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1 INTRODUCTION

Ocean waves move due to gravity: the water at crests is heavier than the air surrounding
it and so it falls, overshoots its equilibrium position and then at a trough feels an upward
restoring force. The same phenomena occurs below the ocean surface. Cold water lifted
upward into warmer surroundings will feel a downward buoyancy force and downward-
displaced warm water will feel an upward buoyancy force. If this motion is periodic in
both space and time, it is referred to as an internal gravity wave. Internal gravity waves
are manifest in two qualitatively different forms, which we will refer to here as “interfacial
waves” and “internal waves”. (The dynamics of internal waves are broadly discussed in the
textbook “Internal Gravity Waves” (Sutherland 2010)).

Interfacial waves exist at the interface between dense and less dense fluid such as the
thermocline, which refers to the interface between warm and cold water, or an atmospheric
inversion, which refers to the interface between warm and cold air. In the ocean and in
laboratory experiments, they can also exist at a halocline, which is the interface between
fresh and salty water. An example of such a wave is shown in Figure la, in which a
subsurface disturbance has launched a wave beneath a nearly flat surface. Looking down
on the surface, the presence of these waves is evident from fluctuating horizontal flows and,
on large scales, changing surface roughness.

Large-amplitude interfacial waves at the thermocline in the ocean and launched onto
the continental shelf by tides provide enhanced transport of fluid and biology. For this
reason, they are of interest to marine biologists, sediment geologists as well as theoretical
modellers.

The second form of internal gravity wave exists in continuously stratified fluid, which
means that the effective density of the fluid gradually decreases with height. These waves
again move up and down due to buoyancy, but they are not confined to an interface; they
can move vertically as well as horizontally through the fluid. These are shown in Figure 1b
in which model hills create a perturbation that launches waves moving upward through the
fluid whose density decreases linearly with height as the salinity decreases.

Though not of primary importance, internal waves have a non-negligible influence upon
weather and climate through the vertical transport of energy and momentum. In the
atmosphere, for example, the waves launched by flow over mountains exert drag on the air
far above where they break. In the ocean, wave breaking is a source of deep-ocean mixing,
which is an important means of vertically redistributing heat. On the mesoscale, breaking



a) Interfacial waves

b) Internal waves

Figure 1: a) Laboratory experiment in which the interface between (dark-dyed) salty fluid
and (clear) fresh water is displaced by an interfacial internal wave that passes beneath a
nearly flat surface. b) Laboratory experiment in which towed model-hills launch vertically
propagating internal waves in continuously stratified fluid. The waves are visualized by the
displacement of dye-lines equally spaced by 5cm.

large-amplitude internal waves are a source of clear-air-turbulence, which is a threat to air
traffic.

The properties of periodic small-amplitude interfacial and internal waves is well-established
but less is known about the dynamics of large-amplitude waves. In this chapter, we will
review the theory of these two types of waves having small and moderately large amplitude.
The waves that influence the environment occur on small spatial and fast temporal scales,
so that the effects of the Earth’s rotation can be ignored.

2 EQUATIONS DESCRIBING INTERFACIAL WAVES

We will consider the propagation of interfacial waves in a two-layer fluid of upper depth
H, and lower depth Hs, as shown in Figure 2. The density, p;, of the upper layer is
assumed to be moderately smaller than the lower-layer density, po. This allows us to make
the Boussinesq approximation, in which the density affects buoyancy forces but not the
momentum of the fluid.

An unsheared uniform density, Boussinesq fluid is irrotational and incompressible. This
means that the velocity everywhere in the fluid can be prescribed in terms of gradients of



Figure 2: Schematic showing the definition of variables and scales used to model interfacial
waves.

a velocity potential, ¢(z, z,t), so that
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Insisting that the vertical velocity field is zero at the upper and lower boundaries, we also
have the conditions
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The physics of buoyancy forces that drives the waves are included in interface conditions.
Before invoking these, we can make some progress in solving the boundary value problem
(2) with (3). Seeking solutions that are periodic in horizontal space and in time, we assume
d(x,z,t) = ¢(2)sin(kx — wt), in which k = 27/X is the horizontal wavenumber for waves
with wavelength A and w = 27 /T is the frequency for waves with period T'. Substituting
this expression into (2) is equivalent to a Fourier Sine transform. Thus we get an ordinary
differential equation for quS:
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General solutions are a superposition of the exponential functions e** and e=**. The par-
ticular combination of these functions that satisfies the boundary conditions (3) is written
succinctly in terms of the hyperbolic cosine (cosh(f) = (e + ¢7%)/2):

k) + 0. (4)

A; coshlk(z — Hy)|sin(kz —wt) z>0
0= { Ay coshlk(z + Hy)|sin(kx —wt) z2<0 ° (5)

Here we have assumed the amplitude of the waves is so small that it is sufficient to define
¢ above and below z = 0 rather than above and below the displaced interface at z = 7.
There is virtually no difference between ¢(z,n,t) and ¢(x,0,t) as n goes to zero.
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Figure 3: Plot of dispersion relation (9) for small-amplitude interfacial waves with
Hy/Hy, = 1 and Hy/H; = 10 (or, equivalently H;/Hs = 10). Frequency is normalized by
its characteristic value \/¢’/H and wavenumber by its characteristic value 1/H in which
H = H H,/(H, + H,) is the harmonic mean of the depths of the upper and lower layer
fluids.

Our problem reduces to finding the connection between the amplitudes A; and A of the
velocity potential in the upper and lower fluids as well as connecting these to the amplitude
(and structure) of the interfacial displacement 7.

The effects of buoyancy forces driving the wave motion are accounted for by Bernouilli’s
condition that p(d:¢ + 3|i@|* + gn) should not change across the interface. That is, there is
no pressure jump across the interface. For small-amplitude waves, we can neglect the small
kinetic energy term. Therefore, using (5) and evaluating ¢ at the height of the interface
where z ~ 0, we have

(A; cosh(kHy) — Ag cosh(kHs)) cos(kx — wt), (6)

w

9

in which we have defined the reduced gravity to be ¢’ = g(p2 — p1)/p2-
Another condition at the interface requires that their should be no jump in the vertical
velocity, w = 0,¢, across it. From (5), this relates the values A; and A, for small amplitude

waves by the condition
_Al smh(kHl) = A2 Sinh(kHQ), (7)

in which sinh 6 = (e’ — e7%)/2 is the hyperbolic sine function. The vertical velocity field is
also given in terms of the interface displacement for small-amplitude waves by 9;n. And so
we have a second equation relating A; and A,. Using (6) to equate 0;n to 0.¢ just above
the interface gives

w2

—- (Ay cosh(kH;) — Ay cosh(kHy)) = kA; sinh(kHy). (8)
9



General formula Long wave limit (kH < 1)

n= Acos(kxr — wt) — Acos(kx — wt)
6= —A ‘;%‘2;}1)] sin(kz — wt) . —A Sisin(kr —wt) 2> 0
= A :% sin(kx — wt) A B sin(kr —wt)  2<0
—Aw %’ZH?)] cos(kx — wt) . —A W cos(kx —wt) z>0
u =
A % cos(kz — wt) A cos(kx —wt) 2<0
—A w% sin(kz — wt) —Aw (— - 1> sin(kz —wt) z2>0
w = sin z . -
Aw sﬂ]fl((k;;ﬂ sin(kz — wt) Aw (— + 1) sin(kr —wt)  2<0
( —A %’Zi}l)] cos(kx — wt) —A <— - 1) cos(kr —wt) z>0
% cos(kx — wt) A (E - 1) cos(kx —wt) 2<0

Table 1: Relationships between the interface displacement (n), velocity potential (¢), the
horizontal (u) and vertical (w) components of velocity, and the vertical displacement field
for interfacial waves in general and in the long wave limit.

Eliminating Ay from (7) and (8) gives a single equation for A;:

, w? (cosh(kH;) cosh(kHy)
Arsinh(kHy) [? (sinh(kHl) * sinh(kH2)> N k] -

Because we are assuming A;, k and H; are non-zero, we must have that the expression in
square brackets is zero.
Thus we have determined the dispersion relation for an interfacial waves:

- (9)

in which we have introduced the hyperbolic cotangent. This is plotted in Figure 3. Effec-
tively we have just solved an eigenvalue problem. In its solution we have found that the
frequency of the wave depends upon the wavenumber k. For a given value of the amplitude
A, we can then find the value of Ay through (7) and so find interfacial displacement (6).
These and other polarization relations are listed in Table 1 in which the results have been
recast to represent the relationship between fields in terms of the interfacial displacement
amplitude A such that n = Acos(kx — wt).

Of particular interest is the properties of waves that are long compared to the fluid
depth, so that both kH; and kH, are small. These are called “shallow water waves”. For
small 6, coth® ~ 1/6. So the general dispersion relation (9) becomes In the limit of small
kH; and kH, are small

w? = g'k[coth(kH,) + coth(kHy)]

w? = AAk? (10)

in which ¢ = \/¢’H and H = H,H,/(H, + H,) is the harmonic mean of the two depths. So
long waves are non-dispersive: all wavelengths travel at the same phase and group speed,
c.
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Figure 4: Schematic showing the velocity fields associated with a rightward-propagating
shallow interfacial wave in a two-layer fluid. Here H; = 0.75H and H, = 0.25H. For clarity
of the illustration, the displacement amplitude has been exaggerated, though in reality such
a value of A would constitute a large-amplitude interfacial wave.

In the shallow-water limit the horizontal velocity is uniform within each layer but moves
in opposite directions above and below the interface, as shown in Figure 4. The presence of
shear at the interface suggests the possibility of breakdown into turbulence for sufficiently
large amplitude waves (Troy and Koseff 2005). The vertical velocity changes linearly within
each layer having maximum upward velocity at the inflection point leading the crest.

3 EQUATIONS DESCRIBING INTERNAL WAVES

Although it is often mathematically convenient to represent the thermocline as a sharp
interface, for many wave phenomena the details of the ambient vertical density profile non-
negligibly affect the structure and evolution of internal waves. In the extreme case of a
uniformly stratified fluid, in which the density decreases linearly with height, the ambient
fluid is no longer irrotational because the density gradients introduce vorticity within the
ambient through so-called baroclinic torques.

The evolution of Boussinesq internal waves in the x-z plane is governed by the conser-
vation of momentum and internal energy for an incompressible fluid:

woe = 2 (1)
Po% = —%—gp (12)
2 —w% (13)
%+g—f = 0, (14)

in which py is the characteristic density, p(z) is the ambient density and p is the fluctuation
density resulting from the passage of waves. We have assumed there is no background flow
so that the horizontal motion w is entirely due to waves.

If the waves are small amplitude, we may neglect the advective terms in the material
derivative and so replace D/Dt with 9/0t. The equations can then be combined into a
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Modes Vertically Propagating Waves

&= Asin(m;z)cos(kxr — wt) Acos(kx +mz — wt)

Y= —A ¢sin(m;z)cos(kx — wt) —A ¢ cos(kr +mz — wt)
u= —A = cos(mz)sin(kr —wt) —A ZFsin(kr + mz — wt)
w= A wsin(m,;z) cos(kx — wt) A wsin(kz + mz — wt)

Table 2: Relationships between the isopycnal displacement (&), streamfunction (¢/) and
the horizontal (u) and vertical (w) components of velocity for internal wave modes in a
uniformly stratified fluid in a channel with 0 < 2z < H and for vertically propagating
internal waves in an unbounded domain. The i-th vertical mode has vertical wavenumber
m; = im/H for positive integers i.

single equation in one variable. Because the fluid is incompressible, we may define the

streamfunction ¢ so that u = —0,¢ and w = 0,%. Putting this into the momentum
equations, taking the curl to eliminate pressure and finally eliminating p, we have the
following;:

0? [ 0 0? 82

— | =+ = =0, 15

8t2(8x2+ )1“ (15)

in which N?(z2) = —(g/po)dp/dz is the squared buoyancy frequency.
 We seek solutions that are periodic in horizontal space and time and so write U(x, z,t) =
Y (z) cos(kx — wt). Substituting this into (15) gives the equation describing the vertical

structure of the waves:
d2¢ Ny N —1)d=0 16
dz? (w ) v ' (16)

The structure is oscillatory in z where w < N and changes exponentially in z where w > N.
For given w and k the solution depends upon the upper and lower boundary conditions as
well as the prescribed value of N(z).

In a uniformly stratified fluid (N = Ny, constant) explicit analytic solutions can be
found: ) is the superposition of the functions sin(mz) and cos(mz) in which

m = k(Ng?/w? — 1)Y2. (17)

In an unbounded fluid it is usual to form the superposition so that the streamfunction
describes waves either with upward moving crests, ¢ (x, z,t) = Ay cos(kx + mz — wt), or
with downward moving crests, ¢(z, z,t) = Ay_ cos(kz — mz — wt). If the fluid is bounded
above and below by horizontal boundaries, the superposition must be taken to ensure no
vertical motion at top and bottom:

Y(z, 2,t) = Ay;sin(myz) cos(kr —wt), i=1,2,3,... (18)

in which the domain is assumed to extend from 0 to H and m; = iw/H for positive integers
1 ensures that 1, and hence, w is zero at z = 0 and H.



a) Dispersion relation
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Figure 5: a) Dispersion relation of lowest three vertical modes of internal waves in uni-
formly stratified fluid with buoyancy frequency Ny in a domain of depth H. Isopycnal
displacements are shown for b) mode-1 and ¢) mode-2 waves.

In either case, the dispersion relation for internal waves in uniformly stratified fluid is
given by rearranging (17) to isolate w:

/{?2

2 2
=N2——
w 0k2+m2

(19)
in which m varies continuously for waves in an unbounded domain but is discrete-valued
in a vertically finite domain. Whereas there is a single dispersion relation for interfacial
waves with given k, internal waves have an infinite set of dispersion relations depending
upon the value of m.

For a given mode, we may go on to find the velocity fields and other fields of interest.
In particular, the vertical (@) and horizontal () velocities are proportional to Y. These
polarization relations are listed in Table 2. For comparison with the polarization for inter-
facial waves, listed in Table 1, these have been cast in terms of the amplitude, A, of the
vertical displacement field. This is the maximum displacement of isopycnals in the domain.

The dispersion relation for internal waves in a fluid of finite depth is shown in Figure 5a.
The corresponding structure of the lowest two vertical modes is illustrated in Figures 5b
and c¢ through lines indicating the isopycnal displacements at snapshot in time.

For all vertical modes, the waves become non-dispersive in the limit of long horizontal
waves for which £ < m;. In this case the horizontal phase and group speed associated with



the waves is ¢ = Ny/m; = NoH/(im) for positive integers, i. The fastest speed is associated
with the lowest (i = 1) mode.

The velocity fields associated with the mode-1 internal wave is illustrated in Figure 6.
Here the thick black lines represent four initially evenly spaced isopycnals (lines of constant
density) which have been lifted upward and downward from their equilibrium positions due
to the passage of the waves. In an unbounded stratified fluid, the vertical and horizontal
velocity fields associated with a plane wave are in phase. However, as with interfacial
waves, the velocity fields of bounded internal wave modes are 90° out of phase. Comparing
this figure with Figure 4, we see that the most significant qualitative difference is that u
varies continuously with z and w varies smoothly with z.

We can draw the connection between interfacial waves and vertically bounded internal
waves by considering modes in a cavity with ambient density given by

P1 oH; < z < H;
p(z) = le?;rI”QHl — 2Py —oHy, <z<oH, (20)
P2 —O'H2 >z Z _H2

in which H = H;+ H, is the total fluid depth and o is a measure of the interface thickness.
We recover the case of interfacial waves in the limit ¢ — 0 and we recover the case of
internal waves in uniformly stratified fluid as ¢ — 1. The corresponding N2 profile is zero
in the upper and lower layers and holds the constant value

g p2— p1 g
No= /= = 21
0 o ol O_H7 ( )

for —oHy < 2z < oHy, in which p is the characteristic density.
Solving (16) in each layer and ensuring w = 0 (hence 1) = 0) at the upper and lower
boundaries, we find

. A1 smh[k:(]-h — Z)] oH, < z< H;
Y(z) =< Bysin(mz) + Bycos(mz) —oHy < z<oH; (22)
Cl smh[k(z + HQ)} —Hy, <z< —O'Hg,

in which m is given by (17). The constants A;, By, By and C; are interrelated through
conditions at z = oH; and z = —oH, that require continuity of pressure and vertical
velocity. In the absence of background shear, this amounts to continuity of Iﬁ(z) and its
derivative. Thus we have an eigenvalue problem formed from the four equations in the four
unknown constants.

After some algebra, we derive the following implicit formula for m:

tan(mHo) = —% (tanh[kH1 (1 — 0)] + tanh[kHa(1 — 0)]) x

(1 — ﬁtanh[kHl(l — o)] tanh[kHy(1 — 0)]) .
~ —mH(1—0)(1-m?*H Hy(1-0)?)"", (23)

where in the second expression we have made the long wave approximation (kH < 1). As
o — 1, corresponding to the limit of uniform stratification, we have tanmH ~ 0. Therefore

9



Figure 6: Schematic showing the velocity fields associated with a rightward-propagating
mode-1 internal wave in a uniformly stratified fluid of finite depth.

m holds the values m; = in/H, for integers i, as we found above. The corresponding
dispersion relation is given by (19). As o — 0, corresponding to the limit of a two-layer
fluid, we have mHo ~ —mH/(1 — m*H,H,) ~ H/(mHH,). That is, m*Ho = 1/H, in
which H = H,H,/(H, + H,) is the harmonic mean of the upper and lower-layer depths.
Using this result in (19) with Ny given by (21) and assuming k < m, we find w? = ¢’ Hk?,
which is the dispersion relation for long waves given by (10).

In general, having found m through the empirical solution of (23) we can go on to
find the interrelationship between the coefficients A;, By, B, and (. Thus to within an
arbitrary, though necessarily small, amplitude we have found the corresponding eigenfunc-
tion @(2) The polarization relations are then used to find the other fields of interest. In
particular, from w = 0¢/0dx and the fact that the vertical displacement field & satisfies
w = 0&/0t, we have

£(x,2,t) = EAcos(kx —wt) with &(z) = —51;(2), (24)

in which ¢ is given by (22). Here we have defined A to be the maximum vertical displace-
ment and it is implicitly assumed that the constants in 2/1 have been normalized so that 5
has a maximum value of unity.

Figure 7 shows the dispersion relation and vertical velocity amplitudes of the lowest
vertical-mode internal waves for ambient profiles given by (20) with four different values of
the interface thickness o H. So we see that in all three cases the vertical velocity is greatest
in the interior of the domain with its value peaking closer to the mid-point of the interface
at z = 0 as the interface becomes thinner (¢ — 0).

4 DISPERSION OF SMALL-AMPLITUDE WAVES

So far we have focused upon the structure and evolution of plane waves, with a single
wavenumber and corresponding frequency. These are sometimes referred to as “monochro-
matic” waves. In reality, waves cannot be periodic out to infinity but have finite spatial
extent. In many circumstances, however, the waves in a wavepacket have an approximately
constant wavelength which is much smaller than the size of the wavepacket itself. This is

10



a) Dispersion relation b) Streamfunction amplitude

T T ;:|1 T T T T T 075 \\\I\I T T T T T T T
=0.5 NS
....... gzos 05 f— \\\ ~ -
c=01_-~—_— ... SO~

sl s x ENGUIN
205 a4 % 0r SO T

EI N <A
- 0Or //,> -

= -
===
0 _0.25 1 1 1 I 1 1 1 1 I
0 1 9 3 4 5 0 0.5 1
kH Y(z)

Figure 7: a) Dispersion relation of the lowest mode vertically-bounded internal waves in
an ambient with density profile given by (20). The plots correspond to different interface
thicknesses, c H with H = Hy + Hs, as indicated. The upper and lower layers have relative
depth Hi/H = 0.75 and Hs/H = 0.25, respectively. Frequency is normalized by the
buoyancy frequency of the interface Ny given by (21). b) Streamfunction amplitudes for
the lowest mode with kH = 0.1 normalized so that its maximum value is unity. Each plot
corresponds to different values of o as indicated in a).

called a “quasi-monochromatic” wavepacket because it behaves similarly to monochromatic
waves.

For simplicity, we will consider the evolution of a horizontally propagating packet of
interfacial waves, though we will see in Section 6 how these ideas extend to describe verti-
cally propagating internal wavepackets. The initial interface displacement field of a quasi-
monochromatic wavepacket is represented by

n(x,0) = A(z,0) cos(koz),

in which the amplitude is not constant but varies in the horizontal as A(z,t = 0). This
describes the initial amplitude envelope of the wavepacket. For example, a Gaussian
wavepacket centred at the origin has A(z,0) = Agexp(—z?/2L?) in which L is the width
of the wavepacket. In the limit of infinitely large L, A(x,0) — Ay and we recover the
representation of plane waves having wavenumber k.

In what follows, it is more convenient to write n in terms of complex exponentials
through

1
n(x,z,0) = §A(x, 0)e*o” 4+ c.c. = R{ Ae™ o7}, (25)

in which c.c. denotes the complex conjugate of the first expression on the right-hand side
of (25) and the symbol R denotes the real-part of the expression it contains. Adding
the complex conjugate has the effect of eliminating the imaginary part and doubling the
real part. Because e = cosf + 1sinf we recover n = Acos(koz) if A is real-valued. If
A = A, +14; is complex-valued, then its argument ¢(z) = tan~'(A;/A,) describes the
variation in space of the phase of the waves.

11



The horizontal structure of the wavepacket can be seen as the superposition of plane
waves through the Fourier transform

n(2,0) = A(z, 0)cthor — / A(k)ek di, (26)
in which the amplitude of the plane wave with wavenumber k is
1 o
n(k) = 2—/ (A(z,0)e™") e d. (27)
™ —0o0

In (26) we have adopted the convention that 7 is the real part of the expression on the
left-hand side without explicitly writing the symbol .
For example, in the case of the Gaussian wavepacket we have

(k) = (V2r L) Ag exp [—LQM] ,

The amplitude is largest if £ = kg, the wavenumber of waves contained within the ampli-
tude envelope. If |kyg — k| > 1/L the waves have negligible amplitude. So, although the
wavepacket is a superposition of the whole spectrum of waves, only those with wavenumber
near ky have any significant contribution to the structure of the waves.

For small-amplitude waves, each plane wave component of the wavepacket evolves in
time through the change in the phase —wt. That is

at) = [ i)t dn 29
in which 7 is given by the initial condition (27) and w = w(k) is itself a function of k
through the dispersion relation.

For non-dispersive waves the dispersion relation is w = ck with ¢ constant. Substituting
this into (28) and using (26), we immediately find n(x,t) = n(x —ct, 0); the waves translate
at speed ¢ without change in structure of the initial wavepacket.

For dispersive waves the phase speed w/k is not independent of k. So different wave-
lengths propagate at different speeds and this results in a change of the shape of the
wavepacket through a process referred to as “dispersion”.

The effect of dispersion is described by the evolution of the amplitude envelope in time.
We implicitly define the amplitude envelope, A(z,t), of the evolving wavepacket by

n(z,t) = Az, t)e’(kox_”(’t), (29)

in which wg = w(ky) is the frequency of plane waves contained within the wavepacket and
it is understood 7 is the real part of the right-hand side of (29). Substituting this into (28)
and isolating A gives an integral expression for the amplitude envelope:

A(x,t):/ fi(k)e!lk—ko)e=(wk)—wo)t] gp. (30)

[e9]

Given 7(k) and the dispersion relation w(k), the integral can be evaluated numerically and
the interface displacement at any time is then given by R{A(z,t) exp[e(kozr — wot)]}.

12



Insight into the evolution of A is found by noting that for a quasi-monochromatic
wavepacket 7 is negligibly small except where k ~ ko. This inspires us to perform a Taylor
series expansion of w about k = ky. Truncating at third-order in k — ky gives

k) = - (ko) (k — o) + 2 (ko) (k — o) + %w’”(ko)(k )

Substituting this into (30) gives a seemingly ugly expression. But nice things happen upon
taking derivatives on both sides of the expression. Taking a time derivative brings a factor
—w' (k — ko) — 2w" (k — ko)* — ¢w" (k — ko)? into the integrand and taking successive -
derivatives brings factors 1(k — ko), —(k — ko)? and —u(k — ko)® into the integrand. Thus
we may combine these results to eliminate the integrals on the right-hand side leaving an
equation that relates time and space derivatives:

0A , 0A 1, A 1, PA

The first two terms on the left-hand side describe the translation of the amplitude envelope
at speed w'(kg). So we have shown that the wavepacket translates at the group speed
¢y = W'(ko). The third term on the left-hand side of (31) shows that the amplitude-
envelope changes in time where it has greater curvature. This describes the dispersion of
the wavepacket. In some cases the coefficient w”(kg) ~ 0 in which case the fourth term on
the left-hand side of (31) describes the dominant influence of dispersion.

Equation (31) is an extension of the well-known Schrodinger equation. The usual form
of this equation neglects that last term on the left-hand side and is written in a frame of
reference X = x — ¢4t moving at the group velocity. Hence

0A 1, (OPA

gl el 2

or 2 Mgz (32
For a non-dispersive wave with w = ck, ¢, = ¢ and w”(k) = 0. So a wavepacket

translates at the same speed as the phase speed and does not disperse. For interfacial
waves that are long, but not too long, the dispersion relation (9) for rightward-propagating
waves is given approximately for small £ by

1
w e~ ck— 60H1H2k3, (33)

in which c is the long wave speed, as given below (10). Substituting this into (31), thereby
gives an equation describing the evolution of the amplitude envelope of moderately long
interfacial waves:

3
In this case the dispersion is given by third-order spatial derivatives of A. For shorter waves,
w” (ko) is non-zero so the second-order spatial derivatives in (31) dominate dispersion.
Likewise, for vertically propagating internal waves in uniformly stratified fluid, the
dispersion in z of a horizontally periodic, vertically localized wavepacket with peak vertical

wavenumber my is given by the equation for the amplitude envelope A(z,):

0A 0A 1 0%A

13



Here the m subscripts denote derivatives of w with respect to the vertical wavenumber
in which w given by the dispersion relation (19). The second term in (35) describes the
vertical translation of the wavepacket at the group velocity ¢, = Ow/0m. Dispersion is
given at leading order by the A,, term which is valid provided wy,,, # 0; the waves do not
move near the fastest vertical group speed. Because the coefficient of the third term on the
left-hand side of (35) is complex, we see that the curvature of the amplitude envelope first
acts to change the relative phase of the waves and this then changes the magnitude of the
amplitude.

5 INTERNAL SOLITARY WAVES

5.1 Solitary Waves in a two-layer fluid

The term solitary wave originally referred to a single hump-shaped, moderately large am-
plitude wave that travels faster than the long wave speed and maintains its shape due to
a balance between linear dispersion, which tends to spread out the wave, and nonlinear
steeping, which tends to sharpen the wave crests. Its evolution in terms of the surface dis-
placement, 7, was originally formulated for surface waves through the Korteweg-de Vries
(KdV) equation

300 1 2
— H pr—
M+ Cotle + 57 N+ 5 H e 0, (36)

in which ¢y = v/gH is the shallow water wave speed based upon gravity, g, and the water
depth H. Consistent with (34), the second and fourth terms on the left-hand side of (36)
describes the advection and linear dispersion of the wavepacket. The third (nonlinear)
term of (36) describes the steepening of the wave, an effect that is larger for waves of larger
amplitude.

The solution of (36) for waves that have no upstream or downstream disturbance is

n = A sech? (z _)\Ut) , (37)

in which width of the solitary wave is

4H3
)\ — _—
3A (38)
and its speed is
1A
= 1+=-—=.

This last formula confirms that solitary waves propagate faster than the fastest speed cq
associated with long, small-amplitude waves.

In (37), A is the amplitude of the wave which measures the maximum deflection of the
surface from its far-upstream depth. Unlike small-amplitude waves, the speed of a solitary
wave increases as the amplitude increases. Also, the width of the wave changes as H+/H/A;
it has narrower extent as the amplitude increases relative to the fluid depth H.

The KdV equation has been adapted to describe internal solitary waves in stratified
fluid(Benney 1966; Grimshaw, Pelinovsky and Poloukhina 2002). In this case the vertical
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Figure 8: Schematic showing the structure of a solitary wave in a one-layer fluid of
upstream-depth H. The surface displacement is represented by 7 with the maximum sur-
face displacement being A.

displacement field 7, which describes the displacement of isopycnals, is a function of z as
well as x and t. Seeking the description of waves that propagate at constant speed, we
assume 7 is separable so that we can write

A

&z, 2, 1) = &(2)n(x, 1), (40)

For example, in the small-amplitude limit for mode-1 waves in uniformly stratified fluid,
we would have £(z) = sin(m,z) and n(z,t) = Acos(kz — wt) (see Table 2). So, just as 7
describes the displacement of the interface for waves in a two-layer fluid, here 1 describes
the maximum isopycnal deflection over the vertical extent of the domain. For the case of
small-amplitude internal waves at a thick interface given by (20), the vertical displacement
field is given by (24). That is £(z) = —(k/w) with ¥ given by (22), normalized so that
max(€) = 1.

For moderately large amplitude waves, we assume the vertical mode structure is un-
changed from the linear theory values and so derive a formula that describes modification
in 7(x,t) from sinusoidal behaviour due to weakly nonlinear effects.

In general, the evolution equation

N + coNy + an Ny + 677333333 = 07 (41>

in which ¢g is the long wave speed from linear theory and the constants o and 3 are given
in terms of vertical integrals over the domain of &:

3 )3 dz 1 2dz
a = 2 fp /2 and 52560“5—/2
NEGRE J (&) dz

in which the primes denote z-derivatives. A generalization of these coefficient formulae
that include background vertical shear was first determined by (Benney 1966) and later
extended by (Grimshaw, Pelinovsky and Poloukhina 2002) to include higher-order nonlinear
forcing terms and allowing for a free surface. In the Boussinesq approximation, the ambient
density profile, p(z), can be taken as constant so eliminating the density from the integrals
altogether.

(42)
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Figure 9: Numerically calculated coefficients of a) a and b) § in the KdV equation computed
for the lowest mode of a shallow wave with kH = 0.1 in a fluid with ambient stratification
given by (20). The corresponding c) speed U computed for A = 0.1H and d) width A of
the wave. Values are given as a function of the relative thickness of the interface, o, for
different relative lower layer thicknesses Hy/H as indicted in a). Note, the speed and width
of the wave are shown only for Hy/H = 0.1 and 0.25, for which solitary wave solutions
exist,.

As for a one-layer fluid, the solution of (41) having no upstream or downstream dis-
placement is given by (37) except now the width and speed of the solitary wave is given

by

128
— /22 4
A o (43)
and )
U= Co <1 + gAOé) y (44)

respectively. This can be confirmed through substitution of (37) into (41).
_In particular, for a two-layer fluid, Table 1 gives § =1 — z/Hy, for 0 < z < Hy, and
=1+ 2/Hy, for —Hy < 2 < 0. So (42) gives

P L2

3 RN 1 piHy + poHo
a=—cg—+—2 and f=-c————= 45
s TR w

For a one-layer fluid (p; — 0), these reduce to a = 3¢o/2H, and 3 = ¢oH,? /6, consistent
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with the coefficients in (36). Substituting these into (43) and (44) gives the width and speed
and the solitary wave consistent with (38) and (39).
In the Boussinesq approximation, where the density difference between the upper and
lower layers is small (45) simplifies to
3 Hy— H,

a = —(Cy

1
5 m and 6 = gCOHlHQ. (46)

In particular, we see that o = 0 if H; = Hy. That is, the effect of nonlinear steepening as
it is captured by the KdV equation vanishes if the upper and lower layer depths are equal.
This is true even if the interface between the two fluids has finite thickness, as shown in
Figure 9.

Although the speed and spatial-scale of the wave changes with amplitude, the sech-
squared shape does not. However, observations show that the crests of internal solitary
waves tend to flatten as they grow to large amplitude. This effect has been captured in
the so-called extended KdV equation, which includes higher order linear and nonlinear
dispersion effects (Lee and Beardsley 1974; Lamb and Yan 1996; Grimshaw, Pelinovsky
and Poloukhina 2002).

6 WEAKLY NONLINEAR INTERNAL WAVES

In an unbounded stratified fluid internal waves can propagate vertically as well as hori-
zontally, as discussed for small-amplitude waves in section 3. Here we will examine how
the evolution of the waves changes when they have moderately large amplitude. We will
focus upon two-dimensional horizontally periodic internal waves in a uniformly stratified
Boussinesq fluid that have limited vertical extent. Unlike horizontally propagating solitary
waves which exist in steady state through a balance between nonlinear steepening and lin-
ear dispersion, we will show that weakly nonlinear effects cause the shape of the amplitude
envelope of internal waves to change, either spreading out faster than linear dispersion
predicts or narrowing and growing in amplitude.

As discussed in Section 4, the evolution of a horizontally periodic, vertically localized
wavepacket can be described in terms of the change in the amplitude envelope A(z,t)
through (48). For a wavepacket with central wavenumber ko = (ko, mo) and initial vertical
displacement field R { A(z, 0) exp[e(kox + mo2)]}, the displacement at a later time is

&(z, 2, t) = R{A(z, t)e’(koz+m02_w°t)} (47)

in which wy = w(ko, mo) is the dispersion relation given by (19) and the amplitude envelope
changes in time according to (35). In a frame of reference moving at the vertical group
speed this equation is

0A 1 0%A

el P il 48

ot 2'07% (48)
in which Z = z — ¢ t, ¢y = wy(mo) = — Nomoko/|ko[*’2, and v = wym (mo) = Noko(2mg® —

ko) /|ko[5/2.
Horizontally periodic internal waves induce a mean flow, akin to the Stokes drift of
surface waves. It turns out that the weakly nonlinear evolution of vertically propagating
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Figure 10: Numerically computed solution of (51) giving the evolution of a vertically prop-
agating internal wavepacket with relatively small initial vertical displacement amplitude,
Ap, and central vertical wavenumber a) mo = —0.5ky and b) mg = —ko, and with mod-
erately large initial amplitude and wavenumbers c¢) my = —0.5ky and d) my = —ko. The
initial amplitude envelope is a Gaussian centred at the origin with width L = 10k, . The
waves propagate upward in uniformly stratified fluid with buoyancy frequency Ny. In each
plot, horizontally offset profiles of the normalized vertical displacement are shown at the
five times indicated in a).

internal waves is determined primarily through interactions between the waves and this
mean flow, which we will denote by (u);. The mean flow acts to advect the waves hori-
zontally just as a background ambient flow would. Including the effects of this advection
is done simply by replacing x in (47) with z + (u), t. And so at leading-order, the time-
derivative of ¢ introduces a new term ko (u); . This adjusts the evolution equation (48)
for the amplitude envelope so that

0A 1 9*A
It remains to find an explicit expression for (u); in terms of the amplitude A. From the
horizontal momentum equation (11), if we expand out the material derivative and average
horizontally over one wavelength we get 0, (u); = —0, (uw); the flow accelerates due to the
divergence in the vertical flux of horizontal momentum per unit mass. In this case the flux
changes with height because the amplitude envelope changes in the vertical. Far above and
below the wavepacket there is no flux because there are no waves whereas the flux is large
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at the centre of the wavepacket. Knowing that the wavepacket moves upwards at the group
speed ¢,, we can write 0 (u); + ¢,0, (u); ~ 0. Thus we have (u); = (uw) /c,. Finally, if
we use the polarization relations in Table 2 that relate the horizontal and vertical velocity
amplitudes for vertically propagating waves to the vertical displacement, we have

2110

1
A2
[“wo ko

1 -
.= 5 Nolko[| A (50)

Putting this result into (49), we have the weakly nonlinear evolution equation for ver-
tically propagating internal wavepackets

0A 1 %A

—— =y — | APA 51

o~ 20z A (51
in which wy = Ny|ko|ko/2 is the finite-amplitude correction to the dispersion relation:

w = wy + wa|A]%. Equation (51), generally known as a “nonlinear Schrodinger equation”,
describes the evolution of finite-amplitude dispersive wavepackets.

Given an initial amplitude envelope A(z,0), (51) describes how the amplitude and phase
of the wavepacket changes in time through changes to the real and imaginary part of A(z,t).
Extracting the real part of A(z,t) exple(kox+moz—wt)] gives the vertical displacement field
¢. This is shown in Figure 10 for small and large amplitude wavepackets having relative
vertical wavenumbers of my = —0.5ky and mg = —ko. With ky > 0, the negative sign
assures that the wavepacket propagates upward.

The figure shows that wavepackets having initial maximum amplitude as small as one-
percent of the horizontal wavelength (Ay = 0.01),) undergo linear dispersion as would be
predicted by (35). The influence of the nonlinear term in (51) is evident for waves having
amplitude Ay = 0.05),. Depending upon the vertical wavenumber, the wavepacket either
narrows and grows in amplitude (mo = —0.5kg) or it broadens more quickly than linear
theory predicts (mg = —kg). In the former case the waves are said to be “modulationally
unstable” and in the latter case the waves are “modulationally stable”.

The transition from instability to stability occurs for wavepackets with mg satisfying
W (mo) = 0. Explicitly, this occurs when |mg| = |ko|/+v/2, corresponding to waves of fixed
ko moving at the fastest vertical group velocity (Sutherland 2006b).

The consequent dynamics of large amplitude internal waves is not as well captured
by (51). The growth in amplitude of modulationally unstable wavepackets means that
higher-order terms in the nonlinear Schrodinger equation, which we have neglected, have
a non-negligible contribution to the wavepacket evolution. At later times still, wave-wave
interaction give rise to superharmonic waves through what is known as parametric subhar-
monic instability (Sutherland 2006a). A detailed investigation of these weakly and fully
nonlinear dynamics upon the evolution of large-amplitude internal wavepackets remains
under investigation.

7 CONCLUSIONS

In this chapter we have attempted to draw the connection and distinctions between finite-
amplitude interfacial waves that propagate horizontally in a vertically confined domain
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and internal waves that propagate vertically in unbounded uniformly stratified fluid. The
evolution of the former is given by the KdV equation (41) whereas that of the latter is
prescribed by the nonlinear Schrédinger equation (51).

Generally, the KdV equation describes moderately long amplitude waves that have
permanent form while translating at a speed moderately larger than the speed of long
interfacial waves. Examination of this equation provides a useful starting point in under-
standing the dynamics of internal solitary waves such as those generated by tidal flows over
sills and the continental shelf. However, the equation makes approximations that assume
the amplitude is not too large. To describe internal solitary waves of large amplitude,
higher order terms can be included as in the Extended KdV equation, which predicts the
wave crests flatten (Helfrich and Melville 2006). At larger amplitude still, the solitary
waves can develop closed cores in which fluid is transported along with the wave. Such
dynamics have been described by a different approach through the solution of the Dubreil-
Jacotin-Long equation (Long 1953; Dubreil-Jacotin 1937; Brown and Christie 1998). These
considerations lie beyond the scope of the material presented here.

Generally, the nonlinear Schrédinger equation describes the influence of large-amplitude
effects upon dispersive waves. Rather than providing steady state solutions for wavepackets,
the equations predict that the amplitude envelope of the waves spread or narrow from their
initial state. Spreading, modulationally stable, waves occur if wow” > 0, in which ws is the
order amplitude-squared correction to the frequency w predicted for small-amplitude waves.
For internal waves, this occurs if the magnitude of the vertical wavenumber |mg| exceeds
|ko|/+/2 in which |ko| is the magnitude of the horizontal wavenumber. The implications of
this result remain to be explored. At first glance it would seem that large-amplitude internal
waves should break at higher levels because the amplitude decreases as the wavepacket
spreads nonlinearly. However, nonlinear effects neglected by the nonlinear Schrédinger
equation may introduce other modes of instability that could cause breaking at lower
levels. Whatever the case these results show that wave breaking in the atmosphere assessed
by extrapolation of linear theory, likely incorrectly predicts where momentum is actually
deposited by the waves.
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