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Abstract—Closed-loop control of cloud resources requires there
to be measurements readily available from the process in order
to use the feedback mechanism to form a control law. If utilizing
state-feedback control, sought states might be unfeasible or
impossible to measure in real applications; instead they must
be estimated. However, running the estimators in real time for
all measurements will require a lot of computational overhead.
Further, if the observer and process are disjoint, sending all
measurements will put extra strain on the network.

In this work-in-progress paper, we propose an event-based
particle filter approach to capture the internal dynamics of
a server with CPU-intensive workload whilst minimizing the
required computation or inter-system network strain. Prelimi-
nary results show some promise as it outperforms estimators
derived from analytic expression for stationary systems in service
rate estimation over number of samples used for a simulation
experiment. Further we show that for the same simulation, an
event-based sampling strategy outperforms periodic sampling.

I. INTRODUCTION

Data centers for hosting software services consume high
amounts of energy, and by utilizing dynamic resource man-
agement previous work has shown that large savings in the
running cost can be achieved [1]. Using a control-theoretical
approach to determine the actual management of the server
resources has further shown great promise [2]. However,
designing suitable control laws depends on information about
server states (or parameters) that are often considered to be
known [3]. This might not always be the case, as some
states can depend on model choices that have no direct
correspondence in reality. To utilize these states for feedback,
they need to be estimated.

Practical limitations on the system itself might further make
it unfeasible to estimate at each measurement event, as it
will result in a great deal of overhead. Also if we consider
the observer as not being a part of the server itself, sending
all measurements over the network will add strain between
observer and server. This overhead can be reduced by sub-
sampling the available events either periodically or by an
event-based strategy. Previous work in event-based sampling
has shown good results in reducing the number of samples
required to capture system dynamics [4].

To limit the scope of our research we have focused on
estimating the server states of CPU-intensive software ap-
plications, such as web servers, whose performance can be
accurately captured using a single server queue model [5]. As
a proof of concept, we chose the M/M/1 model, which assumes

Poisson distributed arrival and service rates with average rates
of λ and µ respectively [6].

From the perspective of an outside observer, an intuitive way
of measuring a server is by considering the response time of
packets, i.e., the time it takes from arrival to departure [2]. We
have thus considered the response times as our measurements
and the service rate µk and queue length qk as our unknown
internal states, where k is the instance of a measurement.

Further, we have assumed that the arrival rate λ is known.
This assumption corresponds a real situation with a single load
balancer [7]: The balancer sets the arrival rate of the receiving
servers, but the queue lengths and service rates of the different
servers are still unknown and potentially of interest in forming
the control law. An alternative scenario where µ is known but
λ is unknown is studied in the companion paper [8].

Standard queuing models are however both non-linear and
non-Gaussian, which complicates the use of standard esti-
mators such as the Kalman Filter. Previous work in [9] has
focused on the event-based version of the Extended Kalman
Filter in estimating server states.

In this work we instead focus on the sequential Monte Carlo
methods known as Particle Filters, as they are not limited by
assumptions of linearity or Gaussian noise [10]. We introduce
an event-based scheme for the bootstrap particle filter for
server state estimation [11]. The idea of event-based particle
filtering has not yet received much attention in the research
community but includes the recent work in [12] among others.

II. STATE-SPACE REPRESENTATION

For the assumed M/M/1 model, the response times are dis-
tributed according to an Erlang distribution, Tk ∼ E(qk, µk).
Further, the probability that the queue is q long at time t
given an initial length of i is given by the following analytic
expression:

Pq(t) = e−(λ+µ)t
(

ρ(q−i)/2Iq−i(at) + ρ(q−i−1)/2Iq+i+1(at)

+ (1− ρ)ρq
∞
∑

j=q+i+2

ρ−j/2Ij(at)
)

.
(1)

Here, ρ = λ/µ, a = 2µ
√
ρ, and Ii(x) is the modified

Bessel function of the first kind of order i. At first glance,
this expression looks horrendous, but luckily there exists
good theory for speeding up its evaluation [13]. A discrete
distribution of the queue length q at instance k can be



formed as qk ∼ P(qk−1, µk−1, λk−1, tk), where each entry
has the probability shown by (1). Using this knowledge we
can construct a discrete-time stochastic state-space model of
the server as

µk ∼ N (µk−1, σµtk),

qk ∼ P(qk−1, µk−1, λk−1, tk),

Tk ∼ E(qk, µk).

(2)

Here we have assumed that no prior knowledge of the service
rate is known, and therefore it is given the dynamics of
a random walk. Since our aim is to implement an event-
based version the particle filter, our state-space model must be
adapted to compensate for the varying intersample time. For
the distribution of the queue length this is already included,
but not for the service rate. Instead we extend the random
walk with a time dependent variance and assume that it grows
linearly with time.

III. ESTIMATION

A. Analytic Expression for Stationary System

Good analytic results exist to calculate the expected queue
length using Little’s Law. Remarkably, Little’s Law does not
make any assumptions on service and arrival rate distributions,
the amount of servers, or even if every server has its own queue
or not [14]. The expected response time can be calculated
using results explained in [6]:

q = λT,

T =
1

µ− λ
.

(3)

From these expressions we can form a pair of naive estimators
for the service rate and the queue length as

q̂k = λkTk,

µ̂k = λk +
1

Tk
.

(4)

Here however we run into a problem with the estimator for the
service rate, as the Erlang distribution is a generalization of the
Gamma distribution. The smaller the queue length, the higher
the probability becomes of measuring a response time close
to 0, and at q = 1 the distribution reduces to an Exponential
distribution whose PDF actually grows towards infinity as
T → 0. Since the naive service rate estimator depends on
dividing by our response time measurement, this will lead to
problems with very large and queue length dependent variance.
To combat this we introduced a lowpass filter for the response
times before utilizing the service rate estimator. The response
times for the queue length was kept unfiltered.

B. Particle Filter

A problem with the estimators derived from the analytic ex-
pressions is that they assume the underlying stochastic process
to be stationary, which disregards any transient behaviour of
the queue in cases where µ or λ are time dependent. Tracking
can potentially be improved if this is taken into consideration.
Further, at least for the service rate estimator the underlying

analytic expression is only generalized to the M/M/1 case and
similar analytic expressions for other queue models might be
intractable.

To account for the non-stationarity we have considered a
particle filter built upon our stochastic state-space model (2).
Particle filters are a group of estimators that uses a Monte
Carlo-based inference approach to approximate the Bayesian
filter equations

p(xk|Yk) =
p(yk|xk)p(xk|Yk−1)

p(yk|Yk−1)
,

p(xk|Yk−1) =

∫

p(xk|xk−1)p(xk−1|Yk−1)dxk.

(5)

Suppose that we have a set of N particles Xk−1 with the
corresponding weights Wk−1, a time series of measurements
Y1:M , and a proposal distribution q(xk|xk−1, yk) that we can
draw samples from. Further, assume that the particles and
their weights form an empirical approximation to the posterior
distribution at step k − 1,

p(xk−1|Yk−1) ≈
∑

i

W i
k−1δ(xk−1 −Xi

k−1), (6)

We can then form an empirical approximation of the posterior
distribution at the next step k by first drawing a set of new
particles using the proposal distribution

Xi
k ∼ q(xk|Xi

k−1, yk), (7)

and then updating the corresponding weights as

W i
k =

p(yk|Xi
k)ω

i
k

∑

j p(yk|X
j
k)ω

j
k

,

ωi
k =

p(Xi
k|Yk−1)

q(xk|xk−1, yk)
W i

k−1.

(8)

The initial set of particles can be drawn from some initial
distribution Xi

0 = p(x0). Since we have not assumed any con-
nection between the initial distribution and any measurement
it is standard to give the initial weights the uniform value of
W i

0 = 1/N . From the set of estimated posterior distributions,
the first and second moments can be calculated as

x̂k|k = Ep(xk|Yk) (xk) ≈
∑

i

W i
kX

i
k,

P̂k|k ≈
∑

i

W i
k(X

i
k − x̂k|k)(X

i
k − x̂k|k)

T .
(9)

Only following this scheme does however often lead to a
condition called weight degeneracy, where the particles start
to deviate more and more from the true underlying path,
and the variance of the weights continue to grow for each
new step. Most particles will thus receive almost no weight,
which will give worse and worse performance as time grows.
By introducing a resampling step, where the particles are
resampled based on their weight as P (X

ai
k

k = Xi
k) = W i

k

after the weight update step, the degeneracy can be mitigated
[10].

Finding a good proposal distribution q(xk|xk−1, yk) can
be tricky. Instead we can disregard the current measurement



value yk and choose the proposal distribution as simply the
state propagation distribution of our state-space model. The
corresponding weight update then reduces to a normalized
version of the measurement distribution of the model,







Xi
k ∼ p(xk|X

ai
k−1

k−1 ),

W i
k =

p(yk|X
i
k)∑

j
p(yk|X

j

k
)
.

(10)

This algorithm is referred to as the bootstrap particle filter
[11], and it has the advantages of being simple to implement as
long as the state-space model exists. Using our model (2), the
proposal distribution and weighting function of the bootstrap
particle filter become

p(xk|xk−1) =

{

N (µk−1, σµtk),

P(qk−1, µk−1, λk−1, tk),

p(yk|xk) = E(Tk|q̂k, µ̂k).

(11)

IV. EVENT-BASED SAMPLING

For event-based sampling, we consider the well-known
strategy known as Send-On-Delta (SOD) [15]. The SOD
method generates a new event, referred to as a point-value
measurement zk, if the actual measurement yk differs from
the old event zk−1 more than a set limit ∆:

zk =

{

yk if |yk − zk−1| ≥ ∆,

zk−1 if |yk − zk−1| < ∆.
(12)

If the difference is below the limit the old value is simply
kept; this is referred to as a set-value measurement.

Since the goal of our event-based strategy is to save
overhead, no set-valued measurements will be used to update
the estimations. Only when a new measurement is triggered
will the filters compute a new update. For the stationary
estimator, this will not affect the queue length estimation as
it is only dependent on the current measurement. The service
rate estimator might however receive an improvement from the
set-values as it uses a lowpass filtered version of the response
time. Improvements might also be gained in the particle filter,
giving it time to adapt beyond possible transients. The question
of how much the set values could improve the estimations is
out of scope of this work-in-progress paper.

By only updating the estimate at the point-value measure-
ments, extending our two filters to account for the SOD is a
straightforward endeavour. We can simply update the estimates
at the point values, taking into account the varying intersample
time tk.

V. SIMULATION & RESULTS

To evaluate the performance, an environment was imple-
mented in Julia to accurately simulate a M/M/1 queue real-
ization. In this environment a simulation experiment was per-
formed in order to test how accurately the dynamics could be
captured using the two estimators with different subsampling
techniques.

The simulation included a sequence over 150 seconds,
where λ = 4 and µ = 10. In the interval t = [50, 100]

the service rate was dropped to µ = 5 to simulate a sudden
disruption. For the particle filter we used 1000 particles and
σµ = 2. The lowpass filter for the stationary estimator was
implemented as an exponential smoothing filter with α = 0.2.

The subsampling itself was performed on the measurements
generated from a simulation. To subsample periodically, the
time from the last sample was tracked. Then the next mea-
surement that occurred with a time difference greater than a
set sampling time would be chosen as the new sample. This
approach will however have some jitter in the time between
samples, but it was deemed acceptable. Changing the sampling
time would then yield different levels of subsampling. The
event-based subsampling was instead performed by keeping
track of the value of the previous sample, and a new sample
was only generated when the measurement difference was
larger than a set ∆. By varying ∆, different levels of event-
based subsampling could be achieved.

To capture the statistics of the estimators, a Monte Carlo
estimation for the sequence with 1000 repeated runs was
performed. In each run, the realization of the M/M/1 queue
dynamics was also resimulated to guarantee that the statistics
are true to the underlying dynamics and not one particular
realization. The resulting mean squared error of the service
rate and the queue length for the different estimators and
sampling strategies are shown in Figure 1 and 2. The lines
show estimated means and the opaque areas show the interval
of a standard deviation from the estimate.

It should be stressed that this is only one simulation exper-
iment, which is definitely not enough ground for judgment.
More experiments will be performed in future work.

VI. CONCLUSION & FUTURE WORK

The results show that the particle filter yields better es-
timation of the service rate than the stationary estimator in
terms of the mean and standard deviation in this simulation.
The SOD strategy gives further improvements. For the queue
length the two estimators performed equally well for both
sampling strategies.

An interesting result is that the estimates sometimes seem
to improve even though we do not use all available samples. A
plausible explanation could be that both our state-space model
and the analytic formulas assume nothing about the depen-
dence of response time measurements. Consecutive packets
waiting to be served in the queue share the same realizations
of the departure times of packets further ahead in the queue,
which introduces dependence in the measurements. Further
investigation is warranted.

The choice of the M/M/1 model is mainly done for the
purpose of demonstrating the feasibility of using particle filters
to capture unknown states in the server. In order for these
methods to be usable in any real applications, extensions must
be made to more realistic server models.

So far we have simply ignored the set-valued measurement
on the premise that we want to save as much computations
as possible. Here the question naturally arises of how much
better the estimation would become if all these were used
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Figure 1: Service rate error over the amount of samples used
for the periodic (Per) and SOD subsampling schemes.

as well. Or even, could there be improvements if one would
only use some set-values to minimize the effects of possible
transients? If this were the case then there could be a trade off
in the amount of set-values included and the acceptable gain
in computational overhead.
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