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Abstract

Humans have been shown to adapt to the temporal statistics of timing tasks so as to optimize the accuracy of their
responses, in agreement with the predictions of Bayesian integration. This suggests that they build an internal
representation of both the experimentally imposed distribution of time intervals (the prior) and of the error (the loss
function). The responses of a Bayesian ideal observer depend crucially on these internal representations, which have only
been previously studied for simple distributions. To study the nature of these representations we asked subjects to
reproduce time intervals drawn from underlying temporal distributions of varying complexity, from uniform to highly
skewed or bimodal while also varying the error mapping that determined the performance feedback. Interval reproduction
times were affected by both the distribution and feedback, in good agreement with a performance-optimizing Bayesian
observer and actor model. Bayesian model comparison highlighted that subjects were integrating the provided feedback
and represented the experimental distribution with a smoothed approximation. A nonparametric reconstruction of the
subjective priors from the data shows that they are generally in agreement with the true distributions up to third-order
moments, but with systematically heavier tails. In particular, higher-order statistical features (kurtosis, multimodality) seem
much harder to acquire. Our findings suggest that humans have only minor constraints on learning lower-order statistical
properties of unimodal (including peaked and skewed) distributions of time intervals under the guidance of corrective
feedback, and that their behavior is well explained by Bayesian decision theory.
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Introduction

The ability to estimate motor-sensory time intervals in the

subsecond range and react accordingly is fundamental in many

behaviorally relevant circumstances [1], such as dodging a blow or

assessing causality (‘was it me producing that noise?’). Since

sensing of time intervals is inherently noisy [2], it is typically

advantageous to enhance time estimates with previous knowledge

of the temporal context. It has been shown in various timing

experiments that humans can take into account some relevant

temporal statistics of a task according to Bayesian decision theory,

such as in sensorimotor coincidence timing [3], tactile simultaneity

judgements [4], planning movement duration [5] and time

interval estimation [6–8].

Most of these studies [3,4,6,8] exposed the participants to time

intervals whose duration followed some simple distribution (e.g. a

Gaussian or a uniform distribution), and then assumed that the

subjects’ internal representation of it corresponded to the

experimental distribution. As a more realistic working hypothesis,

we can expect the observers to have acquired, after training, an

internal representation of the statistics of the temporal intervals

which is an approximation of the true, objective experimental

distribution. It can be argued that this approximation in most cases

would be ‘similar enough’ to the true distribution, so that in

practice the distinction between subjective and objective distribu-

tion is an unnecessary complication. This is not exact though, first

of all because it is unknown whether the similarity assumption

would hold for complex temporal distributions, and secondly

because the specific form of the approximation can lead to

observable differences in behavior even for simple cases (see

Figure 1).

We propose that understanding how humans learn and

approximate temporal statistics in a given context can help

explaining observed temporal biases and illusions [9]. Previous

studies have shown that human observers exhibit specific

idiosyncrasies in judging simultaneity and temporal order of

stimuli after repeated exposure to a specific inter-stimulus lag

(temporal recalibration) [4,10,11], in encoding certain kinds of

temporal distributions in the subsecond range [12] or in

estimating durations of very rare stimuli (oddballs) [13], so it is

worth asking whether people are able to acquire an internal

representation of complex (e.g. very peaked, bimodal) distribu-

tions of inter-stimulus intervals in the first place, and what are

their limitations.
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Bayesian decision theory (BDT) provides a neat and successful

framework for representing the internal beliefs of an ideal observer

in terms of a (subjective) prior distribution, and it gives a

normative account on how the ideal observer should take action

[14]. A large number of behavioral studies are consistent with a

Bayesian interpretation [15–17] and some results suggest that

human subjects build internal representations of priors and

likelihoods [15,18,19] or likelihood and loss functions [20]. We

therefore adopted BDT as a framework to infer the subjects’

acquired beliefs about the experimental distributions. However,

the behavior of a Bayesian ideal observer depends crucially not

only on the prior, but also on the likelihoods and the loss function,

with an underlying degeneracy, i.e. distinct combinations of

distributions can lead to the same empirical behavior [21]. It

follows that a proper analysis of the internal representations

cannot be separated from an appropriate modelling of the

likelihoods and the loss function as well.

With this in mind, we analyzed the timing responses of human

observers for progressively more complex temporal distributions of

durations in a motor-sensory time interval reproduction task. We

provided performance feedback (also known as ‘knowledge of

results’, or KR) on a trial-by-trial basis, which constrained the loss

function, speeded up learning and allowed the subjects to adjust

their behavior, therefore providing an upper bound on human

performance [22,23]. We carried out a full Bayesian model

comparison analysis among a discrete set of candidate likelihoods,

priors and loss functions in order to find the observer model most

supported by the data, characterizing the behavior of each

individual subject across multiple conditions. Having inferred the

form of the likelihoods and loss functions for each subject, we

could then perform a nonparametric reconstruction [24] of what

the subjects’ prior distributions would look like under the

assumptions of our framework and we compared them with the

experimental distributions. The inferred priors suggest that people

learn smoothed approximations of the experimental distributions

which take into account not only mean and variance but also

higher-order statistics, although some complex features (kurtosis,

bimodality) seem to deviate systematically from those of the

experimental distribution.

Results

Subjects took part in a time interval reproduction task with

performance feedback (trial structure depicted in Figure 2 top; see

Methods for full details). On each trial subjects clicked a mouse

button and, after a time interval (x ms) that could vary from trial-

to-trial, saw a yellow dot flash on the screen. They were then

required to hold down the mouse button to reproduce the

perceived interval between the original click and the flash. The

duration of this mouse press constituted their response (r ms) for

that trial. Subjects received visual feedback on their performance,

with an error bar that was displayed either to the left or right of a

central zero-error line, depending on whether their response was

shorter or longer than the true interval duration. In different

experimental blocks we varied both the statistical distribution of

the intervals, p(x), and the nature of the performance feedback,

i.e. mapping between the interval/response pair and the error

display, f (x,r), relative to the zero-error line. For each experi-

mental block, subjects first performed training sessions until their

performance was stable (around 500 to 1500 trials), followed by

two test sessions (about 500 trials per session). Testing with a block

was completed before starting a new one.

Different groups of subjects took part in five experiments, whose

setup details are summarized in Table 1 (see also Methods). In

brief, Experiment 1 represented a basic test for the experimental

paradigm and modelling framework with simple (Uniform)

distributions over different ranges. Experiment 2 compared

subjects’ responses in a simple condition (Uniform) vs a complex

one (Peaked, one interval was over-represented), over the same

range of intervals. Experiment 3 verified the effect of feedback on

subjects’ responses by imposing a different error mapping f (x,r).

Experiment 4 tested subjects in a more extreme version of the

Peaked distribution. Experiment 5 verified the limits of subjects’

capability of learning with bimodal distributions of intervals.

We first present the results of the first two experiments in a

qualitative manner, and then describe a quantitative model.

Results of the other three experiments that test specific aspects

of the model or more complex distributions are presented

thereafter.

Experiment 1: Uniform distributions over different ranges
In the first experiment the distribution of time intervals

consisted of a set of six equally spaced discrete times with equal

probability according to either a Short Uniform (450–825 ms) or

Long Uniform (750–1125 ms) distribution. The order of these

blocks was randomized across subjects. The feedback followed a

Skewed error mapping fSk!
r{x

r
. The ‘artificial’ response-

dependent asymmetry in the Skewed mapping was chosen to test

whether participants would integrate the provided feedback error

into their decision process, as opposed to other possibly more

natural forms of error, such as the Standard error fSt!r{x or

the Fractional error fFr!
r{x

x
(see later, Bayesian model

comparison).

We examined the mean bias in the response (mean reproduc-

tion interval minus actual interval, �rr{x, also termed ‘constant

error’ in the psychophysical literature), as a function of the actual

interval (Figure 3 top). Subjects’ responses showed a regression to

the mean consistent with a Bayesian process that integrates the

prior with sensory evidence [4,6,8,15]. That is, little bias was seen

for intervals that matched the mean of the prior (637.5 ms for

Author Summary

Human performance in a timing task depends on the
context of recently experienced time intervals. In fact,
people may use prior experience to improve their timing
performance. Given the relevance of time for both sensing
and acting in the world, how humans learn and represent
temporal information is a fundamental question in
neuroscience. Here, we ask subjects to reproduce the
duration of time intervals drawn from different distribu-
tions (different temporal contexts). We build a set of
models of how people might behave in such a timing task,
depending on how they are representing the temporal
context. Comparison between models and data allows us
to establish that in general subjects are integrating task-
relevant temporal information with the provided error
feedback to enhance their timing performance. Analysis of
the subjects’ responses allows us to reconstruct their
internal representation of the temporal context, and we
compare it with the true distribution. We find that with the
help of corrective feedback humans can learn good
approximations of unimodal distributions of time intervals
used in the experiment, even for skewed distributions of
durations; on the other hand, under similar conditions, we
find that multimodal distributions of timing intervals are
much harder to acquire.

Internal Representations Calibrate Interval Timing
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Figure 1. Comparison of response profiles for different ideal observers in the timing task. The responses of four different ideal observers
(columns a–d) to a discrete set of possible stimuli durations are shown (top row); for visualization purpose, each stimulus duration in this plot is
associated with a specific color. The behavior crucially depends on the combination of the modelled observer’s temporal sensorimotor noise
(likelihood), prior expectations and loss function (rows 2–4); see Figure 2 bottom for a description of the observer model. For instance, the observer’s
sensorimotor variability could be constant across all time intervals (column a) or grow linearly in the interval, according to the ‘scalar’ property of
interval timing (column b–d). An observer could be approximating the true, discrete distribution of intervals as a Gaussian (columns a–b) or with a
uniform distribution (columns c–d). Moreover, the observer could be minimizing a typical quadratic loss function (columns a–c) or a skewed cost
imposed through an external source of feedback (column d). Yellow shading highlights the changes of each model (column) from model (a). All
changes to the observer’s model components considerably affect the statistics of the predicted responses, summarized by response bias, i.e. average
difference between the response and true stimulus duration, and standard deviation (bottom two rows). For instance, all models predict a central
tendency in the response (that is, a bias that shifts responses approximately towards the center of the interval range), but bias profiles show
characteristic differences between models.
doi:10.1371/journal.pcbi.1002771.g001

Internal Representations Calibrate Interval Timing
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Short Uniform, red points, and 937.5 ms for Long Uniform,

green points). However, at other intervals a bias was seen towards

the mean interval of that experimental block, with subjects

reporting intervals longer than the mean as shorter than they

really were and conversely intervals shorter than the mean as

being longer than they really were. Moreover, this bias increased

almost linearly with the difference between the mean interval and

the actual interval. Qualitatively, this bias profile is consistent

with most reasonable hypotheses for the prior, likelihoods and

loss functions of an ideal Bayesian observer (even though details

may differ).

The standard deviation of the response (Figure 3 bottom)

showed a roughly linear increase with interval duration, in

agreement with the ‘scalar property’ of interval timing [25],

according to which the variability in a timing task grows in

proportion to the interval duration.

These results qualitatively suggest that the temporal context

influences subjects’ performance in the motor-sensory timing task

in a way which may be compatible with a Bayesian interpretation,

Figure 2. Time interval reproduction task and generative model. Top: Outline of a trial. Participants clicked on a mouse button and a yellow
dot was flashed x ms later at the center of the screen, with x drawn from a block-dependent distribution (estimation phase). The subject then
pressed the mouse button for a matching duration of r ms (reproduction phase). Performance feedback was then displayed according to an error
map f (x,r). Bottom: Generative model for the time interval reproduction task. The interval x is drawn from the probability distribution p(x) (the
objective distribution). The stimulus induces in the observer the noisy sensory measurement y with conditional probability density ps(yDx; ws) (the
sensory likelihood), with ws a sensory variability parameter. The action u subsequently taken by the ideal observer is assumed to be the ‘optimal’
action u� that minimizes the subjectively expected loss (Eq. 1); u is therefore a deterministic function of y, u~u�(y). The subjectively expected loss

depends on terms such as the prior q(x) and the loss function (squared subjective error map ~ff (x,r)), which do not necessarily match their objective
counterparts. The chosen action is then corrupted by motor noise, producing the observed response r with conditional probability density
pm(rDu; wm) (the motor likelihood), where wm is a motor variability parameter.
doi:10.1371/journal.pcbi.1002771.g002

Internal Representations Calibrate Interval Timing
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and in agreement with previous work which considered purely

sensory intervals and uniform distributions [6,8,26].

Experiment 2: Uniform and Peaked distributions on the
same range
As in the first experiment six different equally-spaced intervals

were used, with two different distributions. However, in this

experiment both blocks had the same range of intervals (Medium:

600–975 ms). In one block (Medium Peaked) one of the intervals

(termed the ‘peak’) occurred more frequently than the other 5

intervals, that were equiprobable. That is, the 675 ms interval

occurred with p~7=12 with the other 5 intervals occurring each

with p~1=12. In the other block (Medium Uniform) the 6

intervals were equiprobable. The feedback gain for both blocks

was again the Skewed error map fSk!
r{x

r
.

Examination of the responses showed a central tendency as

encountered in the previous experiment (Figure 4 top). However,

despite the identical range of intervals in both blocks, subjects were

sensitive to the relative probability of the intervals [27]. In

particular, the responses in the Peaked block (light blue points)

appeared to be generally shifted towards shorter durations and this

shift was interval dependent (see Figure 5). This behavior is

qualitatively consistent with a simple Bayesian inference process,

according to which the responses are ‘attracted’ towards the regions

of the prior distribution with greatest probability mass. Intuitively,

the average (‘global’) shift of responses can be thought of as arising

from the shift in the distribution mean, from the Uniform

distribution (mean 787.5 ms) to the Peaked distribution (mean

731.3 ms); whereas interval-dependent (‘local’) effects are a

superimposed modulation by the probability mass assignments of

the distribution. This is only a simplified picture, as the biases

depend on a nonlinear inference process, which is also influenced by

other details of the Bayesian model (such as the loss function), but

the qualitative outcome is likely to be similar in many relevant cases.

The standard deviation of the responses showed a significant

decrease in variability around the peak for the Peaked condition

(Figure 4 bottom; two-sample F-test pv0:001). This effect could
be simply due to practice as subjects received feedback more often

at peak intervals, however the local modulation of bias previously

described (Figure 5) suggests a Bayesian interpretation. In fact,

because of the local ‘attraction’ effect, interval durations close to

the peak would elicit responses that map even closer to it, therefore

compressing the perceptual variability, an example of bias-

variance trade-off [6].

The results of the second experiment show that people take into

account the different nature of the two experimental distributions,

in agreement with previous work that found differential effects in

temporal reproduction for skewed vs uniform distributions of

temporal intervals on a wider, suprasecond range [27]. The

performance of the subjects in the two blocks is consistent with a

Bayesian ‘attraction’ in the response towards the intervals with

higher prior probability mass. Moreover, although the average

negative shift in the response observed in the Peaked condition

versus the Uniform one might be compatible with a temporal

recalibration effect that shortens the perceived duration between

action and effect [11,28,29], the interval-dependent bias modula-

tion (Figure 5) and the reduction in variability around the peak

(Figure 4 bottom) suggest there may instead be in this case a

Bayesian explanation.

In order to address more specific, quantitative questions about

our results we set up a formal framework based on a Bayesian

observer and actor model.

Bayesian observer model
We modelled the subjects’ performance with a family of

Bayesian ideal observer (and actor) models which incorporated

both the perception (time interval estimation) and action

(reproduction) components of the task; see Figure 2 (bottom) for

a depiction of the generative model of the data. We assume that on

a given trial a time interval x is drawn from a probability

distribution p(x) (the experimental distribution) and the observer

makes an internal measurement y that is corrupted by sensory

noise according to the sensory likelihood ps(yDx; ws), where ws is a

parameter that determines the sensory (estimation) variability.

Subjects then reproduce the interval with a motor command of

duration u. This command is corrupted by motor noise, producing

the response duration r – the observed reproduction time interval

– with conditional probability density pm(rDu; wm) (the motor

likelihood), with wm a motor (reproduction) variability parameter.

Subjects receive an error specified by a mapping f (x,r) and we

assume they try to minimize a (quadratic) loss based on this error.

Table 1. Summary of experimental layout for all experiments.

Experiment Subjects Interval range Distribution Peak probability Feedback

1 n~4 Short Uniform { Skewed

Long Uniform {

2 n~6 Medium Uniform { Skewed

Medium Peaked 7/12

3 n~6 Medium Uniform { Standard

4 n~3 Medium High-Peaked 19/24 Standard

5 a n~4 Medium Bimodal 1/3 and 1/3 Standard

5 b n~4 Wide Wide-Bimodal See text Standard

Each line represents an experimental block, which are grouped by experiment; subjects in Experiment 1 and 2 took part in two blocks, whereas in Experiment 5 two
distinct groups of subjects took part in the two blocks. For each block, the table reports number of subjects (n), interval ranges, type of distribution, probability of the
‘peak’ (i.e. most likely) intervals and shape of performance feedback. Tested ranges were Short (450–825 ms), Medium (600–975 ms), Long (750–1125 ms) and Wide
(450–1125 ms), each covered by 6 intervals (10 for the Wide block) separated by 75 ms steps. Distributions of intervals were Uniform (1/6 probability per interval),
Peaked/High-peaked (the ‘peak’ interval at 675 ms appeared with higher probability than non-peak stimuli, which were equiprobable), Bimodal (intervals at 600 and
975 ms appeared with higher probability) and Wide-Bimodal (intervals at 450–600 ms and 975–1125 ms appeared with higher probability). The Skewed feedback takes

the form !
r{x

r
whereas the Standard feedback !r{x, where r is the reproduced duration and x is the target interval in a trial.

doi:10.1371/journal.pcbi.1002771.t001

Internal Representations Calibrate Interval Timing
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In our model we assume that subjects develop an internal

estimate of both the experimental distribution and error mapping

(the feedback associated with a response r to stimulus x), which

leads to the construction of a (subjective) prior, q(x), and subjective

error mapping ~ff (x,r); the latter is then squared to obtain the loss

function. This allows the prior and subjective error mapping to

deviate from their objective counterparts, respectively p(x) and

f (x,r).

Following Bayesian decision theory, the ‘optimal’ action u�(y) is

calculated as the action u that minimizes the subjectively expected loss:

u�(y)~arg min
u

ð

ps(yDx; ws)q(x)pm(rDu; wm)~ff
2(x,r)dxdr ð1Þ

where the integral on the right hand side is proportional to the

subjectively expected loss. Combining Eq. 1 with the generative model

of Figure 2 (bottom) we computed the distribution of responses of an

ideal observer for a target time interval x, integrating over the hidden

internal measurement y which was not directly accessible in our

experiment.

Therefore the reproduction time r of an ideal observer, given

the target interval x, is distributed according to:

p(rDx; ws,wm)~

ð

ps(yDx; ws)pm(rDu
�(y); wm)dy: ð2Þ

Eqs. 1 and 2 are the key equations that allow us to simulate our

task, in particular by computing the mean response bias and

standard deviation of the response for each interval (Section 1 in

Text S1). Eq. 1 represents the internal model and deterministic

decision process adopted by the subject whereas Eq. 2 represents

probabilistically the objective generative process of the data.

Notice that the experimental distribution p(x) and objective error

mapping f (x,r) do not appear in any equation: the distribution of

responses of ideal observers only depends on their internal

representations of prior and loss function.

Figure 3. Experiment 1: Short Uniform and Long Uniform blocks. Very top: Experimental distributions for Short Uniform (red) and Long
Uniform (green) blocks, repeated on top of both columns. Left column: Mean response bias (average difference between the response and true
interval duration, top) and standard deviation of the response (bottom) for a representative subject in both blocks (red: Short Uniform; green: Long
Uniform). Error bars denote s.e.m. Continuous lines represent the Bayesian model ‘fit’ obtained averaging the predictions of the most supported
models (Bayesian model averaging). Right column: Mean response bias (top) and standard deviation of the response (bottom) across subjects in both
blocks (mean+ s.e.m. across subjects). Continuous lines represent the Bayesian model ‘fit’ obtained averaging the predictions of the most supported
models across subjects.
doi:10.1371/journal.pcbi.1002771.g003

Internal Representations Calibrate Interval Timing
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Eqs. 1 and 2 describe a family of Bayesian observer models, a

single Bayesian ideal observer is fully specified by picking (i) a noise

model for the sensory estimation process, ps(yDx; ws); (ii) a noise

model for the motor reproduction process pm(rDu; wm); (iii) the

form of the prior q(x); and (iv) the loss function ~ff 2(x,r) (Figure 6

and Methods). To limit model complexity, in the majority of our

analyses we used the same likelihood functions (ps, pm and their

parameters ws, wm) for both the generative model (Eq. 2) and the

internal model (Eq. 1). Analogously, for computational reasons in

our basic model we assumed a quadratic exponent for the loss

function (Eq. 1); in a subsequent analysis we relaxed this

requirement (Section 2 in Text S1).

Bayesian model comparison
To study the nature of the internal model adopted by the

participants, we performed a full Bayesian model comparison over

the family of Bayesian ideal observer models. For each participant

we assumed that the sensory and motor noise, the approximation

strategy for the priors, and the loss function were shared across

different experimental blocks. The model comparison was

performed over a discrete set of model components, that is,

possible choices for the priors, loss functions and shape of

likelihoods (Figure 6). In particular, priors and loss functions did

not have continuous parameters, as a parametric model would

likely be ambiguous or hard to interpret, with multimodal

posterior distributions over the parameters (as multiple combina-

tions of likelihoods, prior and cost function can make identical

predictions). Instead, we considered a finite number of parameter-

free models of loss function, prior and shape of likelihoods, leaving

only two continuous parameters for characterizing the sensory and

motor variability.

Both sensory and motor noise were modelled with Gaussian

distributions whose means were centered on the interval and

whose standard deviations could either be constant or ‘scalar’, that

is, grow linearly with the interval (Figure 6 i and ii). We used two

parameters, ws and wm, which represent the coefficient of

variation of the subject’s sensory and motor noise. For the scalar

Figure 4. Experiment 2: Medium Uniform and Medium Peaked blocks. Very top: Experimental distributions for Medium Uniform (light
brown) and Medium Peaked (light blue) blocks, repeated on top of both columns. Left column: Mean response bias (average difference between the
response and true interval duration, top) and standard deviation of the response (bottom) for a representative subject in both blocks (light blue:
Medium Uniform; light brown: Medium Peaked). Error bars denote s.e.m. Continuous lines represent the Bayesian model ‘fit’ obtained averaging the
predictions of the most supported models (Bayesian model averaging). Right column: Mean response bias (top) and standard deviation of the
response (bottom) across subjects in both blocks (mean + s.e.m. across subjects). Continuous lines represent the Bayesian model ‘fit’ obtained
averaging the predictions of the most supported models across subjects.
doi:10.1371/journal.pcbi.1002771.g004

Internal Representations Calibrate Interval Timing
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case this simply specifies the coefficient of proportionality of the

standard deviation with respect to the mean, whereas in the

constant case it specifies the proportion of noise with respect to a

fixed interval (787.5 ms).

We considered three different possible subjective error metrics

corresponding to the Skewed error ~ffSk(x,r)!
r{x

r
(the error map

we provided experimentally), the Standard error ~ffSt(x,r)!r{x,

and a Fractional error ~ffFr(x,r)!
r{x

x
(Figure 6 iv), which were

then squared to obtain the loss function (see also Methods). Note

that scaling these mappings does not change the optimal actions

and hence the model selection process.

We compared different approximation schemes for the priors,

such as the true discrete distribution (Figure 6 iii, a) or a single

Gaussian whose mean and standard deviation matched those of

the true prior (b). We also considered two smoothed versions of the

experimental distribution with a weak (c) and strong (d) smoothing

parameter, or some other block-dependent approximations, e.g.

for the Uniform blocks we considered a uniform distribution over

the stimulus range (e); see Methods for a full description. To

constrain the model selection process, we assumed that subjects

adopted a consistent approximation scheme across blocks.

For each participant we computed the support for each model

based on the psychophysical data, that is the posterior probability

of the model, Pr(model| data). Assuming an a priori indifference

among the models, this corresponds (up to a normalization factor)

to the model marginal likelihood Pr(data| model), which was

obtained by numerical integration over the two-dimensional

parameter space (ws and wm).

We then calculated the Bayesian model average for the response

mean bias and standard deviation, shown by the continuous lines

in Figure 3 and 4. Note that the Bayesian model ‘fits’ are obtained

by computing the marginal likelihood of the models and

integrating the model predictions over the posterior of the

parameters (model averaging), with no parameter fitting. The

mean biases fits show a good quantitative match with the group

averages (R2
§0:95 for all blocks); the standard deviations are

typically more erratic and we found mainly a qualitative

agreement, as observed in previous work [6].

For each participant of Experiments 1 and 2 we computed the

most probable (i) sensory and (ii) motor likelihoods, (iii) priors and

(iv) loss function (Table S1). The model comparison confirmed

that the best noise models were represented by the ‘scalar’

variability, which had relevant support for both the sensory

component (7 subjects out of 10) and the motor component (8

subjects out of 10). This result is consistent with previous work in

both the sensory and motor domain [5,6,25,30]. The most

supported subjective error map was the Skewed error (7 subjects

out of 10), which matched the feedback we provided experimen-

tally. The priors most supported by the data were typically

smooth, peaked versions of the experimental distributions. In

particular, according to the model comparison, almost all subjects

(9 out of 10) approximated the discrete uniform distributions in the

Uniform blocks with normal distributions (same mean and

variance as the true distribution; Figure 6 iii top, b). However,

in Experiment 2 most people (5 out of 6) seemed to approximate

the experimental distribution in the Peaked block not with a

standard Gaussian, but with a skewed variant of a normal

distribution (Figure 6 iii bottom, d, f and g), suggesting that their

Figure 5. Experiment 2: Difference in response between Medium Peaked and Medium Uniform blocks. Difference in response between
the Medium Peaked and the Medium Uniform conditions as a function of the actual interval, averaged across subjects (+1 s.e.m.). The experimental
distributions (light brown: Medium Uniform; light blue: Medium Peaked) are plotted for reference at bottom of the figure. The dashed black line
represents the average response shift (difference in response between blocks, averaged across all subjects and stimuli), with the shaded area
denoting+ s.e.m. The average response shift is significantly different from zero ({32:2+ 7:9 ms; two-sample t-test pv10{7), meaning that the two
conditions elicited consistently different performance. Additionally, the responses were subject to a ‘local’ (i.e. interval-dependent) modulation
superimposed to the average shift, that is, intervals close to the peak of the distribution (675 ms) were attracted towards it, in addition to the average
shift, while intervals far away from the peak were less affected. (*) The response shift at 600 ms and 825 ms is significantly different from the average
response shift; pv0:01.
doi:10.1371/journal.pcbi.1002771.g005
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responses were influenced by higher order moments of the

true distribution and not just the mean and variance (see

Discussion).

For Experiment 2 we also relaxed some constraints on the

priors, allowing the model selection to pick a Medium Uniform

prior for the Medium Peaked block and vice versa. Nevertheless,

the model comparison showed that the most supported models

were still the ones in which the priors matched the block

distribution, supporting our previous findings that subjects’

responses were consistent with the temporal context and changed

when switching from one block to another (as visible in Figure 4).

Nonparametric reconstruction of the priors
To study in detail the internal representations, we relaxed the

constraint on the priors. Rather than choosing from a fixed set of

candidate priors (Figure 6 iii), we allowed the prior to vary over a

much wider class of smooth, continuous distributions. We assumed

that the noise models and loss function emerging from the model

comparison were a good description of the subjects’ decision

making and sensorimotor processing in the task. We therefore

fixed these components of the observer’s model and inferred

nonparametrically, on an individual basis, the shape of the priors

most compatible with the measured responses (Figure 7; see

Methods for details).

Examination of the recovered priors shows that the subjective

distributions were significantly different from zero only over the

range corresponding to the experimental distribution, with only

occasional tails stretching outside the interval range (e.g. Figure 7

bottom left). This suggests that in general people were able to

localize the stimulus range in the blocks. The priors did not

typically take a bell-like shape, but rather we observed a more or

less pronounced peak at the mean of the true distribution, with the

remaining probability mass spread over the rest of the range.

Interestingly, the group averages for the Uniform priors over the

Short, Medium and Long ranges (Figure 7 top right, both, and

bottom right, light brown) exhibit very similar, roughly symmet-

rical shapes, shifted over the appropriate stimulus range.

Conversely, the Peaked prior (Figure 7 bottom right, light blue)

had a distinct, skewed shape.

To compare the inferred priors with the true distribution, we

calculated their distribution moments (Table 2). We found that the

first three moments of the inferred priors (in the table reported as

mean, standard deviation and skewness) were statistically indistin-

guishable from those of the true distributions for all experimental

conditions (Hotelling’s multivariate one-sample T2 test consider-

ing the joint distribution of mean, standard deviation and skewness

against the true values; pw0:45 for all blocks). This result

confirmed the previously stated hypothesis that participants had

Figure 6. Bayesian observer and actor model components. Candidate (i) sensory and (ii) motor likelihoods, independently chosen for the
sensory and motor noise components of the model. The likelihoods are Gaussians with either constant or ‘scalar’ (i.e. homogeneous linear) variability.
The amount of variability for the sensory (resp. motor) component is scaled by parameter ws (resp. wm). iii) Candidate priors for the Medium Uniform
(top) and Medium Peaked (bottom) blocks. The candidate priors for the Short Uniform (resp. Long Uniform) blocks are identical to those of the
Medium Uniform block, shifted by 150 ms in the negative (resp. positive) direction. See Methods for a description of the priors. iv) Candidate
subjective error maps. The graphs show the error as a function of the response duration, for different discrete stimuli (drawn in different colors). From

top to bottom: Skewed error ~ffSk(r,x)!
r{x

r
; Standard error ~ffSt(r,x)!r{x; and Fractional error ~ffFr(r,x)!

r{x

x
. The scale is irrelevant, as the model is

invariant to rescaling of the error map. The squared subjective error map defines the loss function (as per Eq. 1).
doi:10.1371/journal.pcbi.1002771.g006
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developed an internal representation which included higher order

moments and not just the mean and variance of the experimental

distribution. However, when including the fourth moment

(kurtosis) in the analysis, we observed a statistically significant

deviation of the recovered priors with respect to the true

distributions (Hotelling’s T2 test with the joint distribution of the

first four moments; pv10{4 for all blocks); in particular, the

inferred priors seem to have more pronounced peaks and/or

heavier tails. First of all, note that the heightened kurtosis is not an

artifact due to the averaging process across subjects or the

sampling process within subjects, as we averaged the moments

computed for each sampled distribution (see Methods) rather than

computing the moments of the average distribution. In other

words, all recovered priors are (on average) heavy tailed, it’s not

just the mean prior that it is ‘accidentally’ heavy tailed as a mixture

of light-tailed distributions. So this result could mean that the

subjects’ internal representations are actually heavy-tailed, for

instance to allow for unexpected stimuli. However, there could be

a simpler explanation that the presence of outliers arise from

occasional trivial mistakes of the participants. We, therefore,

considered a straightforward extension of our model which added

the possibility of occasional ‘lapses’ with a lapse rate l, where the

response in a lapse trial is simply modelled as a uniform

distribution over a wide range of intervals (Section 3 in Text

S1). In terms of marginal likelihood, generally the models with

lapse performed better than the original models, but with no

qualitative difference in the preferred model components. Cru-

cially, we did not observe a significant change in the kurtosis of the

recovered priors, ruling out the possibility that the heightened

kurtosis had been caused by trivial outliers.

Our analysis therefore showed that, according to the inferred

priors, people generally acquired internal representations that

were smooth, heavy-tailed approximations to the experimental

distributions of intervals, in agreement up to the first three

moments.

Experiment 3: Effect of the shape of feedback on the loss
function
In our ideal observer model we compared three candidate loss

functions: Skewed, Standard and Fractional (Figure 6 iv). The

results of the model comparison in the first two experiments with

Skewed feedback showed that there was a good match between

experimentally provided feedback and subjective error metric.

However, we could not rule out the possibility, albeit unlikely, that

participants were ignoring the experimental feedback and

following an internal error signal that just happened to be similar

in shape to the Skewed error. We therefore performed an

additional experiment to verify that subjects behavior is driven by

the feedback provided.

We again used a Medium Uniform block but now with Standard

error f (x,r)!r{x as feedback (see Figure S5 in Text S2). The

model comparison for this group showed that the responses of 4

subjects out of 6 were best explained with a Standard loss function.

Moreover, no subject appeared to be using the Skewed loss function

(Table S1). These results confirm that most people correctly

integrate knowledge of results with sensory information in order to

minimize the average (squared) error, or an empirically similar

metric. Furthermore, all inferred individual priors showed a

remarkable agreement with a smoothed approximation of the

experimental distribution of intervals (Figure 8 top), suggesting that

the Standard error feedback may be easier to use for learning. As in

the previous experiments, the average moments of the inferred

priors (up to skewness) were statistically indistinguishable from those

of the true distribution, with a significant difference in the kurtosis

(Table 3 left; Hotelling’s T2 test, first three moments: pw0:95; first

four moments: pv10{7).

Figure 7. Nonparametrically inferred priors (Experiment 1 and 2). Top row: Short Uniform (red) and Long Uniform (green) blocks. Bottom
row: Medium Uniform (light brown) and Medium Peaked (light blue) blocks. Left column: Nonparametrically inferred priors for representative
participants. Right column: Average inferred priors. Shaded regions are +1 s.d. For comparison, the discrete experimental distributions are plotted
under the inferred priors.
doi:10.1371/journal.pcbi.1002771.g007
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Experiment 4: High-Peaked distribution
In the Peaked block we did not observe any significant

divergence from the Bayesian prediction. However, the ratio of

presentations of ‘peak’ intervals (675 ms) to the others was low

(1.4) and possibly not enough to induce other forms of temporal

adaptation [29,31]. To examine whether we might see deviations

from Bayesian integration for larger ratios we therefore tested

another group of subjects on a more extreme variant of the Peaked

distribution in which the peak stimulus had a probability of p&0:8
and therefore a ratio of about 4.0. We provided feedback through

the Standard error mapping, as the previous experiment had

showed that subjects can follow it at least as well as the Skewed

mapping.

Due to the large peak interval presentation frequency we had

fewer test data points in the model fitting. Therefore, we

constrained the model comparison by only considering the

Standard loss in order to prevent the emergence of spurious

model components capturing random patterns in the data. We

found that the recovered internal priors were in good qualitative

agreement with the true distribution, with statistically indistin-

Table 2. Main statistics of the experimental distributions and nonparametrically inferred priors (Experiment 1 and 2; Skewed
feedback).

Short Uniform Long Uniform

Objective Subjective Objective Subjective

Mean (ms) 637.5 644.2 + 12.8 937.5 929.9 + 19.6

Std (ms) 128.1 117.4 + 13.3 128.1 131.2 + 16.9

Skewness 0 20.17 + 0.24 0 20.12 + 0.41

Ex. Kurtosis 21.27 0.86 + 1.24 21.27 0.82 + 0.98

Medium Uniform Medium Peaked

Objective Subjective Objective Subjective

Mean (ms) 787.5 805.7 + 27.4 731.3 724.1 + 24.0

Std (ms) 128.1 130.4 + 23.5 106.6 110.13 + 18.5

Skewness 0 20.16 + 0.41 1.14 0.78 + 0.42

Ex. Kurtosis 21.27 0.80 + 1.44 0.09 2.20 + 2.39

Comparison between the main statistics of the ‘objective’ experimental distributions and the ‘subjective’ priors nonparametrically inferred from the data. The subjective
moments are computed by averaging the moments of sampled priors pooled from all subjects (+1 s.d.); see Figure 7, right column and Methods for details. In statistics,
the excess kurtosis is defined as kurtosis {3, such that the excess kurtosis of a normal distribution is zero. Heavy tailed distributions have a positive excess kurtosis.
doi:10.1371/journal.pcbi.1002771.t002

Figure 8. Nonparametrically inferred priors (Experiment 3 and 4). Top row: Medium Uniform (light brown) block. Bottom row: Medium High-
Peaked (dark blue) block. Left column: Nonparametrically inferred priors for representative participants. Right column: Average inferred priors. Shaded
regions are +1 s.d. For comparison, the discrete experimental distributions are plotted under the inferred priors.
doi:10.1371/journal.pcbi.1002771.g008

Internal Representations Calibrate Interval Timing

PLOS Computational Biology | www.ploscompbiol.org 11 November 2012 | Volume 8 | Issue 11 | e1002771



guishable means (Figure 8 bottom, and Table 3; one sample two-

tailed t-test pw0:90). When variance and higher moments were

included in the analysis, though, the distributions were signifi-

cantly different (Hotelling’s T2 test, mean and variance: pv0:05;

first three moments: pv0:01; first four moments: pv10{7)

suggesting that the distribution may have been ‘too peaked’ to

be learnt exactly; see Discussion. Nevertheless, the observed biases

of the responses were well explained by the basic Bayesian models

(group mean: R2
~0:95), and the standard deviations were in

qualitative agreement with the data (Figure S6 in Text S2).

Experiment 5: Bimodal distributions
Our previous experiments show that people are able to learn

good approximation of flat or unimodal distributions of intervals

relatively quickly (a few sessions), under the guidance of corrective

feedback. Previous work in sensorimotor learning [15] and motion

perception [32] has shown that people can learn bimodal

distributions. Whether the same is attainable for temporal

distributions is unclear; a recent study of time interval reproduc-

tion [27] obtained less definite results with a bimodal ‘V-shaped’

distribution, although training might have been too short, as

subjects were exposed only to 120 trials in total and without

performance feedback.

To examine whether subjects could easily learn bimodality of a

temporal distribution with the help of feedback we tested two new

groups of subjects on bimodal distributions of intervals on a

Medium range (600–975 ms, as before) and on a Wide range

(450–1125 ms), providing in both cases Standard feedback. In the

Medium Bimodal block the intervals at 600 and 975 ms had each

probability p~4=12, whereas the other four middle intervals (675,

750, 825, 900 ms) had each probability p~1=12. In the Wide

Bimodal block the six ‘extremal’ intervals (450, 525, 600 ms

and 975, 1050, 1125 ms) had each probability p~4=28 whereas

the middle intervals had probability p~1=28. Note that in both

cases extremal intervals were four times as frequent as middle

intervals.

In the Medium Bimodal block, subjects’ responses exhibited a

typical central tendency effect (Figure 9 top left) which suggests

that people did not match the bimodality of the underlying

distribution. To constrain the model comparison we inferred the

subjects’ priors under the assumption of scalar sensory and motor

noise models and Standard loss function, as found by our previous

analyses. As before, we first used a discrete set of priors (see

Methods) that we used to compute the model ‘fit’ to the data and

then we performed a nonparametric inference. The nonparame-

trically inferred priors for the Medium Bimodal distribution

(Figure 9 top right) suggest that on average subjects developed an

internal representation that differed from those seen in previous

experiments and, as before, we found a good agreement between

moments of the experimental distribution and moments of the

inferred priors up to skewness (Table 4 left). However, results of

the Bayesian model comparison among a discrete class of flat,

unimodal or bimodal priors do not support the hypothesis that

subjects actually learnt the bimodality of the experimental

distribution (data not shown). Part of the problem may have been

that in the Medium Bimodal distribution the two modes were

relatively close, and due to sensory and motor uncertainty subjects

could not gather enough evidence that the experimental distribu-

tion was not unimodal (but see Discussion). We repeated the

experiment therefore on a wider range with a different group of

subjects.

The pattern of subjects’ responses in the Wide Bimodal block

shows a characteristic ‘S-shaped’ bias profile (Figure 9 top right)

which is compatible with either a flat or a slightly bimodal prior.

The nonparametrically inferred priors for the Wide Bimodal

distribution (Figure 9 bottom right) again suggest that on average

subjects acquired, albeit possibly with less accuracy (Table 4 right),

some broad features of the experimental distribution; however

individual datasets are quite noisy and again we did not find strong

evidence for learning of bimodality.

Our results with bimodal distributions confirm our previous

finding that people seem to be able to learn broad features of

experimental distributions of intervals (mean, variance, skewness)

with relative ease (a few sessions of training with feedback).

However, more complex features (kurtosis, bimodality) seem to be

much harder to learn (see Discussion).

Discussion

Our main finding is that humans, with the help of corrective

feedback, are able to learn various statistical features of both

simple (uniform, symmetric) and complex (peaked, asymmetric or

bimodal) distributions of time intervals. In our experiments, the

inferred internal representations were smooth, heavy tailed

approximations of the experimental distributions, in agreement

typically up to third-order moments. Moreover, our results suggest

that people take into account the shape of the provided feedback

and integrate it with knowledge of the statistics of the task in order

to perform their actions.

The statistics of the responses of our subjects in the Uniform

blocks were consistent with results from previous work; in

particular, we found biases towards the mean of the range of

intervals (central tendency) [6,8,26,33] and the variability of the

responses grew roughly linearly in the sample interval duration

(scalar property) [6,34]. The responses in the Peaked and High-

Table 3. Main statistics of the experimental distributions and nonparametrically inferred priors (Experiment 3 and 4; Standard
feedback).

Medium Uniform Medium High-Peaked

Objective Subjective Objective Subjective

Mean (ms) 787.5 782.6 + 18.7 703.1 702.0 + 17.9

Std (ms) 128.1 131.7 + 13.6 80.5 119.5 + 17.9

Skewness 0 0.03 + 0.30 2.25 0.67 + 0.37

Ex. Kurtosis 21.27 0.42 + 0.53 20.86 1.66 + 1.32

Comparison between the main statistics of the ‘objective’ experimental distributions and the ‘subjective’ priors nonparametrically inferred from the data. The subjective
moments are computed by averaging the moments of sampled priors pooled from all subjects (+1 s.d.); see Figure 8, right column and Methods for details.
doi:10.1371/journal.pcbi.1002771.t003
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Peaked blocks showed analogous biases, but they were directed

towards the mean of the distribution rather than the mean of the

range of intervals (the two means overlapped in the Uniform case)

[27]. We also observed a significant reduction in variability at the

peak. These results were sufficient to suggest that subjects

considered the temporal statistics of the context in their decision

making processes. We found a similar regression to the mean for a

‘narrow’ bimodal distribution (Medium Bimodal), in qualitative

agreement with previous work that found a simple central

tendency with a ‘V-shaped’ temporal distribution [27] (although

with very limited training, no feedback and a suprasecond range).

However, for a bimodal distribution on a wider range we observed

‘S-shaped’ biases which seem compatible with a nonlinear decision

making process [15]. However, more refined conclusions needed

the support of a formal framework.

Bayesian model
Our modelling approach consisted of building a family of

Bayesian observer and actor models, which provided us with a

mathematical structure in which to ask specific questions about

our subjects [35], going beyond mere statements about Bayesian

optimality. In particular, we were interested in (1) whether people

would be able to learn nontrivial temporal distributions of intervals

and what approximations they might use, and (2) how their

responses would be affected by performance feedback. Our

observer model resembled the Bayesian Least Squares (BLS)

Figure 9. Experiment 5: Medium Bimodal and Wide Bimodal blocks, mean bias and nonparametrically inferred priors. Very top:
Experimental distributions for Medium Bimodal (dark purple, left) and Wide Bimodal (light purple, right) blocks. Top: Mean response bias across
subjects (mean + s.e.m. across subjects) for the Medium Bimodal (left) and Wide Bimodal (right) blocks. Continuous lines represent the Bayesian
model ‘fit’ obtained averaging the predictions of the most supported models across subjects. Bottom: Average inferred priors for the Medium
Bimodal (left) and Wide Bimodal (right) blocks. Shaded regions are +1 s.d. For comparison, the experimental distributions are plotted again under
the inferred priors.
doi:10.1371/journal.pcbi.1002771.g009

Table 4. Main statistics of the experimental distributions and nonparametrically inferred priors for bimodal distributions
(Experiment 5; Standard feedback).

Medium Bimodal Wide Bimodal

Objective Subjective Objective Subjective

Mean (ms) 787.5 794.5 + 34.2 787.5 822.1 + 70.7

Std (ms) 160.6 155.7 + 37.2 251.6 219.2 + 29.3

Skewness 0 20.33 + 0.39 0 20.22 + 0.57

Ex. Kurtosis 21.72 20.08 + 0.90 21.64 20.40 + 0.51

Comparison between the main statistics of the ‘objective’ experimental distributions and the ‘subjective’ priors nonparametrically inferred from the data. The subjective
moments are computed by averaging the moments of sampled priors pooled from all subjects (+1 s.d.); see Figure 9, bottom and Methods for details.
doi:10.1371/journal.pcbi.1002771.t004

Internal Representations Calibrate Interval Timing

PLOS Computational Biology | www.ploscompbiol.org 13 November 2012 | Volume 8 | Issue 11 | e1002771



observer described in [6], but it explicitly included an action

component as part of the internal model. Moreover, to answer (1)

we allowed the prior to differ from the experimental distribution,

and to study (2) we considered additional shapes for the loss

function in addition to the Standard squared loss !(r{x)2.

The Bayesian model comparison gave us specific answers for

each of our subjects, and a first validation came from the success of

the most supported Bayesian observer and actor models in

capturing the statistics of the subjects’ responses in the task.

However, goodness of fit per se is not necessarily an indicator that

the components found by the model comparison reflected true

findings about the subjects, rather than ‘overfitting’ arbitrary

statistical relationships in the data. This is of particular relevance

for Bayesian models, because of the underlying degeneracy among

model components [21].

Our approach consisted in considering a large, ‘reasonable’ set

of observer models that we could link to objective features of the

experiment. This does not solve the degeneracy problem per se but

it prevents the model comparison from finding arbitrary solutions.

In particular, the set of experiments was designed in order to

provide evidence that each element of the model mapped on to an

experimentally verifiable counterpart; crucially, we found that a

change in a component of the experimental setup (e.g. experi-

mental distribution and feedback) correctly induced a switch in the

corresponding inferred component of the model (prior and loss

function). We also avoided overfitting by limiting our basic models

to only two continuous noise parameters, which were then

computed through model averaging and further validated by

independent direct measures.

To further validate our methods, we directly measured the

subject’s noise parameters (sensory and motor noise, w
0

s and w
0

m) in

separate tasks and compared them with the model parameters ws,

wm inferred from the main experiments (see Section 4.1 in Text S1

for full description). The rationale is that, in an idealized situation,

we would be able to measure some features of the subjects with an

objective, independent procedure and the same features would be

predictive of the individual performances in related tasks [16]. The

measured parameters were highly predictive of the group

behavior, and reasonably predictive at the individual level for

the sensory parameter, confirming that the model parameters were

overall correctly representing objective ‘noise properties’ of the

subjects.

Overall, our modelling techniques were therefore validated by

(a) goodness of fit, (b) consistency between inferred model

components and experimental manipulations, and (c) consistency

between the model parameters and independent measurements of

the same quantities.

Comparison between inferred priors and experimental
distributions
Given the validation of the results of the model comparison, we

performed a nonparametric inference of the priors acquired by

participants during the task. Other recent works have inferred the

shape of subjective ‘natural’ perceptual priors nonparametrically,

such as in visual orientation [24] and speed [36] perception, but

studies that focussed on experimentally acquired priors mostly

recovered them under parametric models (e.g. Gaussian priors

with variable mean and variance) [35,37–39]. The nonparametric

method allowed us to study the accuracy of the subjects in learning

the experimental distributions, comparing summary statistics such

as the moments of the distributions up to fourth order. Note that

the significance and reliability of the recovered priors is based on

the correctness of our assumptions regarding the observer and

actor model; unconstrained priors might capture all sorts of

statistical details, one of the typical objections to Bayesian

modelling [40]. However, by dividing the model selection stage

(and its validation) from the prior reconstruction process we

prevented the most pathological forms of overfitting.

The internal representations inferred from the data show a good

agreement with the central moments of the true distributions

typically up to third order (mean, variance and skewness). Subjects

however showed some difficulties in learning variance and

skewness when the provided distribution was extremely peaked,

with a width less than the subjects’ perceptual variability. This

discrepancy observed in the High-Peaked block may have arisen

because (a) the experimental distribution’s standard deviation was

equal or lower in magnitude compared to the perceptual

variability of the subjects (experimental distribution standard

deviation: 80.5 ms; subject’s average sensory standard deviation at

the mean of the distribution: 96:1+ 12:1 ms; mean + sd across

subjects) and (b) due to the shape of the distribution, subjects had

much less practice with intervals away from the peak. Another

explanation is that subjects’ representation of relative frequencies

of different time intervals was systematically distorted, with

overestimation of small relative frequencies and underestimation

of large relative frequencies (see [41] for a critical review), but note

that this would arguably produce a change in the mean of the

distribution as well, which we did not observe.

Moreover, the recovered priors in all blocks had systematically

heavier tails (higher kurtosis) than the true distributions. By

exploring an extended model that included lapses we ruled out

that this particular result was due to trivial outliers in our datasets.

However, our results are compatible with other more sophisticated

reasons for the heavy tails we recovered, in particular (a) the

objective likelihoods might be non-Gaussian, with heavier tails

[42], and (b) the loss functions might follow a less-than-quadratic

power law [43], hypothesis for which we found some evidence,

although inconclusive, by studying observer models with non-

quadratic loss functions (Section 2 in Text S1). Experimentally,

both (a) and (b) would imply that in our datasets there would be

more outliers than we would expect from a Gaussian noise model

with quadratic losses.

Our experiments with bimodal distributions show that, although

people’s responses were affected by the experimental distribution

of intervals in a way which is clearly different from our previous

experiments with uniform or peaked distributions, the inferred

priors in general fail to capture bimodality and are consistent

instead with a broad uniform or multimodal prior (where the peaks

however do not necessarily fall at the right places). Note that the

average sensory standard deviation for subjects in Experiment 5

was 87+ 18 ms (Medium Bimodal; mean + sd across subjects)

and 106+ 28 ms (Wide Bimodal), calculated at the center of the

interval range. In other words, in both blocks, the centers of the

peaks were well-separated in terms of perceptual discriminability

(on average by at least four standard deviations). This suggests that

most subjects did not simply fail to learn the bimodality of the

distributions because they had problems distinguishing between

the two peaks.

Temporal recalibration and feedback
Lag adaptation is a robust phenomenon for which the perceived

duration between two inter-sensory or motor-sensory events

shortens after repeated exposure to a fixed lag between the two

[10,11,44]; see [45] for a review. It is currently uncertain whether

lag adaptation is a ‘global’ temporal recalibration effect (affecting

all intervals) [46], ‘local’ (affecting only intervals in a neighborhood

of the adapter lag) [47], or both. What is clear is that lag

adaptation cannot be interpreted as a Bayesian effect in terms of
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prior expectations represented by the sample distribution of

adaptation and test intervals, since its signature is a ‘repulsion’

from the adapter as opposed to the ‘attraction’ induced by a prior

[4,47,48].

Our experimental setup for the peaked blocks mimicked the

distributions of intervals of typical lag adaptation experiments

[11,29], with the adapter interval set at 675 ms (the ‘peak’).

However, we did not detect any noticeable disagreement with the

predictions of our Bayesian observer model and, in particular,

there was no significant ‘repulsion effect’ from the peak, neither

global nor local. Our results suggest that people are not subject to

the effects of lag adaptation, or can easily compensate for them, in

the presence of corrective feedback.

Sensorimotor lag adaptation seems to belong to a more general

class of phenomena of temporal recalibration which induce an

adjustment of the produced (or estimated) timing of motor

commands to meet the goals of the task at hand. In the case of

experimentally induced actuator delays in a time-critical task, such

as controlling a spaceship through a minefield in a videogame [49]

or driving a car in a simulated environment [50], visual temporal

information about delays provides an obvious, compelling reason

to recalibrate the timing of actions. However, feedback regarding

timing performance need not be provided only in temporal ways.

Previous studies have shown that people take into account

performance feedback (knowledge of results) when the feedback

about the timing of their motor response is provided in various

ways, such as verbal or visual report in milliseconds [23,51] or bars

of variable length [52]. Interestingly, people tend to also follow

‘erroneous’ feedback [52–54]. However, this can be explained by

the fact that people’s behavior in a timing task is goal-oriented (e.g.

minimizing feedback error), and therefore these experiments

suggest that people are able to follow external, rather than

erroneous, feedback. In fact, when participants are told that

feedback might sometimes be incorrect, which corresponds to

setting different expectations regarding the goal of the task, they

adjust their timing estimates taking feedback less into account [53].

Ambiguity regarding the goal of a timing task with non-obvious

consequences – as opposed to actions that have obvious

sensorimotor consequences, such as catching a ball – can be

reduced by imposing an explicit gain/loss function [5,55], and it

has been found that people can act according to an externally

presented asymmetric cost (even though their timing behavior is

not necessarily ‘optimal’ [55]).

Our work extends these previous findings by performing a

model comparison with different types of symmetric and

asymmetric loss functions and providing additional evidence that

most people are able to correctly integrate an arbitrary external

feedback in their decision process, while executing a sensorimotor

timing task, so to minimize the feedback error.

Bayesian sensorimotor timing
There is growing evidence that many aspects of human

sensorimotor timing can be understood in terms of Bayesian

decision theory [3,5,6]. The mechanism through which people

build time estimates, e.g. an ‘internal clock’, is still unclear (see

[56] for a review), but it has been proposed that observers may

integrate both internal and external stochastic sources of temporal

information in order to estimate the passage of time [7,57].

Inspired by these results, in our work we assumed that people

build an internal representation of the temporal distribution of

intervals presented in the experiment. However, for all timing

tasks in which more or less explicit knowledge of results is given to

the subjects (e.g. ours, [6,26]), an alternative explanation is that

people simply learn a mapping from a duration measurement to a

given reproduction time (strategy known as table look-up), with no

need of learning of a probability distribution [58]. At the moment

we cannot completely discard this possibility, but other timing

studies have shown that people perform according to Bayesian

integration even in the absence of feedback both for simple [4,8]

and possibly skewed distributions [27], suggesting that people

indeed take into account the temporal statistics of the task in a

context-dependent way. Moreover, previous work in motor

learning in the spatial domain has shown that people do not

simply learn a mapping from a stimulus to a response, but adjust

their performance according to the reliability of the sensory

information [15], a signature of probabilistic inference [59].

Analogous findings have been obtained in multisensory integration

[18,60,61] and for visual judgements (‘offset’ discrimination task)

under different externally imposed loss functions [20], crucially in

all cases without knowledge of results. All these findings together

support the idea that sensorimotor learning follows Bayesian

integration, also in the temporal domain. However, the full extent

of probabilistic inference in sensorimotor timing needs further

study, possibly involving transfer between different conditions in

the absence of knowledge of results [58].

Our results answer some of the questions raised in [6], in

particular about the general shape of the distributions internalized

by the subjects and the influence of feedback on the responses. An

avenue for further work is related to the detailed profile of the

likelihoods and possible departures from the scalar property

[34,62] (see also Section 4 in Text S1), especially in the case of

complex experimental distributions. It is reasonable to hypothesize

that strongly non-uniform samples of intervals might affect the

shape of the likelihood itself, if only for the simple reason that

people practice more on some given intervals. Cognitive,

attentional and adaptation mechanisms might play various roles

in the interaction between nonuniform priors and likelihoods, in

particular without the mitigating effect of knowledge of results. A

relatively less explored but important research direction involves

extending the model to a biologically more realistic observer and

actor model, examining the connections with network dynamics

[12,63] or population coding [31], bridging the gap between a

normative description and mechanistic accounts of time percep-

tion. Another extension of the model would consider a non-

stationary observer, whose response strategy changes from trial to

trial (even after training), possibly in order to account for

sequential effects of judgement which may be due to an iterative

update of the prior [64–66]. Finally, whereas our analysis suggests

that subjects found it relatively easy to learn unimodal distributions

of intervals, bimodal distributions seemed to represent a much

harder challenge. Further work is needed to understand human

performance and limitations with multimodal temporal distribu-

tions.

Methods

Ethics statement
The University of Edinburgh School of Informatics ethics

committee approved the experimental procedures and all subjects

gave informed consent.

Participants
Twenty-five subjects (17 male and 8 female; age range 19–34

years) including the first author participated in the study. Except

for the first author all participants were naı̈ve to the purpose of the

study. All participants were right-handed, with normal or

corrected-to-normal vision and reported no neurological disorder.

Participants were compensated for their time and an additional
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monetary prize was awarded to the three best naı̈ve performers

(lowest mean squared error).

The first author took part in three of the experiments and was

included as he represents a highly trained and motivated

participant. Therefore it allowed an informal means to assess

whether the author’s data was different from those of the naı̈ve

participants which could reflect a lack of training or motivation.

However, analysis of the author’s datasets (response biases and

moments of the inferred priors) were statistically indistinguishable

from the other participants and therefore his data was included in

the analysis.

Materials and stimuli
Participants sat in a dimly lit room, *50 cm in front of a Dell

M782p CRT monitor (160 Hz refresh rate, 640|480 resolution).

Participants rested their hand on a high-performance mouse which

was fixed to a table and hidden from sight under a cover. The

mouse button was sampled at 1 kHz (with a 13+ 1 ms latency).

Participants wore ear-enclosing headphones (Sennheiser EH2270)

playing white noise at a moderate volume, thereby masking any

experimental noise. Stimuli were generated by a custom-written

program in MATLAB (Mathworks, U.S.A.) using the Psycho-

physics Toolbox extensions [67,68]. All timings were calibrated

and verified with an oscilloscope.

Task
Each trial started with the appearance of a grey fixation cross at

the center of the screen (27 pixels, 1:50 diameter). Participants

were required to then click on the mouse button at a time of their

choice and this led to a visual flash being displayed on the screen

after a delay of x ms which could vary from trial to trial. The flash

consisted of a circular yellow dot (1:50 diameter and 1:50 above the

fixation cross) which appeared on the screen for 18.5 ms (3

frames). The ‘target’ interval xms was defined from the start of the

button press to the first frame of the flash, and was drawn from a

block-dependent distribution p(x). Participants were then required

to reproduce the target interval by pressing and holding the mouse

button for the same duration. The duration of button press (r ms)

was recorded on each trial. Participants were required to wait at

least 250 ms after the flash before starting the interval reproduc-

tion, otherwise the trial was discarded and re-presented later. After

the button release, 450–850 ms later (uniform distribution),

feedback of the performance was displayed for 62 ms. This

consisted of a rectangular box (height 2:50, width 200) in the lower

part of the screen with a central vertical line representing zero

error and a dotted line representing the reproduction error on that

trial. The horizontal position of the error line relative to the zero-

error line was computed as either fSk(x,r)~k:
r{x

r
(Skewed

feedback) or fStd (x,r)~k:
r{x

787:5
(Standard feedback), depending

on the experimental condition, with k~400 pixels (22:20).

Therefore, for a response r that was shorter than the target

interval x the error line was displayed to the left of the zero-error

line, and the converse for a response longer than the target

interval. The fixation cross disappeared 500–750 ms after the

error feedback, followed by a blank screen for another 500–

750 ms and the reappearance of the fixation cross signalled the

start of a new trial.

Experiments
Each session consisted of around 500 trials and was broken up

into runs of 84–96 trials. Within each run the number of each

interval type was set to reflect the underlying distribution exactly

and the order of the presentations was then randomized. However,

for the High-Peaked session we ensured that each less likely

interval was always preceded by 3–5 ‘peak’ intervals. Subjects

could take short breaks between runs.

Each experiment consisted of a number of blocks, each

comprising of several sessions. Within each block, the sessions were

identical with regard to interval and feedback type. The participants

were divided into experimental groups as follows (see also Table 1):

Experiment 1: Short Uniform and Long Uniform blocks with

Skewed feedback (4 participants, including the first author).

Experiment 2: Medium Uniform and Medium Peaked blocks with

Skewed feedback (6 participants, including the first author).

Experiment 3: Medium Uniform block with Standard feedback (6

participants, including the first author). Experiment 4:Medium High-

Peaked block with Standard feedback (3 participants). Experiment 5:

Medium Bimodal with Standard feedback (4 participants) andWide

Bimodal with Standard feedback (4 participants).

The order of the blocks for Experiments 1 and 2 were

randomized across subjects. Each block consisted of three to six

sessions, terminating when the participant’s performance had

stabilized (fractional change in mean squared timing error between

sessions less than 0.08). For Experiment 5 we required participants

to perform a minimum of five sessions.

Data analysis
We examined the last two sessions of each block, when

performance had plateaued so as to exclude any learning period of

the experiment. We analysed all trials for the uniform distributions

and Wide Bimodal block. For the non-uniform distributions, we

picked a random subset of the frequently-sampled intervals such that

all intervals contributed equally in themodel comparison (results were

mostly independent of the chosen random subset), with the exception

of theWide Bimodal block for which we would have had too few data

points per interval. For each subject we therefore analysed about

1000 trials for the Uniform or Wide Bimodal blocks,*500 for the

Peaked or Medium Bimodal block and *200 trials for the High-

Peaked block.We discarded trials with timestamp errors (e.g. multiple

or non-detected clicks) and trials whose response durations fell outside

a block-dependent allowed window of 225–1237 ms (Short), 300–

1462 ms (Medium), 375–1687 ms (Long) and 225–1687 ms (Wide),

giving 124 discarded trials out of a total of*30000 trials (*0:4%).

Note that 93% of the discarded trials had response intervals less than

150 ms, which we attribute to accidental mouse presses.

Bayesian observer model components. Eqs. 1 and 2

describe the family of Bayesian observers models. The behavior of

an observer is defined by the choice of four components:

(i) a noise model for the sensory estimation process, which can

be either constant or scalar:

ps(yDx; ws)~
N yDx,ws

:787:5ð Þ (constant)

N yDx,wsxð Þ (scalar)

�

ð3Þ

where N xDm,sð Þ is a normal distribution with mean m and

standard deviation s.

(ii) a noise model for the motor reproduction process, which

can be either constant or scalar:

pm(rDu; wm)~
N rDu,wm

:787:5ð Þ (constant)

N rDu,wmuð Þ (scalar)

�

ð4Þ
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(iii) the approximation scheme for the priors. We considered:

(a) the true, discrete distribution; (b) a single Gaussian with

same mean and variance as the true distribution; (c) a

mixture of six (ten for the Wide range) 37.5 ms standard

deviation Gaussians centered on the true discrete intervals

with mixing weights equal to the relative probability of the

true intervals; (d) as c but with standard deviation of 75 ms;

(e) a continuous uniform distribution from the shortest to

the longest interval. For Experiment 2 and 4 we also

considered a mixture of two Gaussians with mixing weights

p and 1{p, with p equal to the proportion of ‘peak’

intervals that emerge from the uniform background

distribution (p~0 for the Uniform block, p~0:5 for the

Peaked block and p~0:75 for the High-Peaked block). The

first Gaussian is centered on the peak (675 ms) and with a

small (f: 37.5 ms) or large (g: 75 ms) standard deviation, the

second Gaussian is centered on the mean of the Medium

range (787.5 ms) and with standard deviation equal to the

discrete Uniform distribution (128.7 ms). Therefore, for the

Medium Uniform block approximation schemes f and g

reduce to a single Gaussian. Analogously, for Experiment 5

we considered a mixture of three Gaussians with mixing

weights p, p and 1{2p, with p equal to the total frequency

of one of the two ‘peaks’ emerging from the uniform

background distribution (p~1=4 for the Medium Bimodal

block and p~9=28 for the Wide Bimodal block). The first

two Gaussians are centered on the peaks (Medium: 600 ms

and 975 ms; Wide: 525 ms and 1050 ms) and with a small

(f: Medium: 37.5 ms; Wide: 61.2 ms) or large (g: twice the

small) standard deviation. The third Gaussian is centered on

the mean of the range (787.5 ms) and with standard

deviation equal to the discrete Uniform distribution over

the range (Medium: 128.7 ms; Wide: 251.6 ms). The values

of standard deviations for the ‘peak’ Gaussians (small

37.5 ms, large 75 ms) were chosen as 75 ms is the gap

between time intervals in all experimental distributions. For

the Wide Bimodal block, 61.2 ms is the standard deviation

of the sample for three intervals separated by 75 ms.

(iv) the loss function

~ff 2(x,r)~

r{x

r

� �2

(Skewed)

r{xð Þ2 (Standard)

r{x

x

� �2

(Fractional)

8

>

>

>

>

<

>

>

>

>

:

ð5Þ

Note that the Fractional error was not used as a feedback

shape in the experiments, but we included it as a possibility

for the Bayesian observer as it might represent an

appropriate error signal if time has a logarithmic

representation in the brain [69]. In fact, the logarithmic

squared loss reads:

log r{log xð Þ2~ log
r

x

� �2

~ log 1z
r{x

x

h i� �2

&
r{x

x

� �2

for
r{x

x

�

�

�

�

�

�%1

For an analysis with non-quadratic loss function see also

Section 2 in Text S1.

Bayesian model comparison. For each observer model and

each subject’s dataset (that is all blocks within an experiment) we

calculated the posterior probability of the model given the data,

Pr(model| data)! Pr(data| model), assuming a flat prior over the

models.

The marginal likelihood is given by

Pr(datajmodel)~

ð

dwsdwm Pr(data j ws, wm, model)

Pr(ws, wmjmodel)

ð6Þ

where Pr(ws,wm| model) is the prior over the parameters and

Pr(data|ws,wm, model) is the likelihood of the data given a specific

model and value of the parameters. For the prior over the

parameters we assumed independence between parameters and

models Pr(ws,wm| model) ~ Pr(ws)Pr(wm) and for both param-

eters we used a broad Beta prior * Beta(1.3, 2.6) that slightly

favors the range 0:03{0:3 in agreement with a vast literature on

human timing errors [34]. The likelihood of the data was

computed according to our observer model, Eq. 2, assuming

independence across trials:

Pr(data wsj , wm, model)~ P

n

i~1
p r(i)Dx(i); ws,wm

� �

ð7Þ

with n the total number of test trials and x(i),r(i) respectively the

target interval and response in the i{th test trial. Note that the

calculation of p rDxð Þ (Eq. 2) requires a computation of the optimal

action u�, that is, the action u that minimizes the expected loss (Eq.

1). The minimization was performed analytically for the Standard

and Fractional loss function and numerically for the Skewed loss

function (function fminbnd in MATLAB; we assumed that u�

always fell in the interval 20{2000 ms; the results were checked

against analytical results obtained through a polynomial expansion

approximation of the loss function that holds for D
r{x

x
D%1).

We computed the marginal likelihood through Eqs. 6 and 7

both with a full numerical integration and using a Laplace

approximation (both methods gave identical results). Given the

posterior probability for each model, for each subject we

calculated the posterior probability for each model component

(by fixing a model component and summing over the others); see

Table S1. The ‘Bayesian fits’ in Figure 3, 4, 9 top and Figure S5

and S6 in Text S2 were obtained by calculating the model average

for the response bias and response standard deviation (the average

was taken both over parameters and over models, but typically

only one of the models contributed significantly to the integral).

Nonparametric reconstruction of the priors. To examine

the subjects’ priors using a nonparametric approach, for each

subject we took the (i) sensory and (ii) motor noise and (iv) loss

function, as inferred from the model comparison. We then

allowed the priors to vary independently over a broad class of

smooth, continuous distributions. For each block, the log prior

was specified by the values of ten (14 for the Wide range) control

points at 75 ms steps over the ranges: Short 300–1025 ms,

Medium 450–1175 ms, Long 600–1325 ms and Wide 300–

1325 ms. The control points were centered on the interval range

of the block but extended outside the range to allow for tails or

shifts. The prior q(x) was calculated by interpolating the values

of the prior in log space with a Gaussian process [70] with

squared exponential covariance function with fixed scale (sy~1

in log space, ‘~75 ms) and a small nonzero noise term to favor

conditioning. The Gaussian processes were used only as a

smooth interpolating method and not as a part of the inference.

In order to infer the prior for each subject and block, we sampled
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from the posterior distribution of priors! Pr(data| prior, model)

using a slice sampling Markov Chain Monte Carlo algorithm

[71]. We ran ten parallel chains (3000 burn-in samples, 1500

saved samples per chain) obtaining a total of 15000 sampled

priors per subject and block. For each sampled prior we

calculated the first four moments (mean, standard deviation,

skewness and excess kurtosis) and computed the mean and

standard deviation of the moments across the sample sets of

individual subjects and over the sample set of all subjects (the

latter are shown in Table 2 and 3).

Supporting Information

Table S1 Bayesian model comparison: most supported

observer model components for Experiments 1–4. Most

supported observer model components (posterior probability), for

each subject, according to the Bayesian model comparison.

(PDF)

Text S1 Additional models and analyses. This supporting

text includes sections on: computation of response bias and

standard deviation of the response for the basic Bayesian observer

model; a Bayesian observer model with non-quadratic loss

function; a Bayesian observer model with lapse; an extended

analysis of subjects’ sensory and motor variability. Figures S1, S2,

S3, S4 are included.

(PDF)

Text S2 Results of Experiments 3 and 4. Plots of mean

response bias and standard deviation of the response for

Experiment 3 and 4. Figures S5 and S6 are included.

(PDF)
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