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Abstract

Internal solitary waves are an ubiquitous feature of the coastal ocean and atmo-
spheric boundary layer. We will review the use of the variable coefficient Korteweg
de Vries equation, and the extended Korteweg de-Vries equation (that is, with an
extra cubic nonlinear term), to model these waves. We will describe both the adi-
abatic theories for slowly-varying solitary waves, and the results from numeri-
cal simulations. Particular emphasis will be placed on the consequences when the
coefficients of either of the nonlinear terms undergoes a sign change, which may
lead to a radical and non-adiabatic change of the wave- form.

1 Introduction

Solitary waves are finite-amplitude waves of permanent form which owe their
existence to a balance between nonlinear wave-steepening processes and linear
wave dispersion. Typically, they consist of a single isolated wave, whose speed
is an increasing function of the amplitude. They are ubiquitous, and in particu-
lar internal solitary waves are a commonly occuring feature in the stratified flows
of coastal seas, fjords and lakes (see, for instance [1-6]) and in the atmospheric
boundary layer (see, for instance [7-9]) Moreover, solitary waves are notable,
not only because of their widespread occurrence, but also because they can be
described by certain generic nonlinear wave equations which are either integrable,
or close to integrability. The most notable example in this context is the now
famous Korteweg-de Vries equation, which will figure prominently in this brief
article.

Our aim here is to describe appropriate model evolution equations to describe
internal solitary waves, and indicate briefly some of their more salient properties.
In the next section we will introduce a canonical model equation, which can be
systematically derived from the complete fluid equations of motion for an invis-
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cid, incompressible, density-stratified, fluid, with boundary conditions appropri-
ate to an oceanic situation. This equation in its simplest form is the well-known
Korteweg-de Vries (KdV) equation with its familiar solitary wave solution, but
importantly, in order to account for the large amplitudes sometimes observed, we
extend this model here to the extended Korteweg-de Vries (eKdV) equation which
contains both quadratic and cubic nonlinearity, and describe its solitary wave solu-
tions. Further, in the third section, in order to allow for the effects of a variable
background environment, we describe a further extension to variable-coefficient
extended Korteweg-de Vries equation. In general this model equation needs to be
solved numerically, but to give some insight into the nature of the solutions, we
present a particular class of asymptotic solutions describing a slowly-varying soli-
tary wave.

2 Asymptotic model evolution equations

Let us consider an inviscid, incompressible fluid which is bounded above by a
free surface and below by a flat rigid boundary. Suppose that the flow is two-
dimensional and can be described by the spatial coordinates (x, z) where x is
horizontal and z is vertical. This configuration is appropriate for the modelling
of internal solitary waves in coastal seas, and also in straits, fjords or lakes pro-
vided that the effect of lateral boundaries can be ignored. The extensions to this
basic model needed to incorporate the effects of a horizontally variable background
state, and will be described later. Further extensions to take account of dissipation
and lateral effects are discussed in [3,4].

In the basic state the fluid has density ρ0(z), pressure p0(z) (such that p0z =
−gρ0) and a horizontal shear flow u0(z) in the x−direction. Then, in standard
notation, the equations of motion relative to this basic state are

ρ0(ut+u0ux+wu0z)+px = −(ρ0+ρ)(uux+wuz)−ρ(ut+u0ux+wu0z), (1a)

pz + gρ = −(ρ0 + ρ)(wt + u0wx + uwx + wwz) (1b)

g(ρt + u0ρx) − ρ0N
2w = −g(uρx + wρz) (1c)

ux + wz = 0 (1d)

Here (u0 + u,w) are the velocity components in the (x, z) directions, ρ0 + ρ is
the density, p0 + p is the pressure and t is time. N(z) is the buoyancy frequency,
defined by

ρ0N
2 = −gρ0z (2)

The boundary conditions are

w = 0, at z = −h (3a)

p0 + p = 0, at z = η, (3b)

and
ηt + u0ηx + uηx = w, at z = η. (3c)
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Here, the fluid has undisturbed constant depth h, and η is the displacement of the
free surface from its undisturbed position z = 0.

To describe internal solitary waves we seek solutions of small amplitude and
long wavelength. Then the dominant balance is obtained by equating to zero the
terms on the left-hand side of (1a-d) (and treating the boundary conditions in a
similar way) to obtain a set of equations describing linear long wave theory. We
will use the vertical particle displacement ζ as the primary dependent variable,
where

ζt + u0ζx + uζx + wζz = w. (4)

Note that it then follows that the perturbation density field is given by ρ = ρ0(z −
ζ) − ρ0(z) ≈ ρ0N

2ζ as ζ → 0, where we have assumed that as x → −∞, the
density field relaxes to its basic state.

Linear long wave theory is now obtained by omitting the right-hand side of
equations (1a-d), and simultaneously linearising boundary conditions (3b,c). Solu-
tions are sought in the form

ζ = A(x − ct)φ(z), (5)

while the remaining dependent variables are then given by analogous expressions.
Here c is the linear long wave speed, and the modal function φ(z) is defined by the
boundary-value problem,

{ρ0(c− u0)2φz}z + ρ0N
2φ = 0, in − h < z < 0, (6a)

φ = 0 at z = −h, (6b)

and (c− u0)2φz = gφ at z = 0. (6c)

Typically, the boundary-value problem (6a-c) defines an infinite sequence of modes,
φ±n (z), n = 0, 1, 2, . . . , with corresponding speeds c±n . Here, the superscript “±”
indicates waves with c+n > maxu0(z) and c−n < minu0(z) respectively. We shall
confine our attention to these regular modes, and consider only stable shear flows.

It can now be shown that, within the context of linear long wave theory, any
localised initial disturbance will evolve into a set of outwardly propagating modes,
each given by an expression of the form (5). Assuming thats the speeds c±n of each
mode are sufficiently distinct, it is sufficient for large times to consider just a single
mode. Henceforth, we shall omit the indices and assume that the relevant mode
(usually n=1) has speed c, amplitude A and modal function φ(z). Then, as time
increases, we expect the hitherto neglected nonlinear terms to have an effect, and to
cause wave steepening. However, this is opposed by the terms representing linear
wave dispersion, also neglected in the linear long wave theory. A balance between
these two effects emerges as time increases and the well-known outcome is the
Korteweg-de Vries (KdV) equation, or a related equation, for the wave amplitude.

The formal derivation of the evolution equation requires the introduction of the
small parameters, α and ε, respectively characterising the wave amplitude and dis-
persion. A KdV balance requires α = ε2, with a corresponding timescale of ε−3.
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The asymptotic analysis required is well understood (see e.g. [3,4,10-13], so we
shall give only a brief outline here. We introduce the scaled variables

τ = εαt , θ = ε(x− ct) (7)

and then let
ζ = αA(θ, τ)φ(z) + α2ζ2 + . . . , (8)

with similar expressions analogous to (8) for the other dependent variables. At
leading order, we get the linear long wave theory for the modal function φ(z) and
the speed c, defined by (6a-c). Note that since the modal equation is homogeneous,
we are free to impose a normalization condition on φ(z). A commonly used condi-
tion is that φ(zm) = 1 where |φ(z)| achieves a maximum value at z = zm. Then,
at the next order, we obtain the equation for ζ2,

{ρ0(c− u0)2ζ2θz}z + ρ0N
2ζ2θ = M2, in − h < z < 0, (9a)

ζ2θ = 0, at z = −h, (9b)

ρ0(c− u0)2ζ2θz − ρ0gζ2θ = N2, at z = 0. (9c)

Here the inhomogeneous terms M2, N2 are known in terms of A(θ, τ) and φ(z),
and are given by

M2 = 2{ρ0(c−u0)φz}zAτ+3{ρ0(c−u0)2φ2
z}zAAθ−ρ0(c−u0)2φAθθθ, (10a)

N2 = 2{ρ0(c− u0)φz}Aτ + 3{ρ0(c− u0)2φ2
z}AAθ. (10b)

The left-hand side of the equations (9a-c) is identical to the equations defining the
modal function (i.e. (6a-c)), and hence can be solved only if a certain compatibility
condition is satisfied, given by,

∫ 0

−h
M2φdz = [N2φ]z=0 (11)

Note that the solution for ζ2 contains a term A2φ(z) where the amplitude A2 is
left undetermined at this stage.

Substituting the expressions (10a,b) into (11) we obtain the required evolution
equation for A, namely the KdV equation

Aτ + µAAθ + λAθθθ = 0. (12)

Here, the coefficients µ and λ are given by

Iµ = 3
∫ 0

−h
ρ0(c− u0)2φ3

z dz, (13a)

Iλ =
∫ 0

−h
ρ0(c− u0)2φ2 dz, (13b)
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where

I = 2
∫ 0

−h
ρ0(c− u0)φ2

z dz. (13c)

Confining attention to waves propagating to the right, so that c > uM = max
u0(z), we see that I and λ are always positive. Further, if we normalise the first
internal modal function φ(z) so that it is positive at its extremal point, then it is
readily shown that for the usual situation of a near-surface pycnocline,µ is negative
for this first internal mode. However, in general µ can take either sign, and in some
special situations may even be zero. Explicit evaluation of the coefficients µ and
λ requires knowledge of the modal function, and hence they are usually evaluated
numerically.

Proceeding to the next highest order will yield an equation set analogous to (9a-
c) for ζ3, whose compatibility condition then determines an evolution equation
for the second-order amplitude A2. We shall not give details here (see [14]), but
note that using the transformation A + αA2 → A, and then combining the KdV
equation (12) with the evolution equation for A2 will lead to a higher-order KdV
equation for A of the general form.

Aτ + µAAθ + λAθθθ

+α(νA2Aθ + βAθθθθθ + γAAθθθ + δAθAθθ) = 0. (14)

However, we must now point out that this higher-order Korteweg-de Vries equation
(14) is, strictly speaking, an asymptotic result valid when α is sufficiently small,
and is most likely to be useful when the coefficient µ of the quadratic nonlinear
term is small (e.g. O(ε) where we recall that α = ε2). In this situation, the cubic
nonlinear term in the higher-order KdV equation is the most important higher-
order term, and (14) reduces to the extended KdV equation,

Aτ + µAAθ + νA2Aθ + λAθθθ = 0. (15)

Here, since µ ≈ 0, a rescaling has been used, in which µ is 0(ε), and A is replaced
with A/ε. In effect the amplitude parameter is ε in place of ε2.

Both of the evolution equations, viz. the KdV equation (12) and the extended
KdV equation (15) are exactly integrable, (see, for instance, [15]), with the con-
sequence that the initial-value problem with a localised initial condition is exactly
solvable. The most important implication of this integrability for the KdV equation
is that an arbitrary initial disturbance will evolve into a finite number (S) of soli-
tary waves (called solitons in this context) and an oscillatory decaying tail. This,
together with the robust stability properties of solitary waves, explains why inter-
nal solitary waves are so commonly observed. Note that because solitary waves
typically have speeds which increase with the wave amplitude, the S waves are
rank-ordered by amplitude as t → ∞. Also, to produce solitary waves at all, the
initial disturbance should have the correct polarity (e.g. µ

∫ ∞
−∞A(θ, 0)dθ > 0 for

the case of the KdV equation (12)). Note that, in applications the initial condition
A(θ, 0) for the evolution equation is found by first solving the linear long wave
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equations, and then identifying the mode of interest. Thus A(θ, 0) is given by (5),
which in turn is a reduction from the actual initial conditions.

It follows from the proceeding discussion that in describing the solution of the
evolution equations, the most important step is to determine the solitary wave solu-
tions. For the KdV equation (12) this is given by

A = a sech2β(θ − V τ), (16a)

where V =
1
3
µa = 4λβ2. (16b)

Note that the speed V is for the phase variable θ, and the actual total speed is
c+αV . Since the dispersion coefficient λ is always positive for right-going waves,
it follows that these solitary waves are always supercritical (V > 0), and are waves
of elevation or depression according as µ<>0. We also see that β−1 is proportional
to |a|− 1

2 , and hence the larger waves are not only faster, but narrower.
For the extended KdV equation (15) the corresponding solitary wave is given by

A =
a

b+ (1 − b) cosh2 β(θ − V τ)
, (17a)

where V =
1
3
a

(
µ+

1
2
νa

)
= 4λβ2 , b =

−νa
(µ+ νa)

. (17b)

There are two cases to consider. If ν < 0, then there is a single family of solutions
such that 0 < b < 1 and µa > 0. As b increases from 0 to 1, the amplitude
|a| increases from 0 to a maximum of |µ/ν|, while the speed V also increases
from 0 to a maximum of −µ2/6ν. In the limiting case when b → 1 the solution
(17a) describes the so-called “table-top” solitary wave, which has a flat crest of
amplitude am = −µ/γ and is terminated at each end by bore-like solutions. In
the case µ/ε = 0 there are no exact solitary wave solutions of (15) when ν < 0,
but instead there is the travelling bore solution εA = atanhβ(θ − V τ) where
V = 1

3νa
2 = −2λβ2. Note here that the amplitude of the travelling bore is a free

parameter, and that the speed V < 0.
For the case when ν > 0, b < 0 and there are two families of solitary waves.

One is defined by −1 < b < 0, has µa > 0, and as b decreases from 0 to −1, the
amplitude a increases from 0 to ∞, while the speed V also increases from 0 to ∞.
The other is defined by −∞ < b < −1, has µa < 0 and, as b increases from −∞
to −1, the amplitude |a| increases from −2|µ|/ν to ∞. In this case solitary waves
exist if µ = 0 (b = −1) and are given by

A = a sech 2β(θ − V τ), (18a)

where V =
1
6
νa2 = 4λβ2 (18b)

On the other hand, as b → −∞, β → 0 and the solitary wave (17a) reduces to an
algebraic soliton.
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3 Variable background

The KdV equation (12) is the basic model for the situation studied in Section 2,
when the flow is unidirectional, and the background state is horizontally uniform.
Our purpose now is to extend this basic model to situations where there is a vari-
able background environment. This can arise due to a variable depth h(X), or due
to horizontal variability in the basic density ρ0(X ; z) and horizontal velocity field
u0(X ; z) where X = εαx. Here, for simplicity, we are considering the situation
when the background variability is unidirectional and in the flow direction. The
scaling indicates that we are assuming that the background varies on a length scale
which is much greater than that of the solitary waves, but is comparable to the
length scale over which the wave field evolves. The modal functions φ(X ; z) are
again defined by (6a-c), but now depend parametrically on X , and hence so does
the wave speed c(X). An asymptotic expansion analogous to (8) is then intro-
duced, but the variables τ and θ in (7) are here replaced by

s =
∫ X

0

dX ′

c(X ′)
, ψ =

1
α

(s− τ), (19)

where we recall that τ is defined by (7). The amplitudeA(s, ψ) can then be shown
to satisfy the variable-coefficient extended KdV equation [3-4,16],

As +
σs
2σ
A+

µ

c
AAψ +

ν

c
A2Aψ +

λ

c3
Aψψψ+ = 0 , (20)

which thus replaces (15). Here the coefficients µ(X), λ(X) are defined by (13a,b),
and σ(X) = c2I , whose significance is that σA2 is a measure of the wave action
flux in the X-direction, and is a conserved quantity.

In general the gKdV equation (20) must be solved numerically. However, to gain
insight into the expected behaviour of the solitary wave solutions, it is useful to
consider the asymptotic construction of the slowly-varying solitary wave solution,
in which it is assumed that the background variability and the dissipative effects
are sufficiently weak that a solitary wave is able to maintain its structure over long
distances. In this case a multi-scale perturbation technique [17-21] can be used in
which the leading term is

A = A0 =
a

b+ (1 − b) cosh2 β(θ − ∫ θ
V dτ)

, (21a)

where V =
1
3
a

(
µ+

1
2
νa

)
= 4λβ2, b =

−νa
(2µ+ νa)

. (21b)

Here the wave amplitude a(s), and hence also V (s), β(s), are slowly- varying
functions of s. Their variation is most readily determined by noting that (20) pos-
sesses the conservation law,

∂

∂s

∫ ∞

−∞
σA2dψ = 0 , (22)
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which expresses conservation of wave action flux. Substitution of (31a) into (32)
gives

P0 =
∫ ∞

−∞
σA2

0dψ = constant . (23)

The integral can be evaluated explicitly in terms of the coefficients in the gKdV
equation (20) and the solitary wave parameters, and then on using the relations
(21b) this is an equation for a(s) (see [19-21], and note for instance that for the
KdV equation, i.e. ν = 0 in (20), P0 = 2σa2/3β ). However, although the slowly-
varying solitary wave conserves wave action flux it cannot simultaneously satisfy
the law for conservation of mass,

∂

∂s

∫ ∞

−∞

√
σAdψ = 0 , (24)

Instead, it is accompanied by a trailing shelf of small amplitude but long length
scale, whose amplitudeA− at the rear of the solitary wave is determined from (24)
and is given by

√
σA− = − ∂

∂s
M0 , where M0 =

∫ ∞

−∞

√
σA0dψ . (25)

Like P0 the solitary wave mass M0 can be evaluated explicitly (see [21-23] and
note that in the KdV case M0 =

√
σ2a/β. When the coefficients λ, µ, σ and c are

known explicitly as functions of s, the expressions in (24) and (25) can also be
evaluated explicitly. However, usually these coefficients, being determined inter
alia from the modal functions, are known only numerically, and hence a(s) and
A (s) can also only be obtained numerically.

A detailed analysis of the formula (23) shows that situations of particular inter-
est occurs at the critical locations when the coefficients of the nonlinear terms
in (15), µ(s) or ν(s), are zero. In the oceanic environment there may be several
such critical locations as the waves propagate shoreward over a decreasing ocean
depth h. For instance µ is typically negative in deep water, but positive in shal-
low water (here we consider waves propagating to the right so that I(13c) > 0
and then the dispersive coefficient λ (13b) is always positive (13b)). It follows
from (17b) that the solitary wave is usually a wave of depression when µ < 0,
but a wave of elevation when µ > 0. The issue then arises as to how the soli-
tary will behave as µ → 0 (i.e. as the wave approaches a critical location), and
in particular, as to whether a solitary wave of depression can be converted into
one or more solitary waves of elevation as the critical location is traversed. This
problem has been intensively studied (see, for instance [21-23] and the references
therein), and the solution depends on how rapidly the coefficient µ changes sign.
If µ passes through zero rapidly compared to the local width of the solitary wave,
then the solitary wave is destroyed, and converted into an oscillatory wavetrain.
On the other hand, if µ changes sufficient slowly that the formula (23) holds as
the critical location is approached, then the outcome depends on the sign of the
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coefficient ν of the cubic nonlinear term. If ν < 0, then as the solitary wave ampli-
tude decreases, the amplitude of the trailing shelf, which has the opposite polarity,
grows indefinitely until a point is reached just prior to the critical location where
the slowly-varying solitary wave asymptotic theory fails. A combination of this
trailing shelf and the distortion of the solitary wave itself then provide the appro-
priate “initial” condition for one or more solitary waves of the opposite polarity to
emerge as the critical location is traversed. But if ν > 0, then the solitary wave
can successfully traverse the critical location, but typically continues to decrease
in amplitude and may eventually transform into a breather.
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