end 
    end 

 
where 

 
1t  = 5 μsec (depending on the sampling time 

used in ATP/EMTP), 
diff
(td t1) X +  = coefficient from Wavelet transform for the 

differential current detected from phase X 
at the time of td+t1, 

diff
max(0 t) X → = coefficient from Wavelet transform for the 

 

Fig. 3. The system used in simulations studies. 
 

 

Fig. 4. Wavelet transform of differential currents
(Turn to ground fault at 40% in length of the
high voltage winding). 
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differential current detected from phase X 
at the time from t =0 to t = td, 

diff
chk X  = comparison indicator for a change in 

coefficient from Wavelet transform 
( ,diff

checkA ,diff diff
check checkB C ), used for separation 

between normal conditions and faults. 
 
By performing many simulations, it has been found 

that when applying the previously detailed algorithm 
for detecting internal faults at the transformer winding, 
the coefficient in scale 1 from DWT seems enough to 
indicate the internal fault inception of the transformer. 
As a result, it is unnecessary to use other coefficients 
from higher scales in this algorithm, and the 
coefficients in scale 1 from DWT are used in training 
processes for the neural networks later. 

 
5. NEURAL NETWORK DECISION 

ALGORITHM AND SIMULATION RESULTS 
 
Artificial neural networks are an attempt to 

simulate the human brain’s non-linear and parallel 
processing capabilities. Although there are many types 
of neural networks, only a few of neuron-based 
structures are being used commercially. One particular 
structure, a back-propagation neural network, is the 
most popular tool for applications such as pattern 
recognition fault classification etc. A structure of a 
back propagation neural network consists of three 
layers which are an input layer, at least one hidden 
layer and an output layer. Each layer is connected with 
weights and bias. In this paper, a three-layer back 
propagation neural network with one input layer, two 
hidden layers and one output layer is employed as 
shown in Fig. 5.  

Hyperbolic tangent sigmoid functions are used as 
an activation function in all hidden layers while linear 
function is used as an activation function in output 
layers. In addition, there are many adjustment weight 
and bias in the neural network toolbox such as quasi-

Newton algorithm, Levenberg-Maquardt algorithm, 
Resilient Backpropagation, Conjugate Gradient 
algorithm etc. Each method has difference efficiency 
and training time. A comparison of the various 
training algorithms has been mentioned, and it is 
shown that Levenberg-Marquardt algorithm has the 
fastest convergence [18]. As a result, Levenberg-
Marquardt algorithm is selected as adjustment weight 
and bias in this paper.A training process for the back 
propagation neural network can be divided into three 
parts as follows [18]: 

 
1) The feedforward input pattern, which has a 

propagation of data from the input layer to the hidden 
layer and finally to the output layer for calculating 
responses from input patterns illustrated in (2) and (3). 

( )( )211,111,222 ** bbpiwflwfa ++= ,  (2) 

( )322,33 */ balwfpo ANN += ,  (3)  

where 
p  = input vector of ANNs, 
iw1,1 = weights between input and the first hidden 

layer, 
lw2,1 = weights between the first and the second 

hidden layers, 
lw3,2 = weights between the second hidden layer and 

output layers, 
b1, b2 = bias in the first and the second hidden layers 

respectively, 
b3 = bias in output layers, 
f1, f2 = activation function(Hyperbolic tangent sigmoid 

function : tanh), 
f3 = activation function(Linear function). 
 

2) The back-propagation for the associated error 
between outputs of neural networks and target 
outputs; The error is fed to all neurons in the next 
lower layer, and also used to an adjustment of weights 
and bias.  

 
1st Hidden Layer  Input Layer               2nd Hidden Layer Output Layer 

 
 

Fig. 5. Back propagation with two hidden layers [18]. 
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3) The adjustment of the weights and bias by 
Levenberg-Marquardt (trainlm). This process is aimed 
at trying to match between the calculated outputs and 
the target outputs. Mean absolute percentage error 
(MAPE) as an index for efficiency determination of 
the back-propagation neural networks is computed in 
(4). 

%100*
/

//
*1

1
∑
=

−
=

n

i TARGETi

TARGETiANNi
po

popo
n

MAPE , (4) 

 
where n = number of test sets. 

 
A training process was performed using neural 

network toolboxes in MATLAB [18]. A structure of 
the back propagation neural network consists of 4 
neuron inputs and 8 neuron outputs. The inputs are the 
maximum coefficients of the differential currents and 
zero sequence current as mentioned in the previous 
section. In this paper, there are 360 sets for training. 
The output variables of the neural networks are 
designated as either 0 or 1 with various types of faults 
as shown in Table 1. 

Before starting the training process, a number of 
neurons in each hidden layer have to be fixed 
according to various factors such as: number of input 

and output neurons, number of training cases and the 
type of activation function in hidden layer etc. The 
initial number of neurons for the first hidden layer can 
be calculated as shown in (5).  

( )qrz +=
3
2 ,    (5) 

where 
z = Initial number of neurons in the first hidden layer, 
r = Number of neurons input, 
q = Number of neurons output. 

 
When the initial number of neurons in the first 

hidden layer had been determined, the final number of 
the neurons in the same layer had to be calculated in 
order to stop the training process. The final number 
can be obtained from: 

1_ zzstz += ,    (6) 

where 
z_st = the final number for the neurons in the first 

hidden layer, 
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During the training process, the weight and biases 
were adjusted, and there were 20,000 iterations in 
order to compute the best value of MAPE. The 
number of neurons in both hidden layers was 
increased before repeating the cycle of the training 
process. The training procedure was stopped when 
reaching the final number of neurons for the first 
hidden layer or the MAPE of test sets was less than 
0.5%. The training process can be summarized as a 
flowchart shown in Fig. 6 while various results from 
the training process can be shown in Table 2 with the 
initial number of neurons for the first hidden layer 
obtained from (5).  

 
Table 1. Output patterns from neural networks for 

various fault types. 

Classifications of Fault A1 B1 C1 G1 A2 B2 C2 G2

Winding to ground phase A 
(HV) 1 0 0 1 0 0 0 0

Winding to ground phase A 
(LV) 0 0 0 0 1 0 0 1

Interturn phase A 
(HV) 1 0 0 0 0 0 0 0

Interturn phase A 
(LV) 0 0 0 0 1 0 0 0

Winding to ground phase B 
(HV) 0 1 0 1 0 0 0 0

Winding to ground phase B 
(LV) 0 0 0 0 0 1 0 1

Interturn phase B 
(HV) 0 1 0 0 0 0 0 0

Interturn phase B 
(LV) 0 0 0 0 0 1 0 0

Winding to ground phase C 
(HV) 0 0 1 1 0 0 0 0

Winding to ground phase C 
(LV) 0 0 0 0 0 0 1 1

Interturn phase C 
(HV) 0 0 1 0 0 0 0 0

Interturn phase C 
(LV) 0 0 0 0 0 0 1 0

 
Table 2. Results from the training process (Performed 

on a PC with Pentium IV 2.4GHz CPU, with 
512 MB RAM). 

Number of 
neurons in the 

first hidden 
layer 

MAPE of Test 
set (%) 

Time used in 
training process 

(minute) 

8 0.55556961 100.59 
9 0.5555649 141.28 

10 0.59023954 178.32 
11 0.5678628 221.12 
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The decision algorithm based on the neural network, 
then, is tested with 180 case studies. The internal fault 
conditions in the windings of the transformer are 
simulated on ATP/EMTP. In order to explain the 
verification of the neural network algorithm, the 
simulation results shown in Fig. 4 are used as an 
example. For this case, when applying the decision 
algorithm for a prediction, the output obtained from 
neural network is as shown in Table 3. 

From Table 3, it can be seen that the index value at 
A1 is 1 and that at G1 is also 1 while others are 0. 
This means that there is an internal fault occurring at 
the high voltage side, and the internal fault is 
classified as a winding to ground fault, which is 
correlative to the condition of the transformer used in 
simulations of Fig. 4. 

In addition, when all case studies are tested with 
various types of internal faults and different locations 
on both primary windings and secondary windings at 
the three-phase transformer, the accuracy of the 
results obtained from the prediction from the neural 
network is illustrated in Table 4. 

 
6. CONCLUSIONS 

 
A technique using discrete wavelet transform in 

combination with back propagation neural networks 
in order to classify internal fault types of a three-phase 
transformer has been proposed. The maximum values 
from the first scale at ¼ cycle of phase A, B, and C of 
post-fault differential current signals and zero 
sequence current obtained by the wavelet transform 
have been used as an input for the training process of 
a neural network in a decision algorithm with a use of 
the back propagation neural networks. Various case 
studies have been studied including the variation of 
fault inception angles, fault types and fault locations. 
The results have illustrated that the proposed 
algorithm is able to predict the internal faults at 
windings of a transformer with an accuracy of higher 
than 98%. This technique should be useful in the 
differential protection scheme for the transformer. The 
further work will be the improvement of the algorithm 
so that fault locations on the windings of the 
transformer can be identified.  

Start

Normalization input pattern

Initial number of  neurons
hidden1 = z

hidden 2 = z -1

Random initial weight
and biases

Compute output and
MAPE of BP

Store Weight, bias that
computed minimum

MAPE

for i = 1

hidden1=hidden1+1;
hidden2=hidden2+1;

Store Weight, bias that
computed minimum

MAPE

Yes

No

End

i = i + 1
No

Yes

i > 20000

hidden1 = z + z1
or

MAPE < 0.5%

 
Fig. 6. Flowchart for the training process. 

Table 3. Outputs from the neural network for the 
simulation case shown in Fig. 4. 

A1 B1 C1 G1 A2 B2 C2 G2
1 0 0 1 0 0 0 0 
 

Table 4. Accuracy of fault classification from the 
proposed algorithm. 

Types of faults Number of 
case studies Accuracy

Winding to ground fault 
at the high voltage side 18 100% 

Winding to ground fault 
at the low voltage side 18 100% 

Interturn fault 
at the high voltage side 72 98.61% 

Interturn fault 
at the low voltage side 72 100% 
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