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Internal sheaths in electronegative discharges
I. G. Kouznetsov, A. J. Lichtenberg, and M. A. Liebermana)

Department of Electrical Engineering and Computer Sciences and the Electronics Research Laboratory,
University of California, Berkeley, California 94720

~Received 29 March 1999; accepted for publication 8 June 1999!

In three component electronegative discharges a parameter regime can be found in which the
positive ions reach the local ion sound velocity at a position where the negative ion density may be
significant compared to the electron density. For this regime a quasineutral electronegative core
breaks down and a space charge region forms. Solutions in the space charge region are obtained in
collisionless and collisional cases, neglecting ionization and positive-negative ion recombination.
The structure of the non-neutral region is shown to vary significantly with the ratio of the negative
ion and electron densities at the core edge, the ratio of ion and electron temperatures, and the ratio
of the electron Debye length to the ion mean free path. If the first ratio is not too large the
non-neutral region displays potential oscillations on the electron Debye length spatial scale, which
damp away on the scale of the ion–neutral mean free path. The non-neutral region then terminates
within the plasma. The change in electric potential across this region is several times the negative
ion temperature, which is sufficient to confine the negative ions to the core. The non-neutral region
merges with a quasineutral halo containing essentially only positive ions and electrons. If the
negative ion density is sufficiently high compared to the electron density the electropositive halo
disappears and the non-neutral region extends from the ion sound velocity threshold to the wall. For
intermediate values of the negative ion density, a space charge double layer forms between the
electronegative and electropositive regions. ©1999 American Institute of Physics.
@S0021-8979~99!02418-4#
io
tr
om
es
f t
.
g
i

r,
th
m
v
is
r-

d
n

rie

ro
he
iv
th

id
n

: a
ga-
ting

cur
d

ch
the
re is
is-

-
an
tion
ity.
mic
this
-
an

e-
ns.
eak
. II
for

ns
i-
the

uce
ed
I. INTRODUCTION

Electronegative gases have found numerous applicat
in plasma processing. The presence of negative ions in
duces several complications into discharge analysis, c
pared to relatively well studied electropositive discharg
such as the plasma–sheath transition and the division o
discharge into electronegative and electropositive regions
the simplest case of an electropositive plasma, consistin
positive ions and electrons, the interaction of the plasma w
an absorbing wall leads to formation of a boundary laye
sheath, adjoining the wall. The necessary condition for
formation of a stationary sheath is expressed by Boh
criterion1,2 which requires that ions entering the sheath ha
a velocity equal to the ion sound velocity. This velocity
not achieved by ions in thermal motion. A potential diffe
ence of the order of the electron temperature is require
accelerate the ions as they move from the discharge ce
toward the wall.

In electronegative plasmas the ion sound velocity va
with the ratio of the negative ion and electron densities2,3 and
can be significantly reduced compared to that in an elect
ositive plasma. A potential difference of a few times t
negative ion temperature is then sufficient for the posit
ions to accelerate to the local ion sound velocity. Since
negative ion temperature is usually very small compared
the electron temperature, the small electric potential ins
the bulk plasma contains the negatively charged ions but

a!Electronic mail: lieber@eecs.berkeley.edu
4140021-8979/99/86(8)/4142/12/$15.00
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the electrons. Thus the plasma divides into two regions
central electronegative core containing positive ions, ne
tive ions and electrons, and an outer halo region consis
mainly of positive ions and electrons.4–7 The transition from
the electronegative core to the electropositive halo can oc
smoothly, if the local ion sound velocity is not reache
within the core, or rather abruptly, if the positive ions rea
the ion sound velocity inside the electronegative core. If
negative ion density at the edge of the electronegative co
high enough the electropositive halo may not exist, as d
cussed in the present paper.

In a previous paper8 we solved for the discharge equilib
rium, assuming that there is an abrupt transition from
electronegative to an electropositive plasma, at the posi
where the drift velocity reaches the local ion sound veloc
This ansatz was based on the intuition that hydrodyna
solutions either produce shocks or non-neutral regions at
transition. A small additional electric field would be suffi
cient to retard the negative ions, with the result being
abrupt transition to the electropositive edge region.

In this paper we investigate this ansatz by explicitly r
taining the non-neutral terms in the macroscopic equatio
We show that the inclusion of these terms generates the w
electric field required to confine the negative ions. In Sec
a plasma model is introduced based on fluid equations
positive ions and Boltzmann equilibrium for negative io
and electrons. In Sec. III it is shown that the ion sound lim
tation leads to a space charge buildup which breaks down
quasineutral electronegative core. In Sec. IV we reprod
the model equations from our previous work which are us
2 © 1999 American Institute of Physics
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to present a general solution for the regime in which
positive ions reach the ion sound velocity in the core. T
space charge region is studied in Sec. V, in collisionless
collisional cases, assuming that ionization and positiv
negative ion recombination are negligible in this regio
Solutions are obtained numerically for different values of
positive and negative ion temperatures. In Sec. VI theoret
solutions are compared to results of simulations. The res
and limitations of the analysis are discussed in Sec. VII.

II. PLASMA HYDRODYNAMICS

In this section, a hydrodynamical model is develop
which describes a three species discharge plasma, cons
of positive ions, negative ions and electrons, interact
among themselves and with a neutral gas. The plasma
charge is produced inside a cylindrical chamber. The cy
der aspect ratio is assumed to be large (length!diameter) so
that a one dimensional plane parallel analysis can be app

The positive ion particle balance equation in a stea
state can be written as

dG1

dx
5K izn0ne2K recn2n1 , ~1!

whereG1 is the positive ion flux,n0 is the neutral gas den
sity, n1 , n2 andne are, respectively, the positive ion, neg
tive ion and electron densities, andK iz andK rec are the ion-
ization and recombination reaction rate constants. T
positive ion flux is given by

G15n1u1 , ~2!

whereu1 is the average positive ion velocity.
The positive ion momentum balance equation can

written as

n1M 1u1

du1

dx

52eT1

dn1

dx
2n1e

dF

dx

2~nmn11K izn0ne1K recn2n1!M 1u1 , ~3!

whereM 1 andT1 are the positive ion mass and temperatu
~in volts!, respectively,F is the electric potential, andnm is
the ion momentum transfer frequency due to collisions w
neutrals. At high pressurenm can be regarded as a consta
nm5 v̄1 /l, where v̄15A8eT1 /pM 1 is the positive ion
mean thermal speed,l51/n0smi is the positive ion mean
free path, andsmi is the ion momentum transfer cross se
tion. The ion drift velocityu1 can become larger thanv̄1 at
low pressure in which case the momentum transfer freque
varies with the ion velocity asnm5puu1u/2l.9,10 The last
term on the right hand side of Eq.~3! is an effective friction
force which includes three different contributions. The fi
arises from the ion momentum loss in collisions with ne
trals. The second is due to generation of new ions which
average have zero momentum. The last is due to
positive–negative ion recombination. Assuming that the
combining positive ions are moving with the average vel
ity of the ion fluid u1 , then every recombining ion reduce
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momentum of the ion fluid byM 1u1 . Thus, both ionization
and recombination exert a drag force on the moving
fluid. However, the most important part in the drag force
due to collisions with neutrals.

It is not intended here to develop a full hydrodynam
description of the three species electronegative plasma
stead it is assumed that both negatively charged species
electrons and negative ions, are in Boltzmann equilibri
with the electric field

ne5ne0 expS F

Te
D , ~4!

n25n20 expS F

T2
D , ~5!

wherene0 andn20 are, respectively, the electron and neg
tive ion densities in the center of the discharge, andTe and
T2 are the electron and negative ion temperatures, res
tively. Conditions when this assumption is justified we
studied in Ref. 11. The electric potentialF is taken to be
zero in the center of the discharge. Poisson’s equation rel
the densities of the charged species and the electric pote

d2F

dx2 52
e

e0
~n12ne2n2!, ~6!

wheree0 is the permittivity of free space. This completes t
model equations.

It is convenient12 to introduce nondimensional position
potential, positive ion energy, and charged species den
variables

z5
x

l
, h52

F

Te
, w15

M 1u1
2

2eTe
, hi5

ni

nes
, ~7!

wherenes is the electron density at some position specifi
below, and indexi denotes all charged species.

In these nondimensional variables equations~1!–~3! be-
come

d j1

dz
5 ñ iz2 ñ rec, ~8!

j 15h1w1
1/2, ~9!

dw1

dz
52

1

g1h1

dh1

dz
1

dh

dz
22w1

ñm1 ñ iz1 ñ rec

j 1
, ~10!

where

j 15
G1

nes
A M 1

2eTe
, ñm5

nmn1

nes
lA M 1

2eTe
,

~11!

ñ iz5
K izn0ne

nes
lA M 1

2eTe
, ñ rec5

K recn2n1

nes
lA M 1

2eTe
,

and g65Te /T6 . The electron and negative ion densitie
Eqs.~4! and ~5!, become

he5
ne0

nes
exp~2h!, ~12!

h25
n20

nes
exp~2g2h!. ~13!
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The electron temperature is usually equal to a few vo
whereas ion temperatures are only a small fraction of a v
which means thatg6@1 in all practical cases. The Poisson
equation~6! can be written in the following form:

e2
d2h

dz2 5h12he2h2 , ~14!

wherelD5Ae0Te /enes is the electron Debye length at th
position such thatne5nes, and e5lD /l is a nondimen-
sional parameter. The Debye length is normally very sm
compared with the ion mean free path which results
e!1.

III. QUASINEUTRALITY BREAKDOWN AND ION
SOUND LIMITATION

Logarithmic differentiation of Eq.~9! produces the fol-
lowing equation:

1

j 1

d j1

dz
5

1

h1

dh1

dz
1

1

2w1

dw1

dz
. ~15!

Using Eq.~14! the first right hand side term can be written

1

h1

dh1

dz
5

1

he1h2

d~he1h2!

dz
1e2

h1

he1h2

d

dzS 1

h1

d2h

dz2 D .

~16!

Substituting Eqs.~12! and ~13! into Eq. ~16! yields

1

h1

dh1

dz
52

11g2a

11a

dh

dz
1e2

h1

he1h2

d

dzS 1

h1

d2h

dz2 D , ~17!

wherea(z) is a ratio of the negative ion density to the ele
tron density. As follows from Eqs.~12! and ~13! this ratio
varies with the electric potential according to

a5a0 exp$2~g221!h%, ~18!

where a05n20 /ne0 is a parameter measuring the plasm
electronegativity. Now, by substitutingd j1 /dz from Eq.~8!,
dw1 /dz from Eq. ~10!, anddh1 /dz from Eq. ~17! into Eq.
~15! the following equation is obtained:

H S 12
1

2g1w1
D 11g2a

11a
2

1

2w1
J dh

dz
1

ñm12ñ iz

j 1

5S 12
1

2g1w1
D e2

h1

he1h2

d

dzS 1

h1

d2h

dz2 D , ~19!

which generalizes an equation derived in Ref. 12 to a plas
containing negative ions, and also allows for finite ion te
perature.

The right hand side of Eq.~19! represents a contributio
from finite space charge. Sincee!1 this contribution is
small, if the electric potentialh does not vary too fast with
position z. The plasma approximation is valid in this cas
and Poisson’s equation can be replaced by a quasineutr
condition which is equivalent to settinge50 in Eq. ~14!.
However, the quasineutral solution obtained by solving
~19! with e50 does not always exist. Indeed, for it to exist
is necessary that the first left hand side term is negative
cancels the second term which is positive definite. This is
case near the discharge center where the positive ion kin
,
lt,

ll
n

a
-

,
lity

.

nd
e
tic

energyw1 is small so that the coefficient before the elect
field dh/dz in Eq. ~19! is large and negative. Since the e
ergyw1 increases as the ions drift in the electric field towa
the walls the coefficient before the electric field becom
smaller in absolute magnitude. Larger values of the elec
field are required to cancel the second left hand side term
preserve quasineutrality. This is possible as long as the
efficient before the electric field is nonpositive, i.e.,

w1<
1

2 S 11a

11g2a
1

1

g1
D . ~20!

When the ion energy satisfies Eq.~20! with the equality sign,
the electric field becomes infinite. If

w1.
1

2 S 11a

11g2a
1

1

g1
D , ~21!

both left hand side terms are positive, and therefore the sp
charge contribution must be included. This interpretation
described in Ref. 12. The transitional value of the ion ene

w15w1s[
1

2 S 11as

11g2as
1

1

g1
D ~22!

corresponds to the ion velocity equal to the local ion sou
velocity or the Bohm speed

uB5AeTe

M 1
S 11as

11g2as
1

1

g1
D . ~23!

Here as5a0 exp@2(g221)hs#, and hs is the local electric
potential. Equation~23! can be easily obtained from th
Bohm criterion derived in Ref. 13. For some systems
negative ion temperature can be several times larger than
positive ion temperature. The term 1/g1 is then small and
can be omitted, which results in the Bohm speed expres
for electronegative gases obtained in Ref. 3.

The discharge divides into several regions depending
whether quasineutrality is satisfied. If the plasma
quasineutral the plasma approximation is valid, such that
ing the space charge density equal to zero leads to a solu
which closely approximates the exact solution. In a she
on the contrary, the finite space charge density determ
the physics of the solution. Quasineutrality can also be v
lated inside the discharge, as will become clear in Sec. I

IV. ION SOUND LIMITATION IN THE QUASINEUTRAL
CORE

It can be concluded from Sec. III that in a quasineut
solution, the space coordinatex has a maximuml s . The
electric field at this position becomes singular. The Boh
speed appears naturally as the critical velocity of the posi
ion drift, at x5 l s . The critical drift velocity is a result of
diffusion controlled by the ion inertia.14 With the inertia ne-
glected, the ion drift velocity is allowed to rise above the i
sound velocity which is not physical. The solution in th



t
he
ve
nl

on

he

ti

e
an

fo

e

e
n.
-

gh

u
is

rd
ac

th

n
.

the

.

s

ri-

s-

ally
s

d

the

4145J. Appl. Phys., Vol. 86, No. 8, 15 October 1999 Kouznetsov et al.
case is cut off when the ion drift velocity becomes close
the ion sound velocity. Solutions both with and without t
ion inertia were obtained in Ref. 14 for electropositi
plasma. It was found that omission of the inertia term o
modifies the density and potential profiles close tox5 l s .
However, at sufficiently high pressure such thatñm@ ñ iz the
two solutions become virtually identical. This approximati
is extended here to the electronegative plasma.

Neglecting the inertial term on the left hand side of t
positive ion momentum balance equation~3! and similar
terms in the momentum balance equations for the nega
ions and electrons produces flux equations

G i52Di

dni

dx
6nim iE, ~24!

where Di5eTi /min i , m i5e/min i are the diffusion coeffi-
cient and mobility of speciesi , n i is the total momentum
transfer collision frequency,E is the electric field, and the
6 corresponds to positive and negative carriers, respectiv
In a steady state, the electric currents must balance
when Eq. ~20! is satisfied, Poisson’s equation~6! can be
replaced by charge neutrality.

Using these conditions, the Boltzmann distributions
the electrons Eq.~4! and negative ions Eq.~5!, and the Ein-
stein relations, the positive ion flux can be written as

G152Da1

dn1

dx
, ~25!

where Da1 is the ambipolar diffusion coefficient for th
positive ions7,8,15

Da1.D1

11g11~g11g2!a

11g2a
. ~26!

From Eq. ~26!, we see that fora@1 we haveDa1

'D1(11T2 /T1) which we shall assume to hold over th
electronegative plasma core, until the ion sound transitio

For g2@1, ne.ne0 , and the positive ion particle bal
ance equation~1! becomes

d

dx S 2Da1

dn1

dx D5K izn0ne02K recn2n1 . ~27!

If the flow dominates the recombination the second ri
hand side term is small. Assuming thatDa1 is constant, Eq.
~27! can then be approximated by a parabolic solution7

n1

ne0
5

n2

ne0
115a0S 12

x2

l 2 D11, ~28!

where l is the scale length of the parabola. In the previo
work7,8 this parabolic solution is used to determine the d
charge plasma parametersTe , a0 , and l , given the appro-
priate boundary conditions.

As the positive ions drift from the plasma center towa
the walls their velocity increases and can eventually re
the ion sound velocity, Eq.~23!, at some positionx5 l s . It is
assumed that the ratio of the negative ion density to
electron density, at this position,as@1 so that Da1

.D1(11T2 /T1), a constant. A numerical model of a
oxygen discharge at low pressure8 supports this assumption
o

y

ve

ly.
d,

r

t

s
-

h

e

Thus, the quasineutral parabolic solution extends over
interval 0,x, l s . Then atx5 l s , the positive ion flux, Eq.
~25! is

2Da1

dn1

dx
ux5 l s

5n1~ l s!uB , ~29!

with uB given by Eq.~23!. Substituting Eq.~28! and Da1

5D1(11T2 /T1) into Eq. ~29! gives

D1S 11
T2

T1
Da0ne0

2l s

l 2 5~as11!ne0uB~as!, ~30!

whereas5a0(12 l s
2/ l 2) within the parabolic approximation

Substituting Eq.~23! andD15(p/8)v̄1l into Eq. ~30!, ne-
glecting the small term 1/g2 , and then squaring both side
of the equation results in

pl2

2l 2 S 21
T2

T1
1

T1

T2
Da0~a02as!as

5~as11!31
T1

T2
as~as11!2. ~31!

Provideda0 is known, this equation can be solved nume
cally for as . In Fig. 1, the ratioas /a0 is plotted versusa0

for values ofl/ l 50.1, 0.2, 0.5 and for values ofT1 /T2

51 and 0.25. Since Eq.~31! is obtained assumingne

.ne0 , it cannot be extended to purely electropositive pla
mas in which casea050. Equation~31! applies to consider-
ably electronegative plasmas witha0.1, as is also seen in
Fig. 1. In our previous work8 we investigated this transition
only for T1 /T251. However, particle-in-cell~PIC! simula-
tions of electronegative plasmas indicate that the spati
averaged value ofT1 /T2<1, such that we present solution
that bound this value. For comparison, the ratioas /a0 ob-
tained from collisionless theory,3,16 is shown in the same
figure. The collisionless curve is forg2530, but depends
weakly ong2 for g2.30. The collisional model develope
in the present work, which is for largeg6 , approximately
matches the collisionless curve forl/ l 50.5.

Equation~31! has no real solutions for smalla0 , which
means that the ion sound velocity is not reached inside

FIG. 1. The ratioas /a0 vs a0 from Eq. ~31! for values ofl/ l 50.1, 0.2,
and 0.5 and values ofT1 /T250.25 ~dotted lines! and 1~solid lines!. Also
represented is the collisionless case~Ref. 3! with g2530.
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electronegative region. For largera0 Eq. ~31! has two posi-
tive solutions, with the solution with the smaller value ofl s / l
~larger value ofas! giving the position where the quasine
trality breaks down, as has also been noted in a somew
different context in Ref. 16. At the onset of the ion sou
limitation, when Eq.~31! has a single solution, we find in th
limit of l/ l !1 a critical value ofa0 ,

a0cr5
l

l
b~T1 /T2!, ~32!

whereb versus the ratio of the positive to negative ion te
perature is shown in Fig. 2. When the ratioT1 /T2 varies
from 0.25 to 1,b increases slowly from 0.85 to 1.2. Ifa0

>a0cr the quasineutral electronegative core ends atx5 l s ,
and extending the solution further requires a non-neutral
gion which is considered in Sec. V.

V. SPACE CHARGE REGION

When Eq.~21! applies both left hand side terms in E
~19! are positive. Therefore the space charge contribu
which appears on the right hand side of Eq.~19! must be of
the same order of magnitude as any of the left hand s
terms. Comparing the first left hand side term to the rig
hand side term leads todh/dz;e2d3h/dz3. This means that
the characteristic length inside the space charge regio
determined by the electron Debye lengthlD rather than the
ion mean free pathl. It is reasonable then to switch to a ne
nondimensional position variable

z5
z

e
5

x

lD
. ~33!

It is convenient to shift the origin of the electric potenti
from the plasma center to the beginning of the space ch
region,z5zs[ l s /lD . The new electric potential is then

w5h2hs . ~34!

Definingnes, introduced in Eq.~7!, as the electron density a
z5zs leads to the nondimensional electron densityhe51 in
the beginning of the charge region. Withz as the position
variable, Eqs.~8!, ~10!, and~14! become

d j1

dz
5e~ ñ iz2 ñ rec!, ~35!

FIG. 2. Values ofb vs T1 /T2 .
at

-

e-

n

e
t

is

ge

dw1

dz
52

1

g1h1

dh1

dz
1

dw

dz
22ew1

ñm1 ñ iz1 ñ rec

j 1
,

~36!

d2w

dz2 5h12he2h2 . ~37!

The electron and negative ion densities, Eqs.~12! and ~13!,
can then be written as

he5exp~2w!, ~38!

h25as exp~2g2w!. ~39!

Sincee!1 the momentum transfer, ionization and recom
nation would appear to play a relatively minor role in th
space charge region. As a first approximation, the collisi
less case corresponding toe50 is considered in Sec. V A.

A. Collisionless case

Although it is necessary to include collisions to dete
mine the transition behavior, some insight is gained by fi
considering the collisionless limit. Integration of Eqs.~35!
and ~36! with e50 produces the positive ion continuity an
energy balance equations in the form

j 1[h1w1
1/25h1sw1s

1/2 , ~40!

w15w1s2
1

g1
lnS h1

h1s
D1w, ~41!

whereh1s511as , the positive ion density atz5zs , and
w1s , the positive ion energy, is obtained from Eq.~22!.
Using Eq.~40! the positive ion density can be written as

h15~11as!S w1s

w1
D 1/2

. ~42!

Substituting Eq.~42! into Eq. ~41! yields

w15w1s1
1

2g1
lnS w1

w1s
D1w, ~43!

which relates the positive ion energy and the electric pot
tial.

Substitution of Eqs.~38!, ~39!, and ~42! into Poisson’s
equation~37! yields

d2w

dz2 5hr~w![2
dV~w!

dw
, ~44!

where

hr~w!5~11as!S w1s

w1
D 1/2

2exp~2w!2asexp~2g2w! ~45!

is the nondimensional space charge density and

V~w!512exp~2w!1
as

g2
$12exp~2g2w!%

22~11as!w1s
1/2H w1

1/22w1s
1/21

1

2g1w1
1/22

1

2g1w1s
1/2J
~46!

with w1(w) obtained from Eq.~43!.



c

ch

so
ar

-

o
l

on

e
s
s
ib

ha

io
n

an
tr

the
ing
lly
ity
may
, as

his

.

4147J. Appl. Phys., Vol. 86, No. 8, 15 October 1999 Kouznetsov et al.
Equation~44! is known from the theory of ion acousti
shock waves, whereV(w) has an expression different from
Eq. ~46!.17 Nonetheless, a regime can be found in whi
V(w) from Eq. ~46! has the shape ofV(w) in the ion acous-
tic shock wave, as is shown below. The behavior of the
lution of Eq. ~44! can be studied using an analogy to a p
ticle moving in a potential field.17 The motion of a particle
subjected to a force2mdV(x)/dx is governed by the equa
tion:

d2x

dt2
52

dV~x!

dx
.

Equation~44! is the same as that of a particle, with the p
tential w replacingx, z replacing t and the quasipotentia
V(w) replacingV(x).

In order to explore three different regimes of the i
sound limitation the particle densities, Eqs.~38!, ~39!, ~42!,
the charge density, Eq.~45!, and the quasipotential, Eq.~46!,
are plotted in Figs. 3–5 versus the potentialw for g65100
and values ofas52, 2.7, and 3.5, respectively. These valu
are typical for an intermediate range of electronegativitie8

As is seen in Figs. 3~a!–5~a!, the negative ion density decay
rapidly into the space charge region and becomes neglig
after the potential increases by a few ion temperaturesT2 .
The positive ion density decreases much more slowly t
the negative ion density, which allows the space charge
form. The positive and negative ions behave in this situat
just like, respectively, the positive ions and electrons do i
sheath separating a simple electropositive plasma from
wall. With this analogy in mind, this non-neutral region c
be called an electronegative sheath. However, the elec

FIG. 3. Collisionless case withg65100 andas52. ~a! Particle densities of
the positive ionsh1 , negative ionsh2 , and electronshe and the charge
densityhr inside the space charge region versus the electric potential~b!
The quasipotentialV(w) which satisfies Eq.~46!.
-
-

-

s
.

le

n
to
n
a
a

on

density in the sheath remains essentially uniform due to
large ratio of the electron and ion temperatures. Depend
on the value ofas , the space charge density may eventua
return to its original zero value, when the positive ion dens
matches the electron density. The charge density then
become negative if the potential continues to increase
shown in Figs. 3~a! and 4~a!. In the largeras case shown in
Fig. 5~a!, the charge density never returns to zero, so t

FIG. 4. The same as Fig. 3 withg65100 andas52.7.

FIG. 5. The same as Fig. 3 withg65100 andas53.5.
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positive charge region is the only layer between
quasineutral electronegative core and the wall. This reg
of the ion sound limitation is called here the positive cha
regime.

The quasipotentialV plotted in Figs. 3~b!–5~b! varies
with w nonmonotonically: the initial decrease is followed b
a growth which may eventually takeV to positive values, if
as is sufficiently small. The case whenV becomes positive
for w.0 is shown in Fig. 3~b!. If the quasipotential well in
Fig. 3~b! were a real well, a particle entering from the le
(x50) will be reflected at the right-hand side of the we
(x.0) and return tox50. In this analogy, a quasiparticl
transits the quasiwell once fromw50 to w.0 and returns to
w50, forming a solitaryw-potential pulse.17 If a particle
experiences a collision and loses some of its momen
while in the well, it does not return tox50 but oscillates in
time about the value ofx at the bottom of the well. Similarly
some dissipation causes the potentialw to oscillate in space
about some value ofw.0.17 We refer here to this regime a
the oscillation regime, and the oscillations are demonstra
in the collisional case considered in the following section.
the largeras cases shown in Figs. 4~b! and 5~b!, V is nega-
tive for all w.0. In this regime the quasiparticle is not r
flected, and the potentialw rises until the chamber wall is
reached. In the regime represented in Fig. 4, the space ch
density is positive in the beginning of the charge region, th
becomes negative, and finally returns to positive values n
the wall. This regime is called here the charge double la
regime.

Boundaries separating these regimes can be determ
as follows. At the transition between the charge double la
and positive charge regimes both the space charge densihr

and its derivativedhr /dw become zero at the same value
w. It is then straightforward to find thatw150.5(1
11/g1). Substituting this into Eq.~45! with hr50 leads to
an equation involvingas and g6 . This equation is solved
numerically foras as a function ofg6 . The result is shown
in Fig. 6 as a solid line whereg2 varies in the wide range
from 20 to 200, andg1 /g251 and 4. At the transition
between the oscillation and double layer regimesV and
dV/dw52hr become zero simultaneously at somew. Solv-
ing Eq.~45! with hr50 and Eq.~46! with V50 yieldsas vs
g6 which is shown in Fig. 6 as a dashed line. In the posit
charge regime, the charge density is large forw.0, so the
quasineutral electropositive region cannot form in this
gime.

B. Collisional case

In this section, the parametere5lD /l is assumed to be
small, but finite. The ionization and recombination proces
are considered unimportant in order to simplify the analy
We shall discuss the validity of this approximation in Se
VII. Substituting the ion momentum transfer collision fr
quency at low pressure,nm5puu1u/2l, and n iz5n rec50
into Eq. ~11! results in

ñm5
p

2
j 1 . ~47!
e
e

e

m

d

rge
n
ar
r

ed
r

e

-

s
.

.
-

Integrating Eq.~35! yields the positive ion continuity
equation Eq.~40! obtained earlier. Then, the positive io
density is given by Eq.~42!. Substituting Eqs.~47! and~42!
into the momentum conservation equation~36! yields

dw1

dz
5

1

2g1w1

dw1

dz
1

dw

dz
2epw1 . ~48!

The set of differential equations is Eq.~48! and Poisson’s
equation~37!, with the positive and negative ion and electro
densities obtained from Eqs.~42!, ~39!, and~38!.

The set is too complicated to be solved analytically. A
plying the technique used in the collisionless case, one fi
that collisions contribute an extra term toV from Eq. ~46!,

dV52ep~11as!w1s
1/2E

zs

z

w1
1/2dz. ~49!

This contribution is negative definite and grows in mag
tude with z which resists formation of the right-hand sid
slope of the quasiwell andV reaching positive values forz
.zs . It is expected then that the size of the oscillation
gime in Fig. 6 decreases with increasinge. As a result, the
dashed curves in Fig. 6 in the collisional case are loca
below the collisionless dashed curves. Similarly, the so
curves, which divide the parameter space between the
gions wherehr>0 from the regions wherehr changes sign,
are located at loweras in the collisional case.

The space charge region is preceded by the quasine
electronegative core in which Poisson’s equation~37! can be
replaced with the plasma approximationh15he1h2 . This
allows one to obtain a quasineutral analytical solution giv
by

FIG. 6. Ion sound limitation regimes for~a! T15T2 and ~b! T1

50.25T2 .
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w15w1sS 11as

exp~2w!1asexp~2g2w! D
2

,

z2zs5
2

ep
lnS exp~2w!1asexp~2g2w!

11as
D

1
1

2epw1s~11as!
2 F12exp~22w!

1
4as

g211
$12exp~2~g211!w!%

1
as

2

g2
$12exp~22g2w!%1

1

g1
$~11as!

2

2~exp~2w!1asexp~2g2w!!2%G . ~50!

The boundary conditions used in Eq.~50! are such that atz
5zs , the position of the ion sound velocity thresholdw1

5w1s and w50. This solution results in an electric fiel
dw/dz which becomes singular atz5zs , but we avoid this
singularity by using boundary conditions for the non-neut
region that are atz,zs .

As in Ref. 18, we start solving the system of different
equations~37! and ~48! at some positionz0,zs , where the
quasineutral solution, Eq.~50!, approximately holds. The
boundary conditions forw1 and w at z5z0 are obtained
from Eq. ~50!, and the boundary condition fordw/dz is ob-
tained by differentiating Eq.~50!. As demonstrated in Ref
18, this way of setting up the boundary conditions does
produce artificial oscillations, when Eqs.~37! and ~48! are
integrated numerically. Numerical solution is obtained us
a Runge–Kutta–Fehlberg algorithm.19

First, the solution for values ofg65100, as52, ande
50.01 is studied. These parameters fall into the oscillat
regime in Fig. 6~a!, according to the collisionless theory. Th
potentialw versusz is plotted in Fig. 7~a!. Similarity in the
potential variation in the collisional and collisionless cases
the beginning of the space charge region is apparent. In
collisional case, however, the potential doesn’t return to z
after passing through the maximum. Instead, it experien
nonlinear oscillations with a spatial period on the order
lD . The oscillations begin atz5zs , the point of the ion
sound velocity threshold, and not at the point where the
culation begins, atz5zs25. Therefore, the boundary cond
tions are set correctly, and the oscillations are caused by
ion sound velocity threshold. The oscillations are dissipa
over a distance on the order of the ion mean free pathl.
Apart from oscillations, the potential also increases on av
age over a distance on the order ofl, and it grows exponen
tially inside the wall sheath. In the case consideredl/lD

5100, which corresponds, for example, to an oxygen d
charge at 2.6 mTorr with the electron densitynes

51016m23. We use the ion momentum transfer cross sect
smi510218m2 in the calculation ofl and assume that th
ions are at room temperature.

The particle densities and the space charge densityhr

versusz are shown in Fig. 7~b!. The following observations
can be made. The boundary conditions which match the n
l

l

t

g

n

n
he
o

es
n

l-

he
d

r-

-

n

n-

neutral to the quasineutral solutions imply thathr50 at the
boundary. Although the quasineutrality is not assumed at
other position the charge density is negligibly small forz
,zs , i.e., until the positive ions reach the ion sound velo
ity. This justifies using the quasineutral solution to constr
the boundary conditions for the non-neutral solution which
done here. The negative ion density is seen to drop to zer
the order oflD . The positive ion density experiences osc
lations about the electron density with a spatial period o
few lD . The oscillation amplitude decays over a length
the order ofl. These oscillations have also been observed
rf discharge simulations using a fluid description of the io
coupled to a Monte Carlo simulation of the electrons.20 The
electron density is less affected by the electric poten
variation, because of the high electron temperature.
space charge density in the non-neutral region is see
oscillate about zero. The oscillation amplitude diminish
considerably, but it does not become negligible until t
regular sheath starts to form at aboutz.zs130. The charge
density approaching zero can signal a transition to ano
quasineutral region downstream of the space charge reg

The new quasineutral region is clearly seen in Fig. 8
which caseas51 and the other parameters are the sam
Now, there is sufficient space between the position of the
sound velocity threshold and the wall, so that a quasineu
region forms which contains only the positive ions and el
trons. The non-neutral region can be called an internal sh
in this case. It separates two quasineutral regions: the e
tronegative core and the electropositive halo. If there is
additional ionization in the halo, which has been assum
here, then from the charge densityhr the electropositive halo

FIG. 7. Collisional case withg65100, l/lD5100, andas52. ~a! The
electric potential vs the positionz. ~b! Particle densities of the positive ion
h1 , negative ionsh2 , and electronshe and the charge densityhr vs the
positionz.
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is found to be aboutl/2 long, and it merges aroundz.zs

1150 with the regular wall sheath.
When e is increased to 0.1 the size of the oscillatio

regime decreases so that the parametersas52 and g6

5100 fall into the expanding double layer regime, as is s
in Fig. 9. The potentialw, shown in Fig. 9~a!, increases
monotonically with positionz. Observing the variation of the
charge density shown in Fig. 9~b!, one can see the familia
double layer structure. The collisionless case provide
guideline for moving into the oscillation regime, which is
reduceas , as seen in Fig. 6. The collisional case, withas

51, is shown in Fig. 10, giving an oscillatory solution and
return to quasineutrality. In the cases shown in Figs. 9 and
l/lD510, which corresponds to an oxygen discharge
26 mTorr andnes51016m23.

To observe the ion sound limitation regime without
double layer, we takeas52, g2530, g15120, and e
50.1 with the solution presented in Fig. 11. As follows fro

FIG. 8. The same as Fig. 7~b! with g65100, l/lD5100, andas51.

FIG. 9. The same as Fig. 7 withg65100, l/lD510, andas52.
n

a

0
t

Fig. 6~b!, these parameters lie inside the positive charge
gime.

VI. PARTICLE-IN-CELL SIMULATION RESULTS

The analytic theory of the ion sound limitation regim
presented in the previous sections is compared with
simulations. The simulations were done using thePDP1 code
which includes the most important collisional processes
ing Monte Carlo methods.21

The standardPDP1 code was modified in two ways. Firs
the positive and negative ion masses were reduced in
simulation to 60me and 30me , respectively. This signifi-
cantly increases simulation speed, which is very desira
since a long run time is required to average out the nois
the space charge density. Reducing the ion mass affect
action rate constants, which are given by22

K~Teff!5
2

eTeff
S 2

pmReTeff
D 1/2

3E
0

`

sR~ER!expS 2
ER

eTeff
D ER dER ,

wheremR5m1m2 /(m11m2) is the reduced mass of the co
liding particles,Teff is an effective temperature,sR is a re-
action ~collision! cross section,ER is the collision energy,
and it is assumed that colliding species have Maxwell
distributions. For electron collisions with heavy particl
mR.me and Teff.Te. For collisions of heavy particles
among themselvesmR;M , the positive or negative ion

FIG. 10. The same as Fig. 7~b! with g65100, l/lD510, andas51.

FIG. 11. The same as Fig. 7~b! with g15120, g2530, l/lD510, and
as52.
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mass, andTeff;Ti , the ion temperature. Then, reducing t
ion mass leaves rate constants for the electron–heavy
ticle reactions~collisions! unchanged, while increasing ra
constants for the heavy particle collisions among themse
by f 5(M real/Mnew)

1/2 times. The ion diffusion coefficient is
also increased by the same factor. If cross sections for
electron–heavy particle collisions all also increased byf
times all rate constants then the ion diffusion coefficie
will be increased by the same factor off . In this case, the
simulation with the reduced ion mass is expected to g
results close to those of the simulation with the real
mass. For a discharge in oxygenf 531.3.

Second, an alternative electron heating mechanism
built into the code to transfer power to the plasma. In
standard code the discharge is sustained capacitively
driving the plasma with the voltage or current source at
plates. This results in oscillating, high voltage sheaths n
the plates. Now, the change in the electric potential acr
the structures described above is only several times the n
tive ion temperature. This potential change and the sp
charge density variation associated with it might go unde
ted, if an oscillating, high voltage sheath is nearby. In
simulation, both plates were grounded, and the electr
were subject to a 13.56 MHz spatially uniform electric fie
parallel to the plates. The direction along the plates is
resolved in the 1D3v code which accounts for one spa
dimension and three velocity components. A nearly isotro
electron velocity distribution was obtained due to electr
scattering. Because the electric field was directed along
plates and the plates were grounded, the sheaths nea
plates were stationary, low voltage sheaths. This elec
heating mechanism is essentially a simple model of an
ductive source operation in which power transferred to
electrons is primarily determined by the rf azimuthal elect
field.2,23 With a constant rf electric field source, the simul
tion is unstable: work done on the electrons by the elec
field over an rf cycle is proportional to the electron numb
as opposed to being a constant. This problem was reso
by tuning the electric field amplitude so that the number
electrons in the simulation matches the constant elec
number given in the input deck. The tuning was done au
matically by a fuzzy logic controller introduced into th
code. The controller uses the electron number and its t
derivative as input parameters and the electric field am
tude as the control parameter. The details of the contro
are given in Ref. 24.

Numerical results for the case of an oxygen discharg
p55 mTorr (n051.631020m23) and ne052.6631015m23

are shown in Fig. 12. The plate spacing was 3.6 cm. Fig
12~a! shows the positive and negative ion and electron te
peratures versus the position. At the discharge centerTe

54.07 eV, T250.078 eV andT150.027 eV ~313 K!, so
that g2552 andg15151. The electron temperature is e
sentially constant throughout the discharge, but the nega
ion temperature increases by an order of magnitude du
transition from the electronegative core to the electroposi
halo region. The electropositive region length in this case
comparable to the ion mean free pathl50.6 cm, as is seen
in Fig. 12~b!. The negative ion profile in the electronegati
ar-
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core approximately follows a parabola withl 51.2 cm.
Then, l/ l 50.5. The space charge double layers separa
the electronegative core from two electropositive halo
gions are clearly seen in Fig. 12~d!. The quasineutrality in
the core region breaks atas.1, as seen from Fig. 12~c!. The
point with coordinatesas /a050.26, a053.8 lies close to

FIG. 12. Simulation results of an rf discharge in oxygen atp55 mTorr and
ne052.6631015 m23. ~a! The positive and negative ion and electron tem
peratures.~b! The positive and negative ion and electron densities.~c! The
ratio of the negative ion to electron density.~d! The space charge densit
divided by the unit charge.
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the l/ l 50.5 curve in Fig. 1. The electron density at th
position where the quasineutrality breaks,nes52.37
31015m23, is obtained from Fig. 12~b!. The electron Debye
length at this position islD50.03 cm, so thate5lD /l
50.05. The results of the theoretical model with the valu
of as , g2 , g1 ande obtained above from the simulation a
shown in Fig. 13~a!. The space charge density exhibits on
three oscillation cycles about zero. This result margina
disagrees with the simulation. The theoretical model can
better matched to the simulation, if the negative ion tempe
ture increase in the halo region is accounted for. The ne
tive ion distribution at the ion sound velocity threshold
approximated with two Boltzmann classes:~i! cold ions with
T2

(c)50.1 eV and as
(c)50.7 and ~ii ! hot ions with T2

(h)

50.4 eV andas
(h)50.3. This is a reasonable estimate, as c

be concluded from Figs. 12~a! and 12~b!. The model results
in this case are given in Fig. 13~b!. A space charge doubl
layer is seen which is in agreement with the simulation. T
distance from the ion sound velocity threshold to the wal
about 15lD50.45 cm which is comparable to 0.75 cm in th
simulation. We have not seen the oscillation regime of
ion sound limitation, which, for oxygen, probably occupies
small region of theas , g2 , g1 ande parameter space.

A stronger double layer was observed in the case op
510 mTorr (n053.231020m23) and ne051.531015m23,
shown in Fig. 14. In this casea058, as52 andl/ l 50.2.
The point as /a050.25, a058 falls between the twol/ l
50.2 curves in Fig. 1. We have also run a case at the s
pressure, but at higher power~higherne0! and observed tha

FIG. 13. The structure of the space charge region as predicted by the
retical model with the parameters obtained from the simulation result
Fig. 12. ~a! The negative ion distribution with one Boltzmann class,as

51, g2552, g15151 ande50.05. ~b! The negative ion distribution with
two Boltzmann classes,as

(c)50.7, g2
(c)540, as

(h)50.3, g2
(h)510, g1

5151, ande50.05.
s

y
e

a-
a-

n

e
s

e

e

the charge double layers disappeared fora0,a0cr. The ion
sound limitation condition, Eq.~31!, and the existence of the
double layers between the electronegative core and the e
tropositive halo is thus confirmed by the simulations.

VII. CONCLUSION AND DISCUSSION

Positive ions can be accelerated to the local ion so
velocity within the electronegative core. The ratio of th
negative ion and electron densities in the discharge centea0

must be larger thana0cr given by Eq.~32!. The minimum
valuea0cr is inversely proportional to the ion mean free pa
and therefore varies linearly with gas pressure. Fora0

.a0cr the quasineutral electronegative solution breaks do
Assuming time-independent behavior, the quasineutral
gion can be matched to a solution in which space charg
included. Just beyond the transition the space charge re
is similar in structure to a regular wall sheath, with the neg
tive ions playing the role of electrons; the electron density
only slightly affected. As soon as the potential increases b
few times the negative ion temperature, the negative ion d
sity becomes negligible, the positive ions become subso
and the structure of the space charge region changes dep
ing on the values ofas , the ratios of the negative ion to
electron densities at the ion sound velocity thresho
T6 /Te , ande, the ratio of the local electron Debye leng
lD to the ion mean free pathl. Three regimes are identified
in order of decreasingas : the positive charge, charge doub
layer, and oscillation regimes. In the first regime, the cha
region is positively charged and merges with the regular w
sheath. At loweras , the space charge density changes s
twice, forming a charge double layer between the electro

eo-
in

FIG. 14. Simulation results of an rf discharge in oxygen atp510 mTorr and
ne051.531015 m23. ~a! The positive and negative ion and electron den
ties. ~b! The space charge density divided by the unit charge.
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gative core and the wall sheath. In these two cases, the s
charge region extends over a few electron Debye length
as is reduced further, the potential, positive ion velocity, a
positive ion and electron densities exhibit oscillatory beh
ior in space. The spatial period of the oscillation is on t
order of the electron Debye length. Ifas is well below its
value at the transition between the double layer and osc
tion regimes, the plasma again becomes quasineutral do
stream of the ion sound velocity threshold due to dissipa
effects, and an electropositive halo can form. The n
neutral region is an internal sheath, with special characte
tics, as described previously. The change in the electric
tential across the internal sheath amounts to several time
negative ion temperature. This potential drop is sufficien
confine almost all negative ions to the electronegative c
but has little effect on the electrons which are much ho
than the ions. The internal sheath extends over a length
the order of the ion mean free path.

Comparison of the theoretical model with the simu
tions demonstrates that the model predicts the existenc
the various non-neutral regions qualitatively correctly. Of t
three regimes named above, the positive charge and
charge double layer regimes were observed in the sim
tions. For the double layer regime, the structure of the n
neutral region in the simulation and in the model with t
parameters taken from the simulation are similar. The os
lation regime has not been observed in the simulatio
which may be due to its small size in theas , g2 , g1 ande
parameter space, for oxygen. The size of the oscillation
gime is smaller in a more collisional case~larger e!, and is
smaller if high energy negative ions exist near the position
the ion sound velocity threshold.

In previous work8 we used the ansatz that a small pote
tial confined the negative ions to the core at the posit
where the positive ion drift velocity reached the local i
sound velocity. This resulted in truncated ion profiles with
abrupt density drop to the electropositive edge. Our res
here support that ansatz. Abrupt transitions from the e
tronegative core to the electropositive edge studied in R
5,6, and in our previous work8 under the quasineutrality as
sumption, may be caused by the ion sound limitation and
consequential quasineutrality breakdown. However we a
find that for the usual values ofT6 /Te in a processing
plasma, large values ofas cannot be supported with an in
ternal sheath. This result is not inconsistent with the rang
plasma parameters explored in a previous paper,8 but indi-
cates that at the larger values ofa0 of the parameter space o
Fig. 1, the internal sheath joins directly to the extern
sheath. As found in Ref. 11, in the equilibrium solutions w
large a0 and therefore largeas , there is no significant
ce
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quasineutral electropositive region, which is consistent w
our present results. Since the edge region is generally s
compared to an ionization length we expect our soluti
which ignores ionization in the edge region, to be a reas
ably accurate description of that region.
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