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Abstract. In coastal seas and straits, the interaction

of barotropic tidal currents with the continental shelf,

seamounts or sills is often observed to generate large-

amplitude, horizontally propagating internal solitary waves.

Typically these waves occur in regions of variable bottom

topography, with the consequence that they are often

modeled by nonlinear evolution equations of the Korteweg-

de Vries type with variable coefficients. We shall review

how these models are used to describe the propagation,

deformation and disintegration of internal solitary waves as

they propagate over the continental shelf and slope.

1 Introduction

Solitary waves are nonlinear localized waves of permanent

form, first observed by Russell (1844) as a free surface

solitary wave in a canal, and then in a series of experi-

ments. Later, analytical studies by Boussinesq (1871) and

Rayleigh (1876) for small-amplitude water waves confirmed

Russell’s observations. Then Korteweg and de Vries (1895)

derived their well-known equation, which contains the

“sech”2 solitary wave as one of its main solutions. But it

was not until the second half of the twentieth century that

it was realised that the Korteweg-de Vries (KdV) equation,

was, on the one hand, a notable integrable equation, and

on the other hand a universal model for weakly nonlinear

long waves in a wide variety of physical contexts. The

KdV equation, together with various extensions, describes a

balance between nonlinear wave-steepening and linear wave

dispersion.
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Of principal concern in this paper are the large-amplitude

internal solitary waves which propagate in the shallow water

of coastal oceans. It is now widely accepted that the basic

paradigm for internal waves in shallow seas is based on the

KdV equation, first derived in this context by Benney (1966)

and Benjamin (1966) and subsequently by many others;

for recent reviews see, for instance, Grimshaw (2001),

Holloway et al. (2001), Ostrovsky and Stepanyants (2005),

Helfrich and Melville (2006), Apel et al. (2007), Grimshaw

et al. (2007), or the book by Vlasenko et al. (2005). However,

in the coastal ocean, the waves are propagating in a region

of variable depth and also through regions of horizontally

varying hydrology. In this situation, the appropriate model

equation is the variable-coefficient KdV equation

At +cAx−
cQx

Q
A+µAAx+δAxxx = 0 , (1)

Here A(x,t) is the amplitude of the wave, and x, t are

space and time variables, respectively. The coefficient c(x)

is the relevant linear long wave speed, while Q(x) is the

linear modification factor, defined so thatQ−2A2 is the wave

action flux for linear long waves. The coefficients µ(x) and

δ(x) of the nonlinear and dispersive terms respectively, are

determined by the properties of the basic state. All these

coefficients are slowly-varying functions of x. The variable-

coefficient KdV equation for water waves was developed by

Ostrovsky and Pelinovsky (1970) and later systematically

derived by Johnson (1973b), while Grimshaw (1981) gave

a detailed derivation for internal waves (see also Zhou and

Grimshaw, 1989 and Grimshaw, 2001). The first two terms

in (1) are the dominant terms, and hence we can make the

transformation

A=QU , ξ =
∫ x dx

c
, s= ξ− t . (2)
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Substitution into (1) yields, to the same leading order of

approximation where (1) holds,

Uξ +αU Us+λUsss = 0 (3)

α=
Qµ

c
, λ=

δ

c3
. (4)

The coefficients α, λ are functions of ξ alone. Note that ξ

measures travel time along the spatial path of the wave, while

s is a temporal variable measuring the wave phase.

However because internal solitary waves are often of

large amplitudes, it is sometimes useful to include a

cubic nonlinear term in (1) and (3), which then become,

respectively (see the review by Grimshaw, 2001),

At +cAx−
cQx

Q
A+µAAx+µ1A

2Ax+δAxxx = 0 , (5)

Uξ +αU Us+βU2Us+λUsss = 0 , (6)

where β =
Q2µ1

c
. (7)

Equations (3) and (6), sometimes with various modifications

such as with an additional dissipative term, or with a term

taking account of the Earth’s rotation, have been applied to

the study of internal solitary wave wave transformation in

the coastal zone by many authors (for instance Cai et al.,

2002; Djordjevic and Redekopp, 1978; Grimshaw et al.,

2004, 2006, 2007; Holloway et al., 1997, 1999; Hsu et al.,

2000; Liu et al., 1988, 1998, 2004; Orr and Mignerey, 2003;

Shroyer et al., 2009 and Small, 2001a, b, 2003).

In Sect. 2, we shall present a more detailed description

of the derivation of these model equations. Then in Sect. 3,

we shall describe the slowly-varying solitary wave solutions

of the evKdV equation (6) and in particular examine the

behaviour at certain critical points where either α or β vanish.

Then in Sect. 4 we shall indicate how these theoretical results

can be applied for realistic oceanic conditions, such as those

found in the South China Sea.

2 Evolution equations

2.1 Constant depth

The KdV equation is obtained by a weakly nonlinear long

wave expansion from the fully nonlinear equations (see

Grimshaw, 2001 or Grimshaw et al., 2007). We shall

consider only a two-dimensional configuration, see Fig. 1,

but initially we assume that the fluid has constant depth h. In

the basic state the fluid has density ρ0(z), a horizontal shear

flow u0(z) in the x-direction, and a pressure field p0(z) such

that p0z = −gρ0. The density stratification is described by

the buoyancy frequency N(z), where

N2(z)= −
gρ0z

ρ0
. (8)

z

ηz=

z=-h

Fig. 1. Coordinate system.

Then, relative to this basic state, the outcome is, to leading

order in the small parameter ǫ characterizing the long wave

approximation,

ζ ∼ ǫ2A(X,T )φ(z)+ ... , X= ǫ(x−ct) , T = ǫ3t . (9)

Here ζ is the vertical particle displacement relative to the

basic state and the modal function φ(z) satisfies the system

{

ρ0(c−u0)
2φz

}

z
+ρ0N

2φ= 0 , for −h<z< 0 , (10)

φ= 0 at z= −h , (c−u0)
2φz = gφ at z= 0 , (11)

Equation (10) is the long-wave limit of the Taylor-Goldstein

equation, and with the boundary conditions (11), determines

the modal function and the linear long wave speed c.

Typically, this boundary-value problem (10, 11) defines

an infinite sequence of regular modes, φ±
n (z), n= 0,1,2,...,

with corresponding speeds c±n , where “±” indicates waves

with c+n >uM = maxu0 and c−n <uM = minu0, respectively.

Note that it is useful to let n= 0 denote the surface gravity

waves for which c scales with
√
gh, and then n= 1,2,3,...

denotes the internal gravity waves for which c scales with

Nh. In general, the boundary-value problem (10, 11) is

solved numerically. Typically, the surface mode φ0 has no

extrema in the interior of the fluid and takes its maximum

value at the surface z= 0, while the internal modes φ±
n (z),

n= 1,2,3,..., have n extremal points in the interior of the

fluid, and vanish near z= 0 (and, of course, also at z= −h).

Since the modal equations are homogeneous, a normalization

condition can be imposed. Here we choose φ(zm)= 1 where

|φ(z)| achieves a maximum value at z= zm with respect to

z. In this case the amplitude ǫ2A is uniquely defined as the

amplitude of ζ (to leading order in ǫ) at zm.

It can then be shown that, within the context of linear long

wave theory, any localised initial disturbance will evolve

into a set of outwardly propagating modes, each propagating

with the relevant linear long wave speed. Assuming that

the speeds c±n of each mode are distinct, it is sufficient for

large times to consider just a single mode, as expressed

by (9) Then, as time increases, the hitherto neglected

nonlinear terms come into play and cause wave steepening.

However, this is opposed by the terms representing linear

Nonlin. Processes Geophys., 17, 633–649, 2010 www.nonlin-processes-geophys.net/17/633/2010/



R. Grimshaw et al.: Internal solitary waves 635

wave dispersion, also neglected in the linear long wave

theory. A balance between these effects emerges as time

increases, technically obtained as a compatibility condition

at the second order in the expansion. The outcome is the

Korteweg-de Vries (KdV) equation for the wave amplitude

AT +µAAX+δAXXX = 0 . (12)

The coefficients µ and δ are given by

Iµ= 3

∫ 0

−h
ρ0(c−u0)

2φ3
z dz , (13)

Iδ=
∫ 0

−h
ρ0(c−u0)

2φ2dz , (14)

I = 2

∫ 0

−h
ρ0(c−u0)φ

2
z dz . (15)

Note that after reverting to the original variables x and t , and

using (9) Eq. (12) is equivalent to (1) for the case when all

coefficients are constant andQx = 0. The KdV equation (12)

is integrable and the long-time evolution from a localized

initial condition is a finite number of solitary waves (solitons)

and dispersing radiation.

A particularly important special case arises when the

nonlinear coefficientµ defined by the expression (13) is close

to zero. In this situation, a cubic nonlinear term is needed,

and this can be achieved with a rescaling. The optimal choice

is to assume that µ is 0(ǫ), and then replace A with A/ǫ in

(9); in effect the amplitude parameter is ǫ in place of ǫ2.

The outcome is that the KdV equation (12) is replaced by

the extended KdV equation, widely known as the Gardner

equation,

AT +µAAX+µ1A
2AX+δAXXX = 0 ,. (16)

Again, after reverting to the original variables in (9) Eq. (16)

is equivalent to (5) (with Qx = 0). Expressions for the

coefficient µ1 are available, see Grimshaw et al. (2002)

and the references therein. Like the KdV equation, (16) is

integrable and has solitary wave solutions. There are two

independent forms of the eKdV equation (16), depending on

the sign of δµ1.

The solitary wave family of the eKdV equation (16) is

given by

A=
H

1+BcoshK(X−V T )
, (17)

where V =
µH

6
= δK2 , B2 = 1+

6δµ1K
2

µ2
, (18)

characterized by a single parameter B. The wave amplitude

is a =H/(1+B). For δµ1 < 0, 0<B < 1, and the family

ranges from small-amplitude waves of KdV-type (“sech2”-

profile) (B→ 1) to a limiting flat-topped wave of amplitude

−µ/µ1 (B → 0), the so-called “table-top” wave, see the
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Fig. 2. Solitary wave family (17). The upper panel is for µ1 < 0

and the lower panel is for µ1> 0; in both panels µ> 0, δ > 0.

upper panel in Fig. 2. For δµ1 > 0 there are two branches;

one branch has 1<B <∞ and ranges from small-amplitude

KdV-type waves (B → 1), to large waves with a “sech”-

profile (B → ∞). The other branch with −∞< B <−1,

has the opposite polarity and ranges from large waves with a

“sech”-profile when B→ −∞, to a limiting algebraic wave

of amplitude −2µ/µ1 when B → −1, see the lower panel

in Fig. 2 Solitary waves with smaller amplitudes cannot

exist, and from the point of view of the associated spectral

problem are replaced by breathers, that is, pulsating solitary

waves, see, for instance, Pelinovsky and Grimshaw (1997),

Grimshaw et al. (1999, 2010), Clarke et al. (2000), Lamb et

al. (2007). When µ1 → 0, B→ 1 and the family reduces to

the well-known KdV solitary wave family

A= asech2(K(X−V T )), V =
µa

3
= 4δK2 . (19)

Here we have replaced a, K with 2a, 2K to conform with

the usual KdV notation.

2.2 Variable background

The derivation sketched above was for the case of constant

depth, and when the basic state hydrology is independent

of x. But in the ocean, the depth varies and the basic state

hydrology may also vary in the propagation direction. These

effects can be incorporated into the theory by supposing
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that the basic state is a function of the slow variable χ =
ǫ3x. That is, h= h(χ), u0 = u0(χ,z) with a corresponding

vertical velocity field ǫ3w0(z,χ), a density field ρ0(z,χ)

a corresponding pressure field p0(χ,z) and a free surface

displacement η0(χ). This basic state is assumed to satisfy the

full equation set possibly with body forces in the momentum

equations. With this scaling, the slow background variability

enters the asymptotic analysis at the same order as the weakly

nonlinear and weakly dispersive effects. As noted in the

Introduction, it is now necessary to replace the variables x,

t with ξ , s (2), where it is also convenient to replace the

slow variable χ with ξ . An asymptotic analysis analogous

to that described above then produces the vKdV equation (1)

(Grimshaw, 1981; Zhou and Grimshaw, 1989). The modal

system is again defined by (10, 11), but now c= c(ξ) and

φ = φ(z,ξ), where the ξ -dependence is parametric. The

analysis then proceeds as in the constant depth case, but

with extra terms corresponding to the slow variability in

the basic state, while the compatibility condition then yields

the vKdV equation (1) now with variable coefficients µ=
µ(ξ),δ= δ(ξ), but which are again defined by (13, 14, 15)

(but the upper limit in the integrals is now z= η0 replacing

z = 0). For the present case of internal waves, we find

that the linear modification factor is given by, see Zhou and

Grimshaw (1989),

Q2 =
1

Ic2
, (20)

where I is defined by (15). Note also that the expression for

Q can also be simply determined by requiring that Q−2A2

should be the wave action flux in the linear long wave

limit. The variable-coefficient extended KdV equation (5)

is obtained in a similar manner.

We shall conclude this section with some illustrative

examples. First consider the case of surface waves. We put

the density ρ = constant so that then N2 = 0 (8). Then, for

the case when there is no background flow so that u0 = 0,

η0 = 0, we obtain the well-known expressions

φ=
z+h
h

for −h<z< 0 , c= (gh)1/2 . (21)

and so µ=
3c

2h
, δ=

ch2

6
, Q2 =

1

2gc
. (22)

Similarly, for interfacial waves in a two-layer fluid, let the

density be a constant ρ1 in an upper layer of height h1 and

ρ2>ρ1 in the lower layer of height h2 =h−h1. That is

ρ0(z)= ρ1H(z+h1)+ρ2H(−z−h1) ,

so that ρ0N
2 = g(ρ2 −ρ1)δ(z+h1) .

Here H(z) is the Heaviside function and δ(z) is the Dirac δ-

function. Again we assume that there is no background flow

(u0 = 0, η0 = 0). and we replace the free boundary with a

rigid boundary so that the upper boundary condition for φ(z)

becomes just φ(0)= 0. This is a good approximation for

oceanic internal solitary waves. Then we find that

φ=
z+h
h2

for −h<z<h1, φ= −
z

h1
for −h1<z< 0,

c2 =
g(ρ2 −ρ1)h1h2

ρ1h2 +ρ1h2
. (23)

Substitution into (13, 14, 15) yields

µ=
3c
(

ρ2h
2
1 −ρ1h

2
2

)

2h1h2(ρ2h1 +ρ1h2)
, δ=

ch1h2(ρ2h2 +ρ1h1)

6(ρ2h1 +ρ1h2)
,

Q2 =
1

2g(ρ2 −ρ1)c
. (24)

Note that for the usual oceanic situation when ρ2 −ρ1 ≪ ρ2,

the nonlinear coefficient µ for these interfacial waves is

negative when h1 <h2 (that is, the interface is closer to the

free surface than the bottom), and is positive in the reverse

case. The case when h1 ≈ h2 leads to the necessity to use

the extended KdV equation (16), where the coefficient µ1 is

given by

µ1 = −
3c

8h2
1h

2
2(ρ1h2 +ρ2h1)

2

{

(

ρ1h
2
2 −ρ2h

2
1

)2
+8ρ1ρ2h1h2(h1 +h2)

2

}

. (25)

Note that µ1 < 0, and so the eKdV equation (16) for a two-

layer fluid always has δµ1< 0.

However, in a three-layer fluid there are parameter regimes

where one or two modes may have µ1> 0 (Grimshaw et al.,

2002), and there are many cases for real oceanic conditions

with smooth stratification and background shear when the

parameter µ1> 0, see Grimshaw et al. (2004, 2007).

3 Deformation of internal solitary waves

3.1 Slowly varying solitary wave

In general the evKdV equation (6) with variable coefficients

α = α(ξ), β = β(ξ)λ = λ(ξ) must be solved numerically.

However, it is first instructive to consider the slowly-varying

solitary wave. This is described in detail in review article

by Grimshaw et al. (2007), but for convenience we shall

present a brief summary here. The slowly-varying solitary

wave is an asymptotic solution based on the assumption

that the background state varies slowly relative to a typical

wavelength. Formally, we suppose that

α=α(σ), β =β(σ), λ= λ(σ), σ = κξ , κ≪ 1. (26)

We then invoke a multi-scale asymptotic expansion of the

form (see Grimshaw, 1979)

U =U0(ψ,σ )+κU1(ψ,σ )+ ..., (27)

Nonlin. Processes Geophys., 17, 633–649, 2010 www.nonlin-processes-geophys.net/17/633/2010/
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ψ = s−
1

κ

∫ σ

V (σ)dσ . (28)

Here ψ is a temporal variable in a frame moving with the

speed V . U is defined over the domain −∞<ψ <∞, and

we will require that U remain bounded in the limits ψ →
±∞. Since we can assume that λ> 0 small-amplitude waves

will propagate in the negative s-direction, and so we can

suppose that U → 0 as ψ → ∞. However, it will transpire

that we cannot impose this boundary condition as ψ→ −∞.

This procedure is well-known for the vKdV equation (see

Johnson, 1973a for the case of water waves, and Grimshaw,

1979 for the general case) and is readily extended to the

evKdV equation (see the recent reviews by Grimshaw, 2007

and Grimshaw et al., 2007).

Substitution of (27) into (3) yields,

−VU0ψ+αU0U0ψ+βU2
0Uψ+λU0ψψψ = 0 , (29)

−VU1ψ+α(U0U1)ψ+β
(

U2
0U1

)

ψ
+λU1ψψψ = −U0σ . (30)

Equation (29) has the solitary wave solution

U0 =
D

1+BcoshKψ
, (31)

where V =
αD

6
= λK2 , B2 = 1+

6λβK2

α2
. (32)

When the coefficients are constants, this is just the eKdV

solitary wave (17). Here it is a slowly-varying solitary wave

as the parameterB =B(σ) and hence a=D/(1+B)= a(σ ),
V = V (σ), K = K(σ). The main aim of the analysis is

then to determine how these parameters vary, and this is

determined at the next order of the expansion.

We now seek a solution of (30) for U1 → 0, ψ → ∞
and for which U1 is bounded as ψ → −∞. In order to

determine the conditions that need to be imposed on the

right-hand side of (30) to ensure that such a solution can

be obtained, we need to consider the adjoint equation to the

homogeneous operator on the left-hand side of (30), which is

for the dependent variable Ũ1,

−V Ũ1ψ +αU0Ũ1ψ +βU2
0 Ũ1ψ +λŨ1ψψψ = 0. (33)

The required compatibility conditions are then that the

right-hand side of (30) should be orthogonal to all linearly

independent solutions of the adjoint Eq. (33) which decay at

infinity. Two linearly independent solutions of the adjoint

Eq. (33) are 1, U0. While both of these are bounded, only

the second solution satisfies the condition that U1 → 0 as

ψ → ∞. The third solution is unbounded as ψ → ±∞.

Hence only one compatibility condition can be imposed,

namely that the right-hand side of (30) is orthogonal to U0,

which leads to

P0σ = 0 where P0 =
∫ ∞

−∞
U2

0 dψ . (34)

Thus P0 is a constant, and as the solitary wave (19) has just

one free parameter B, this condition suffices to determine its

variation.

However, the evKdV equation (6) has two conservation

laws

∂M

∂ξ
= 0, M =

∫ ∞

−∞
Uds, (35)

∂P

∂ξ
= 0, P =

∫ ∞

−∞
U2ds, (36)

for “mass” and “momentum” respectively. In physical terms,

(35) is an approximation to the conservation of physical

mass, while (36) expresses conservation of wave action

flux at the leading order. The condition (34) is easily

recognized as the leading order expression for conservation

of momentum (36). But since this completely defines the

slowly-varying solitary wave, we now see that this cannot

simultaneously conserve mass. This is also apparent when

one examines the solution of (30) for U1, from which it is

readily shown that although U1 → 0 as ψ→ ∞, U1 →D1 as

ψ→ −∞ where

VD1 = −M0σ , where M0 =
∫ ∞

∞
U0dψ . (37)

This non-uniformity in the slowly-varying solitary wave

has been recognized for some time, see, for instance,

Knickerbocker and Newell (1978, 1980), Grimshaw (1979)

or Grimshaw and Mitsudera (1993) and the references

therein. The remedy is the construction of a trailing shelf

U (s) of small amplitude O(κ) but long length-scale O(1/κ),

which thus has O(1) mass, but O(κ) momentum. It resides

behind the solitary wave, and to leading order is given by

U (s)=κU (s)(T ), for T=κξ<9(σ)=
∫ σ

V (σ)dσ . (38)

Here T = 9(σ) defines the location of the solitary wave.

U (s)(T ) is independent of σ , and is determined so that the

shelf amplitude is just κD1(σ ) at the location of the solitary

wave, that is U (s)(9(σ))=D1(σ ) (37). At higher orders

in κ the shelf itself will evolve and may generate secondary

solitary waves, see El and Grimshaw (2002) and Grimshaw

and Pudjaprasetya (2004). The slowly-varying solitary wave

and the trailing shelf together satisfy conservation of mass.

Substitution of the solitary wave (31) into the expression

(34) for P0 yields

P0 =
D2

K

∫ ∞

−∞

du

(1+Bcoshu)2
, (39)

or G(B)=P0

∣

∣

∣

∣

∣

β3

λα2

∣

∣

∣

∣

∣

1/2

, (40)

where G(B)=
∣

∣

∣
B2 −1

∣

∣

∣

3/2
∫ ∞

−∞

du

(1+Bcoshu)2
. (41)
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The expression (40) determines the variation of the

parameter B since P0 is a constant, determined by the initial

conditions. The integral term in G(B) can be explicitly

evaluated,

B2> 1 : G(B)= 2(B2 −1)1/2 ∓4arctan

√

B−1

B+1
, (42)

0<B < 1 : G(B)= 4arctanh

√

1−B
1+B

−2
(

1−B2
)1/2

. (43)

The alternative signs in (42) correspond to the cases B > 1 or

B <−1. Next, the trailing shelf is found from (37, 38) where

B2> 1 : M0 = ±|
6λ

β
|1/24arctan

√

B−1

B+1
, (44)

0<B < 1 : M0 = ±|
6λ

β
|1/24arctanh

√

1−B
1+B

. (45)

Here the alternative signs in (44) and (45) correspond to the

cases αB > 0 or αB < 0.

The expression (40) provides an explicit formula for the

dependence of B on the basic state parameters α, β, λ, ν. It is

readily shown that G(B) (42) is a monotonically increasing

function of |B| for 1 < |B| <∞, and is a monotonically

decreasing function of B for 0 < B < 1 (43). Thus as

|β3/λα2| → ∞, then so does G(B). If β < 0 so that 0<

B < 1, B→ 0 and the wave approaches the limiting “table-

top” shape. On the other hand if β > 0 and 1< |B|<∞ then

|B| → ∞ and the wave shape approaches the “sech”-profile,

The behaviour of the wave amplitude in these limits depends

on the behaviour of each of the parameters α, β, λ. But since

we can usually expect β to be finite and λ(> 0) to be non-

zero, we see that these limiting shapes are usually achieved at

the critical point where α→ 0. This case is discussed below

in Sect. 3.2. On the other hand, if |β3/λα2| → 0, then so

does G(B). In this case B→ 1, G(B)∼ |B−1|3/2 (see (42,

43)) and the wave profile reduces to the KdV “sech2”-shape,

provided that either β < 0 when 0<B < 1, or if β > 0, then

the wave belongs to the branch defined by 1<B <∞. These

scenarios are usually achieved at the alternative critical point

where β = 0, discussed below in Sect. 3.2.

3.2 Passage through a critical point

The adiabatic deformation of a solitary wave discussed above

in Sect. 3.1 shows that the critical points where α = 0, or

where β = 0, are sites where we may anticipate a change

in the wave structure. First we recall the vKdV model (3)

where β = 0. In this case the adiabatic law (40) collapses to

a3 ∝ α/λ where a is the solitary wave amplitude (19), and

the expression (37) collapses to D1 = aσ /2λK
3. Suppose

that α = 0 at σ = 0, where, without loss of generality, we

can assume that α passes from a negative to a positive value

as σ increases through zero. Initially the solitary wave is
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Fig. 3. Numerical simulation of the vKdV equation (3) with δ= 1

and as α varies from −1 to +1. The upper panel is when α = 0

and the lower panel is when α= 1. The simulation shows a strong

deformation of the initial solitary wave of depression at α = 0,

followed at α= 1 by the emergence of a number of solitary waves

of elevation riding on a negative pedestal.

located in σ < 0 and has negative polarity, corresponding

to the usual oceanic situation. Then, near the transition

point, the amplitude of the wave decreases to zero as a ∼
−|α|1/3, while K ∼ |α|2/3; the momentum of the solitary

wave is of course conserved (to leading order), but the

mass of the solitary wave increases (in absolute value) as

1/|α|1/3, its speed decreases as |α|4/3, and the amplitude

D1 > 0 of the trailing shelf just behind the solitary wave

grows as |α|−8/3; the total mass of the trailing shelf is

positive and grows as 1/|α|1/3, in balance with the negative

mass of the solitary wave, while the total mass remains a

negative constant. Since the tail grows to be comparable

with the wave itself, the adiabatic approximation breaks

down as the critical point is approached. Nevertheless,

we can infer that the the solitary wave itself is destroyed

as the wave passes through the critical point α = 0. The

structure of the solution beyond this critical point has been

examined numerically by Knickerbocker and Newell (1980)

and revisited by Grimshaw et al. (1998a), who showed

that the shelf passes through the critical point as a positive

disturbance, which then being in an environment with α > 0,

can generate a train of solitary waves of positive polarity,

riding on a negative pedestal, see Fig. 3.

Nonlin. Processes Geophys., 17, 633–649, 2010 www.nonlin-processes-geophys.net/17/633/2010/



R. Grimshaw et al.: Internal solitary waves 639

α = + 1

α = 0

α = − 1

500 550 600

-15

0

15

450 500 550

-15

0

15
U

500 550 600

s

-15

0

15

Fig. 4. Numerical simulation of the evKdV equation (6) with δ= 1,

β = −0.083 and as α varies from 1 to −1. The upper panel shows

the initial condition of a “table-top” solitary wave of elevation at

α= −1, the middle panel shows a strong deformation at α= 0, and

the lower panel shows the leading wave at α= −1. This wave is a

“table-top” wave of depression riding on a small positive pedestal.

We next take account of the cubic nonlinear term in (6)

and suppose again that α passes through zero at σ = 0 but

that β 6= 0 at the critical point. First, let us suppose that

β < 0, 0<B < 1. Then as α→ 0, we see from (40) and

(43) that G(B)∼ 1/|α|, and B→ 0 with B ∼ 2exp(−G/2).
Thus the approach to the limiting “table-top” wave is quite

rapid. From (31) K ∼ |α| in this limit, and the amplitude

approaches the limiting value a ∼ −α/β. Thus the wave

amplitude decreases to zero, and, interestingly, this is a more

rapid destruction of the solitary wave than for the case when

β = 0. The massM0 (45) of the solitary wave grows as |α|−1

and so the amplitude D1 of the trailing shelf (37) grows as

1/|α|4. The overall scenario after α has passed through zero

is similar to that described above for the vKdV equation (3)

and has been discussed in detail by Grimshaw et al. (1999);

see Fig. 4 for a case when a “table-top” solitary wave is

converted to another such wave of opposite polarity, riding

on a pedestal.

Next, let us suppose that β > 0 so that 1 < |B| < ∞
There are two sub-cases to consider, B > 0 or B < 0, when

the the solitary wave has the same or opposite polarity to

α. Then as α → 0,|B| → ∞ as |B| ∼ 1/|α|. It follows

from (31) that then K ∼ 1, D ∼ 1/|α|,a ∼ 1, M0 ∼ 1. It

follows that the wave adopts the “sech”-profile, but has finite

amplitude, and so can pass through the critical point α = 0

without destruction. But the wave changes branches from

B > 0 to B < 0 as |B| → ∞, or vice versa. An interesting

situation then arises when the wave belongs to the branch

with −∞<B <−1 and the amplitude is reducing. If the
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Fig. 5. Numerical simulation of the evKdV equation (6) for the

case when δ = 1, β = 0.3, ν = 0 and α varies from 1 to −1. The

initial wave (not shown) is a solitary wave of elevation belonging

to the branch for which B > 0. It then passes adiabatically through

the critical point, changing the sign of B to B < 0, and arrives at

the location α = −1 where ξ = T with only a small deformation.

However, at this stage its amplitude is below that allowed for a

steady solitary wave, and so it deforms into a breather, shown in

the middle panel for ξ = 2T and the lower panel for ξ = 4T .

limiting amplitude of −2α/β is reached, then there can be

no further reduction in amplitude for a solitary wave, and

instead a breather will form. An example of this outcome is

shown in Fig. 5, where the wave has entered this regime after

passing through the critical point.

Finally, consider the case when β → 0, α 6= 0. This case

has been studied by Nakoulima et al. (2004) using both an

asymptotic analysis similar to that used here, and numerical

simulations. As already noted above, in this case B → 1,

G(B)∼ |B− 1|3/2 (42, 43), and it then follows from (40)

that G∼ |β|3/2 and so |B− 1| ∼ |β|. There are three sub-

cases to consider. First, suppose that initially β < 0 and so

0<B < 1. As |β| → 0, 1 −B ∼ |β| and the wave profile

becomes the familiar KdV “sech2”-shape. It is readily shown

from (31) that then K , a, M0, D1 ∼ 1 and so the wave can

pass through the critical point β = 0 without destruction.

However, after passage through the critical point, the wave

has moved to a different solitary branch (see Fig. 2), and this

may change its ultimate fate. A typical scenario is shown

in Fig. 6, which shows the transformation of a “table-top”

solitary wave (upper panel in Fig. 2) to a KdV “sech2”-KdV

solitary wave at the critical point, and further evolution as

a solitary wave of the upper branch in the lower panel of

Fig. 2. Second, suppose that initially β > 0 and 1< B <

∞. Now B − 1 ∼ β and again the wave profile becomes

the familiar KdV “sech2”-shape, while K , a, M0, D1 ∼ 1,

www.nonlin-processes-geophys.net/17/633/2010/ Nonlin. Processes Geophys., 17, 633–649, 2010



640 R. Grimshaw et al.: Internal solitary waves

β = −1

U

0 40 80 120 160 200

0

1

2

3
U

β = 0

0 40 80 120 160 200

0

1

2

3 U

β = +1

s

s

s

Fig. 6. Numerical simulation of the evKdV equation (6) with α= 1,

λ= 1 and β varies from −1 to 1, showing the transformation of a

“table-top” solitary wave to a KdV “sech2”-KdV solitary wave at

the critical point, and further evolution as a solitary wave tending to

a “sech”-profile.

allowing the wave to pass through the critical point β = 0

without destruction, but moving now from the upper branch

in the lower panel of Fig. 2 to the “table-top” branch in the

upper panel of Fig. 2. Third, suppose that initially β > 0 and

−1>B >−∞. In this case it an be shown from (42) that

G(B) decreases from ∞ to a finite value of 2π asB increases

from −∞ to −1. Consequently the limit β → 0 in (40)

cannot be achieved. Instead as β decreases the limit B = −1

is reached, when the wave becomes an algebraic solitary

wave, and a further decrease in β generates a breather.

4 Application to internal solitary waves in the South

China Sea

In a typical oceanic situation, where there is a relatively

sharp near-surface pycnocline, an internal solitary wave of

depression is generated in the deep water and propagates

shorewards until it reaches a critical point. For a simple

two-layer model, this is where the pycnocline is close to

the mid-depth, see (24). The theory described above then

predicts that this wave will be destroyed in the vicinity of this

critical point and replaced in the shallow water shorewards

of the critical point by one or more internal solitary waves

of elevation riding on a negative pedestal. This basic

scenario has been observed in several places in the ocean,

For instance, this phenomena has been reported by Salusti

et al. (1989) in the Eastern Mediterranean, by Holloway et

al. (1997, 1999) and Grimshaw et al. (2004) in the North

West Shelf of Australia, by Hsu et al. (2000) in the East

China Sea, during the ASIAEX experiment in the South

China Sea by Duda et al. (2004), Liu et al. (1998, 2004), Orr

and Mignerey (2003), Ramp et al. (2004), Yang et al. (2004),

Zhao et al. (2003, 2004) and Zheng et al. (2003), and on

the New Jersey shelf by Shroyer et al. (2009). Further,

numerical simulations of the full Euler equations predict

polarity reversal in Lake Constance (Vlasenko and Hutter,

2002), in the Andaman Sea (Vlasenko and Staschuk, 2007)

and in the Saint Lawrence estuary (Bourgault et al., 2007).

But elsewhere in the ocean, where there are no such critical

points, the shoreward propagating small-amplitude internal

solitary waves are expected to deform adiabatically (at least

within the framework of the vKdV equation). Examples

of this behaviour occur on the Malin Shelf off the North

West coast of Scotland (Small, 2003; Grimshaw et al., 2004;

Small and Hornby, 2005), in the Laptev Sea in the Arctic

(Grimshaw et al., 2004) and in the COPE experiment on the

Oregon shelf (Vlasenko et al., 2005).

The South China Sea (SCS) is well known as a location

where internal solitary waves have been commonly observed,

and has been intensively studied both experimentally and

through numerical simulations, see for instance the reports

based on the 2001 ASIAEX experiments by Duda et

al. (2004), Ramp et al. (2004) and Liu et al. (2004).

Typically, large amplitude internal waves are generated by

the barotropic tidal currents, possibly combined with the

Kuroshio current extension, interacting with the topography

in Luzon Strait, see Liu et al. (1998), Cai et al. (2002), Ramp

et al. (2004, 2006). Solitary-like waves with amplitudes up

to 80 m (in a depth of 300 m) have been observed at the

two underwater mountain ridges in Luzon Strait, see the

bathymetry in Fig. 7 and the wave field in Fig. 8, taken

from Liu et al. (2006). These waves cross the deep basin

and then shoal on the continental shelf in water of depth

400–200 m, see for example the reports of the ASIAEX

experiment by Duda et al. (2004), Ramp et al. (2004) and

Liu et al. (2004). Wave amplitudes can reach to 100 m
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Fig. 7. Bathymetry of the northern part of the South China Sea, from Liu et al. (2006).

Fig. 8. Displacement of the isotherms as measured in the South China Sea, from Liu et al. (2006).

Fig. 9. Time series of internal waves in the South China Sea, from

Duda et al. (2004).

and their shapes compare well with theoretical solitary wave

shapes, see Klymak et al. (2006) and Fig. 9 from Liu et

al. (2006). Numerical modeling of internal solitary wave

transformation on the continental slope and shelf of the SCS

has often been based on the vKdV and evKdV models, using

mainly two-layer representations of the density stratification,

and the results have been used to interpret the observed

solitary wave evolution and especially the observed polarity

changes, see Orr and Mingerey (2003), Zhao et al. (2003,

2004), Liu et al. (1998, 2004). There are also a few

numerical simulations using the full Euler equations for

stratified flow, see Buijsman et al. (2008), Du et al. (2008),

Scotti et al. (2008), Warn-Varnas et al. (2010) and Vlasenko

et al. (2010) for instance.
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Fig. 10. Bathymetry of the South China Sea, with the chosen cross-

sections.

We shall supplement these studies by a set of numerical

simulations of the evKdV equation (6) for two typical cross-

sections of the SCS, shown in Fig. 10. The first cross-

section is close to the conditions for ASIAEX 2001, where

the internal solitary waves are generated by westward tidal
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Fig. 11. Contour maps of the coefficients of the evKdV equation for

the South China Sea. The plots are those for the phase speed c, the

dispersion coefficient δ, the quadratic coefficient µ, and the cubic

coefficient µ1.

Fig. 12. Coefficients of the evKdV equation (5) along cross-section 1.

currents in Luzon Strait, see Liu et al. (2006) and Zhao

and Alford (2006) for instance. The second cross-section is

chosen to have a positive cubic nonlinear coefficient along

the whole wave path. Contour maps of the linear long wave

speed, the coefficients of the quadratic and cubic nonlinear

terms and the coefficient of the linear dispersive term in

the evKdV equation (5) are shown on Fig. 11. They are

based on the vertical density profiles from the database

GDEM for January (GDEM), while the bathymetry is taken

from GEBCO. The speed c and the dispersion coefficient δ

correlate well with the depth h as expected, see Talipova and

Polukhin (2001) and Polukhin et al. (2003). The quadratic

nonlinear coefficient µ is negative in the deep part of the

SCS, and changes its sign to positive everywhere on the

continental slope, as expected in the SCS, see Orr and

Mignerey (2003) and Zhao et al. (2003, 2004) for instance.

The cubic nonlinear coefficient, µ1 is very small and positive

in the deep part of the sea, but its sign changes in some parts

of the continental slope to negative, while in other places it

stays positive and grows in absolute value. To understand

the role of quadratic and cubic nonlinearity in internal wave

dynamics three values should be compared, c, µA, µ1A
2. In

the deep part of the SCS c= 2.5 m s−1 and even if the internal

wave amplitude is taken as 80 m (usually much less in

deep water) µA= 0.48 m s−1 and µ1A
2 = 0.13 m s−1; hence

nonlinear effects are small in the deep part of the SCS. But on

the continental slope c is less than 0.5 m s−1 and for the same
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Fig. 13. Transformation of an internal solitary wave along cross-section 1.

Fig. 14. Contour plot in the space-time domain of an internal

solitary wave transformation along cross-section 1.

internal wave amplitude of about 80 m, µA= 0.48 m s−1,

comparable with c, and µ1A
2 = 1.28 m s−1, much large than

the quadratic nonlinear term. Thus in the the shelf zones

the waves are strongly nonlinear. Indeed the ratio of the

nonlinear terms to the speed of propagation is about 3.5.

Nevertheless, the eKdV (Gardner) model may be used as

demonstrated by Maderich et al. (2009, 2010). However, it

is pertinent to note that several other higher-order KdV-type

models have been proposed, see the recent review by Apel et

al. (2007) for instance.

4.1 Numerical results for cross-section 1

The wave path is close to the conditions of the ASIAEX

2001 experiment on the shelf (Ramp et al., 2004) and is here

extended to the Luzon Strait to the site where the westward

propagating solitary waves were observed see (Liu et al.,

2006; Zhao and Alford, 2006 for instance). The model

coefficients are shown on Fig. 12. The depth decreases from

2.5 km to 200 m, the linear long wave speed c varies from
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2.5 m s−1 to 0.2 m s−1, the linear modification factor Q is

equal to 1 initially, then decreases to 0.5 at the location x =
250 km, before increasing to 2.5 on the shelf. Corresponding

to the change of depth, the dispersion coefficient δ decreases

along the cross-section. The nonlinear quadratic coefficient

µ is negative for most of the wave path, but changes sign

once only at a depth about 100 m. The cubic nonlinear

coefficient µ1 is positive in the deep water and becomes

negative at a depth of about 400 m. Hence here there are

two critical points, both on the shelf. The amplitude of the

initial solitary wave (17) is chosen as 49 m at x= 0 in Fig. 14.

This is less than that mentioned by Liu et al. (2006) where

the amplitude of an observed solitary wave was estimated as

140 m, but it is large enough for our purposes.

The solitary wave evolution is shown in Fig. 13. The

leading wave amplitude has decreased by a factor of two at

x= 220 km from 49 m to 25 m. Over this same distance, the

cubic nonlinear coefficient is almost constant, the quadratic

nonlinear coefficient has decreased, the dispersive coefficient

has decreased, while the linear modification factor has

decreased by a factor of one-half; together these have

the effect that the initial wave has started to deform with

formation of a trailing tail. At the location x = 350 km the

linear modification factor is decreasing, the cubic nonlinear

coefficient changes sign and quadratic nonlinear coefficient

tends to zero. The leading solitary wave now has an

amplitude of about 35 m and is wider than at the location x=
220 km. At x = 400 km the quadratic nonlinear coefficient

changes sign, and we see the typical destruction of the

negative solitary wave, and the consequent generation of

several positive solitary waves. The space-time contour plot

of this internal wave transformation is shown in Fig. 14.

4.2 Numerical results for cross-section 2

On this cross-section, the initial point lies in deep water of

depth h= 3 km, and the last point lies near Hainan Island.

Here, the cubic nonlinear coefficient is positive everywhere,

while the quadratic nonlinear coefficient changes sign on the

shelf. The model coefficients are shown in Fig. 15. The depth

decreases from 3 km to 200 m non-monotonically, producing

the analogous tendencies for the dispersion coefficient δ,

and the linear long wave speed c. The linear modification

factor Q is initially close to one, and then decreases before

increasing after the location x = 700 km. The quadratic

coefficient µ grows after x = 400 km in absolute value and

after x= 580 km tends to zero, changing sign at the location

x= 700 km. The cubic coefficient µ1 is positive everywhere,

but grows by an order of magnitude.

This is a scenario when we might expect the formation

of a breather from a solitary wave at the location of where

the quadratic coefficient changes sign, provided the leading

wave amplitude is large enough. Here we did two runs

with initial solitary wave amplitudes of 23 m and 41 m. The

solitary wave transformation for the first run is shown in

Fig. 15. Coefficients of the evKdV equation (5) along cross-section 2.

Fig. 16. Due to the increase of the cubic nonlinear coefficient

the initial solitary wave becomes narrower and a trailing

tail emerges, developing oscillations after x = 600 km. This

process occurs without a significant change in the leading

wave amplitude because the modification factor increases

slowly. At the location x = 700 km a “sech”-like solitary

wave has appeared. Then, at the location x = 730 km the

quadratic nonlinear coefficient changes sign, but the leading

wave amplitude is then not large enough for transformation

into a “sech”-like solitary wave of negative polarity, but

with a positive quadratic coefficient. Instead, the wave

disintegrates and at the location x = 760 km, we see the

formation of secondary solitary waves of opposite polarity.

The space-time contour plot of this run is shown in Fig. 17.

The second run has an initial amplitude of 41 m. The

solitary wave transformation is shown in Fig. 18. Again a

“sech”-like solitary wave forms by the location x = 500 km,

and its amplitude grows to 60 m. At the location x = 600 m

a second solitary waves begins to form, and due to the

increase of the linear modification factor Q, the amplitude

of leading wave decreases to about 45 m. Then as the

quadratic nonlinear coefficient tends to zero, the cubic

nonlinear coefficient grows rapidly, and the leading solitary

wave begin to destruct around the location x = 700 km,

until at the location x = 720 km there is a strong indication

that an internal breather has formed in association with an
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Fig. 16. Transformation of an internal solitary wave along cross-section 2, initial amplitude 23 m.

Fig. 17. Transformation of an internal solitary wave along cross-

section 2, initial amplitude 23 m.

oscillatory trailing wave train. The division of the initial

solitary wave into two is clearly shown in the space-time

contour plots in Fig. 19, from the location x = 400 km

to the location x = 650 km, with breather formation after

x = 700 km.

5 Discussion

As we have mentioned in the Introduction, the vKdV

equation (3) and its extension to allow for cubic nonlinearity,

the evKdV equation (6) have been widely used to model

the propagation of large amplitude internal solitary waves

in coastal seas. In this review article we have presented

a brief outline of the derivation of these models by an

asymptotic expansion from the full Euler equations. Then

we have described how an examination of the slowly-

varying solitary wave solutions lead to the concept that

the critical point where the coefficient of the quadratic,

or of he cubic, nonlinear term is zero defines a location

of special interest where a solitary wave may undergo a

dramatic transformation, often involving a polarity change
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Fig. 18. Transformation of an internal solitary wave along cross-section 2, initial amplitude 41 m.

Fig. 19. Contour plot in the space-time domain of an internal

solitary wave transformation along cross-section 2, initial amplitude

41 m.

and a disintegration into a wave train. We have illustrated

this in detail for two contrasting cross-sections of the coastal

shelf of the South China Sea. Each cross-section is based on

the GDEM database of sea stratification, and the bathymetry

database GEBCO. The first cross-section is taken across the

shelf where the ASIAEX 2001 experiment took place, and

we have simulated the transformation of an internal solitary

wave generated in the Luzon Strait, propagating across the

cross deep part of the sea to the opposite shelf, where a

change in its polarity takes place, The second cross-section

is taken across a region where the cubic nonlinear coefficient

is positive everywhere. In this case an initial solitary

wave of moderate amplitude transforms into two solitary

waves. Th first wave is a ”sech”-like solitary wave, and

the two waves interact near the location where the quadratic

nonlinear coefficient changes sign, with transformation into

a breather This demonstrates the possibility of internal

breather generation from an initial solitary wave in a realistic

ocean situation. It is the the second example of such a

transformation, the first being a simulation for the North

West Australian Shelf, see Grimshaw et al. (2007).
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There are several important issues relating to internal

solitary waves, which we have not considered here, notably

stability, transverse structure, the effect of the background

earth rotation and the effect of friction. An extension of the

evKdV model (6) which takes into account of the last three

factors could be
{

At +cAx−
cQx

Q
A+µAAx+µ1A

2Ax+δAxxx +ν|A|A
}

x

+
c

2

(

Ayy −
f 2

c2
A

)

= 0. (46)

The transverse term Ayy is just that which converts the KdV

equation into its well-known two-dimensional extension,

the KP equation, while the rotation term contains the

Coriolis parameter f and was originally introduced by

Ostrovsky (1978) and later by Grimshaw (1985) with the

transverse term added as well. It is known that the effect

of background rotation is to cause a solitary wave to decay

through the radiation of inertia-gravity waves, see the review

by Helfrich and Melville (2006) and the recent studies by

Grimshaw and Helfrich (2008) and Sánchez-Garrido and

Vlasenko (2009). In practice, the time-scale for this decay

is one or two inertial periods. In (46) we have chosen Chezy

friction, as this is the one most commonly used, although

other forms of friction such as boundary-layer friction or

Burgers-type friction have been proposed. The friction

coefficient is given by

Iν= ρ0CD(c−u0)
2 |φz|3 , at z= −h, (47)

where CD is the usual drag coefficient, while the modal

functions and the integral I are defined by (10, 11, 15).

Clearly friction will cause the solitary wave to decay, but

as oceanic internal solitary waves are observed to be long-

lived, this decay is evidently quite slow. There have been

several recent observational studies of the decay of shoaling

internal solitary waves from which we infer that the time

scale is around an inertial period, and the decay process

itself is complicated by the generation of localized shear

instability, see for instance Moum et al. (2007) and Shroyer et

al. (2010). We also note the interesting theoretical prediction

by Grimshaw et al. (2003) that a decaying solitary wave

with the parameter B <−1 (which requires that δµ1 > 0)

may transform into a breather. Finally, we comment that

although solitary waves are stable in the framework of the

KdV or eKdV equations, in practice they can be unstable

due to localized shear instability. This is a high-wavenumber

phenomenon, which is not captured in the present long-

wave asymptotic models. There have been several laboratory

studies of shear instabiity of internal solitary waves, see

Fructus et al. (2009) for a recent study, and several analogous

ocean observations, see Moum et al. (2003, 2007).
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