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Abstract

Statistics of ‘natural images’ provides useful priors for

solving under-constrained problems in Computer Vision.

Such statistics is usually obtained from large collections

of natural images. We claim that the substantial internal

data redundancy within a single natural image (e.g., recur-

rence of small image patches), gives rise to powerful inter-

nal statistics, obtained directly from the image itself. While

internal patch recurrence has been used in various applica-

tions, we provide a parametric quantification of this prop-

erty. We show that the likelihood of an image patch to recur

at another image location can be expressed parametricly as

a function of the spatial distance from the patch, and its gra-

dient content. This “internal parametric prior” is used to

improve existing algorithms that rely on patch recurrence.

Moreover, we show that internal image-specific statistics is

often more powerful than general external statistics, giving

rise to more powerful image-specific priors. In particular:

(i) Patches tend to recur much more frequently (densely) in-

side the same image, than in any random external collection

of natural images. (ii) To find an equally good external rep-

resentative patch for all the patches of an image, requires an

external database of hundreds of natural images. (iii) In-

ternal statistics often has stronger predictive power than ex-

ternal statistics, indicating that it may potentially give rise

to more powerful image-specific priors.

1. Introduction

Visual reconstruction problems (e.g., denoising, inpaint-

ing, super-resolution, etc.), are often under-constrained and

ill-possed, thus rely on having good image priors. Such pri-

ors range from naive and simple “smoothness” priors, to

more sophisticated statistical priors learned from large col-

lections of natural images. To date, natural image statis-

tics are mostly based on models extensively trained on wide

external databases of ‘natural images’. For example, para-

metric models (e.g., [16, 13, 15]) impose parametric dis-

tribution on natural image responses to local filters. The

filters and other parameters of these models are learned us-

ing a large database of natural image examples. Although

the space of all natural images is sparse [11], trying to cap-

ture its wide variety of features with only few parameters

is impossible. As a result the learned models reduce to the

lowest common denominator of all natural images.

We claim that the substantial internal data redundancy

(e.g., recurrence of small 5× 5 image patches) gives rise to

powerful internal statistics, learned directly from the image

itself. Internal patch recurrence has been used in various ap-

plications, e.g. texture synthesis [6], denoising [4, 7], super-

resolution [10, 9]. However, the full extent and behavior of

these internal patch recurrences and their power relative to

external statistics, have never been studied or quantified.

In this paper we parametricly quantify the degree of re-

currence of small image patches. We empirically show that

the patch density decays rapidly as the spatial distance from

the patch location grows, and as its gradient content in-

creases. We further demonstrate that incorporating such

parametric knowledge into existing algorithms (e.g., the

Non-Local Means denoising [4]) provides improved results.

Besides the obvious advantages of internal statistics in

terms of low memory and computation demands, we show

that the internal image-specific statistics is often more pow-

erful than general external image statistics - an observation

not necessarily intuitive. Given a patch extracted from an

image, it will almost surely recur again in the same image.

However, it may not appear in another image. In fact, we

show that in order to find equally good external represen-

tatives for all image patches of a single image, an external

database of hundreds of images is required (which may be

computationally infeasible to search). Moreover, patches

extracted from a natural image, tend to recur much more

frequently (densely) inside the same image, than in any ran-

dom collection of natural images. We further demonstrate

that these observations are particularly true for very detailed

patches (of high gradient content), which usually contain

the most important image details. In addition, we show that

the predictive power of internal image-specific statistics is

often stronger than that of the general external statistics.

Finally, we observe that the patch recurrences within a

single image are characterized by a long-tailed distribution.

Therefore, compact representations of patches (such as K-

SVD [1], Epitome [10] etc.) cannot capture well the full

richness of single-image statistics.

The rest of the paper is organized as follows. Sec. 2

presents the quantification of internal patch recurrences.

Sec. 3 demonstrates how these quantifications can be incor-

porated into existing algorithms to obtain improved results.

Sec. 4 compares the descriptive and predictive properties of

the internal vs. external statistics. Sec. 5 discusses the limi-

tations of sparse representation of patches.

2. Quantifying Internal Statistics

Fig. 1.a (courtesy of [9]) schematically illustrates the

notion of “patch recurrence” within a single natural image

(similar patches are marked by same colors). For illustra-
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(a) Patch Recurrence (Courtesy of [9]) (b) Patch Density (c) NN (dist , |grad |) (d) NN (n, |grad |)

Figure 1. Internal Statistics of a Single Natural Image. (a) Small image patches tend to recur within the source image, and across

its coarser scales; (b)-(c) The empirical Density(dist , |grad |) of patches and the number of “similar” patches, NN (dist , |grad |), as

a function of the mean gradient magnitude |grad | in the patch, and the spatial distance dist from the patch location (Red signifies high

values, Blue signifies low values); (d) The logNN (n, |grad |) shown for various image scales (n = 0, .., 6).

tion purpose, the patches were chosen large and on clearly

repetitive structures. However, when much smaller (5 × 5)

image patches are used, such patch repetitions occur abun-

dantly within and across image scales, even when we do not

visually perceive any obvious repetitive structure in the im-

age. Glasner et al. [9] empirically showed that most of the

patches in a natural image have many similar patches at the

same image scale, and at coarser images scales. In this sec-

tion we provide a formal parametric quantification of the

degree of internal recurrence of small 5× 5 patches.

Most of the patches in a natural image are rather smooth,

and only a small percent contain important image details

(edges, corners, etc.) These differences are expressed in

different spatial gradient magnitudes in patches. We ob-

serve that smooth patches recur much more frequently in

the image than detailed patches. We further observe that an

image patch is much more likely to recur near itself than far

away. Therefore, our experiments (and plotted graphs) are

expressed in terms of the “mean gradient magnitude” |grad |
of a patch, and the “spatial distance” dist to the patch.

Our experiments were conducted on the 300 images

of the Berkeley Segmentation Database1 (BSD). For

each image patch p, we estimated its empirical density

within an image neighborhood Ndist of radius “dist”

around the patch, using Parzen window estimation [12]:

density(p; dist) =
∑

pi∈Ndist
Kh(‖p− pi‖22)/area(Ndist),

where pi are all the image patches within a spatial neigh-

borhood Ndist , and Kh(·) is a Gaussian kernel2. Averaging

these individually-computed patch densities over the set of

all patches with the same gradient magnitude |grad |, we

obtain the following average density:

Density(dist , |grad |) = Meanpjof |grad|density(pj , dist).

The average number of “good Nearest Neighbors” NN

within a distance dist from the patch, is defined as:

NN (dist , |grad |) = Density(dist , |grad |) · area(Ndist)
(1)

Note that the Parzen estimation does not distinguish be-

1www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench
2Although L2-norm may not be an optimal measure for patch similar-

ity, it is often used in existing patch-based applications. Since we want to

show how quantifying internal patch statistics improves such applications,

we follow the L2 convention.

tween 10 perfectly similar patches, and 100 partially similar

patches. We loosely refer to these as 10 good NNs. Fig. 1.b

displays the empirical density Density(dist , |grad |) and

the number of “similar” patches NN (dist , |grad |), both as

a function of the mean gradient magnitude |grad | of the

patch, and the spatial distance dist from the patch location.

(In both maps, red signifies high values, blue signifies low

values.) Observing these maps, we note that:

(i) Smooth patches recur very frequently, whereas highly

structured patches recur much less frequently.

(ii) A patch tends to recur densely in its closest vicinity

(small dist), and its frequency of recurrence decays rapidly

as the distance from the patch increases (see the zoomed-

in part in Fig.1.b). Namely, patches in a natural image are

likely to reside in clusters of similar patches. This explains

why denoising algorithms, such as Non-Local Means [4]

and BM3D [5] work well, despite the fact their patch search

is restricted to small neighborhoods around each patch.

(iii) Various patch-based applications require obtaining

enough similar patches for every image patch (e.g., Super-

Resolution [9], denoising [4], etc.) From Fig. 1.c we note

that for a fixed number of similar patches (NN = const),

patches of different gradient content need to search for near-

est neighbors at different distances. For smooth patches, it

suffices to search locally, whereas the higher the gradient

magnitude, the larger the search region becomes. In fact,

one can observe that the level-sets in Fig. 1.c (which corre-

spond to a fixed number of Nearest Neighbors), have expo-

nential shapes (e.g., see the white and black curves, which

corresponds to a level-sets of NN = 9 and NN = 64). In

other words, the distance dist in which the nearest neighbor

search should be performed grows exponentially with the

gradient content of the patch |grad |.
By empirically fitting an exponential function to the

level-set curves (for many fixed NNs), we obtained the fol-

lowing exponential relation between dist and |grad |:
dist(|grad |) = β1 + β2 · exp(|grad |/10) ,

where β1 and β2 depend on the fixed NN (are second order

polynomials of
√
NN ):

β1(NN ) = 5 · 10−3NN + 0.09
√
NN − 0.044

β2(NN ) = 7.3 · 10−4NN + 0.3235
√
NN − 0.35.
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Search Regions:

21× 21

200× 200

Entire Image

(a) Noisy Image (b) Preferred Search Regions

Figure 2. Preferred Search Regions per patch in NLM: Smooth

patches obtain better denoising results in local search regions; de-

tailed patches benefit from large search regions - See text.

This can be rewritten as:

dist(NN , |grad |) = β1(NN ) + β2(NN ) · e|grad|/10 . (2)

Eq. 2 gives an explicit parametric expression to determine

the search region needed in order to find a desired number

of good nearest neighbors NN s for a patch. In Sec. 3 we

show that this parametric expression can serve as a better

prior in the Non-Local Means denoising algorithm of [4].

We further note that Eq. 2 is quadratic in
√
NN , of the form:

a ·
√
NN

2

+ b ·
√
NN + c = 0,

where : a = 0.001 · (5 + 0.73 · exp(|grad |/10))
b = 0.1 · (0.9 + 3.24 · exp(|grad |/10))
c = −0.1 · (0.44+ 3.5 · exp(|grad |/10)+ dist).

Solving for its single valid root yields a closed-form expres-

sion of NN as a function of dist and |grad |:

NN (dist , |grad |) = (
−b+

√
b2 − 4ac

2a
)2. (3)

Eq. 3 provides an estimate for the expected number of

good neighbors a patch has within a predetermined re-

gion. This parametric expression provides a good ap-

proximation (up to a mean error of 4%) to the empiri-

cal function NN computed using Eq. 1 and visually de-

picted in Fig. 1.c. An equivalent expression can be derived

for Density(dist , |grad |) of Fig. 1.b using Eq. 1. A vi-

sual comparison of the empirical functions in Figs. 1.b,c

and their parametric approximations can be found in

www.wisdom.weizmann.ac.il/~vision/SingleImageStatsitics.html

Finally, we explore the statistics of patch recurrence

across coarser scales of a natural image. We say that an

image patch recurs in another scale, if it appears “as is”

(without down-scaling the patch) in a scaled-down version

of the image. For each image I we generated a pyramid of

images of decreasing resolutions {In}, scaled down by fac-

tors of s= 0.8n, n= 0, .., 6, with I0 = I . For each patch in

I we measured its recurrence density in I0, .., I6 (in the en-

tire image). Surprisingly, the patch recurrence density in I
and in its coarser pyramid levels is approximately the same.

The number of Nearest Neighbors decreases in coarser lev-

els, with the decrease in image area: NN (In, |grad |) ≈

s2NN (I, |grad |) = 0.82nNN (I, |grad |). This entails that:

logNN (In, |grad |) = −0.223n · logNN (I, |grad |). In-

deed, Fig. 1.d displays this linear relation between the log

number of Nearest Neighbors and the scale level n.

3. Using Internal Statistics to Improve Priors

We show that the quantifications presented in Eq. 2 can

be incorporated into existing algorithms that exploit inter-

nal patch redundancy, to improve their results. One such

example is the Non-Local Means (NLM) denoising algo-

rithm [4]. In that algorithm, the central pixel in each patch

is replaced by the mean value obtained from other image

patches, weighted by their degree of similarity to the source

patch. For computational reasons, the authors restrict the al-

gorithm to a local 21× 21 search region around each pixel.

Based on our observations in Sec. 2, that a patch den-

sity is high within its closest vicinity, it is not surprising

that NLM works well, despite its relatively local search.

However, what is surprising, is that the local search is of-

ten preferable over a ‘global’ search in the entire image. A

similar observation was also made by [2]. Fig. 2 visual-

izes these surprising findings. We ran the NLM algorithm

on the noisy image of Fig. 2.a, with 3 different search re-

gions: (i) 21× 21, (ii) 200× 200, (iii) the entire image. For

each pixel in the image, we marked which of the 3 search

regions gave it the smallest error relative to the ground-

truth clean image (Fig. 2.b). Note that smooth patches ben-

efit more from constrained local search, whereas textured

patches with high gradients benefit from global search. We

will later show that incorporating Eq. 2 into NLM can be

used for estimating an ‘optimal’ search region per patch.

Our interpretation of this surprising phenomenon is the

following: Let pn = p + n be a noisy version of an image

patch p. When p is a smooth patch, the noise n dominates

pn, inducing new “patterns”. Moreover, although the global

mean of the noise is 0, its local mean within small 5 × 5
patches is often non-zero, inducing a change in the patch

mean. Extending the search region to the entire image in-

creases the chance of over-fitting the noise, thus preserving

effects of the noise n. In contrast, there is very little chance

of finding a good match to the noise pattern in a small neigh-

borhood. Moreover, the local vicinity of a smooth patch is

sufficient for finding many ‘correct’ nearest neighbors to the

signal p (Sec. 2). Local search thus increases the chance of

fitting the ‘signal’ p and not the ‘noise’ n for such patches.

Unlike smooth patches, high-gradient patches will ben-

efit from a large search region. In such patches, the noisy

patch pn is dominated by the signal p. Therefore, a global

search in the entire image is not risky. Moreover, the search

region must be large in order to find enough nearest neigh-

bors for high-gradient patches (as observed in Sec. 2).

We empirically show that this phenomenon holds for nat-

ural images in general. Our experimental setting was the

following: We applied the NLM algorithm (using the code

of Morel www.mi.parisdescartes.fr/~buades/recerca.html
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Figure 3. Non-Local Means applied to different search region:

Locally, Globally and Adaptively (see text for details).

to many natural images with added Gaussian noise of std

σ = 15. We applied the algorithm once locally to a 21× 21
search region (‘local’ NLM – the default setting of the

code), and once using the entire image as a search region

(‘global’ NLM). Fig. 3 shows the resulting errors relative to

the ground truth clean image (averaged over 100 images).

We next show that incorporating Eq. 2 into NLM can be

used for estimating an ‘optimal’ search region per patch,

yielding improved denoising results. Suppose we want at

least k good representatives per patch (to be averaged to

recover the clean patch p). Eq. 2 provides an explicit ex-

pression for the radius of the search region needed to obtain

k ‘nearest neighbors’ per patch. The exponential white and

black curves in Fig. 1.c show two such examples, for k = 9
and 64. In our experiment we used k = 64. (Note: for

|grad | > 40, the search region is already the entire image.)

Dealing with noisy patches, we approximate their

“clean” gradient content by: |grad |2p = |grad |2pn
− σnoise2 .

This follows from the fact that n (the noise in the patch) and

p (the clean patch) are independent, therefore the variance

of the noisy patch, pn, is the sum of their variances. We ex-

perimentally found that for patches with |grad | < 50 , their

gradient content linearly relates to their variances.

Fig. 3 shows the resulting NLM after incorporating the

adaptive search region based on Eq. 2. As can be seen, it

provides improved results with respect to both ‘local’ and

‘global’ NLM. The purpose of this is not to claim a state-of-

the-art denoising algorithm, but rather to show that incorpo-

rating quantitative knowledge about internal image statistics

can improve existing algorithms that rely on such statistics.

4. Internal vs. External Statistics

Besides the obvious advantages of internal statistics in

terms of lower memory and computation demands, the in-

ternal image-specific statistics is often more powerful than

general external image statistics. We compare these two

types of statistics according to their degree of “expressive-

ness” and “predictive power” (both to be defined shortly).

The internal statistics of an image is based on the collection

of all the patches extracted from the image and its multi-

scale versions (as explained in Sec. 2). The external statis-

tics is based on all the patches extracted from a database of

different natural images (taken from the BSD Train-Set).

The size of the external database ranges from 5 images

(small database) to 200 images (large database)3. Please

note that our analysis does not hold for class-specific ex-

ternal database (which are extremely useful, even if small).

The applicability of such dedicated databases is limited to

handling only images from the same specific class. Our

analysis assumes general natural images.

4.1. Expressiveness

“Expressiveness” measures the degree of similarity of a

5 × 5 patch to its most similar patches found internally vs.

externally. Internally, the patch itself and its immediate lo-

cal vicinity are excluded from a search. We calculate the L2

distance between two patches (after removing their DC4).

Fig. 4 displays the error induced by replacing each patch in

the input image (Fig. 4.a) with its most similar patch, either

from an external database of images (Fig. 4.b-d), or from

the image itself and its multi-scale versions (Fig. 4.e). We

observe that smooth patches can be found quite easily in an

external database, as well as in the image itself. However,

this is not true for detailed patches (edges, corners etc.),

which require as many as 200 images to find equally good

external representatives to those found internally.

Fig. 5 shows the same analysis as in Fig. 4, empirically

conducted over hundreds of images (more than 15 million

5 × 5 patches). The errors were computed separately for

each gradient magnitude (using RMSE, averaged over all

patches with the same gradient magnitude). It can be ob-

served that for small external databases (up to 40 images),

only relatively smooth patches (|grad| < 20) are similarly

represented internally and externally. However, patches

with higher gradient content require external databases of

hundreds of images in order to obtain an external patch of

similar quality to the one found internally.

Note, that we would fail to see the observation of Figs. 4

and 5, if we were to compute the mean error averaged over

the entire image (which is a widely used measure for evalu-

ating algorithms). More than 80% of the patches in natural

images tend to have low mean gradient magnitude (≤ 20).

Therefore, any averaging process that does not take into

account the uneven distribution of gradient magnitudes, is

governed by the errors in the smooth/undetailed regions of

the image. Thus, damages in the most important fine details

of the image are not reflected in a global RMSE measure.

We further compared the density of patch recurrence, ex-

ternally vs. internally. Fig. 6 shows that image patches tend

3One could potentially add multi-scale versions of the external images

to the external database, but this would come at the expense of the variety

of different images (assuming the same number of patches in the external

database is maintained). The external databases benefits more from having

a larger variety of images than multiple scaled versions of the same images.
4When the DC is not removed, the advantage of the internal statistics

over the external one is even more pronounced.
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(a) Input Image (b) Ext. DB - 5 imgs. (c) Ext. DB - 40 imgs. (d) Ext. DB - 200 imgs. (e) Internally (Error values)

Figure 4. External vs. Internal “Expressiveness”. Errors induced by replacing each patch from the input image with its most similar

patch found in: (b)-(d) an external database of 5, 40, 200 images, vs. (e) internally, within the input image (excluding the patch itself and

its immediate local vicinity). Red signifies high errors, blue signifies low errors. Patches obtain lower error internally than externally.

Figure 5. External vs. Internal “Expressiveness” (Statistics on

100 images). Only relatively smooth patches (|grad| < 20) are

well represented using small external databases (up to 40 im-

ages). Other patches, with higher gradient content, require exter-

nal databases of hundreds of images in order to obtain external

representation of similar quality to the internal representation.

to recur much more frequently inside their own image than

in any random collection of natural images, regardless of

its size (Note that the patch density is displayed in log scale

values). This phenomenon is particularly true for highly de-

tailed patches, which are often the most important ones.

4.2. Predictive Power

Statistical priors are often used to constrain ill-posed

problems in Computer Vision. The quality of a prior is

determined by how well it predicts the ‘correct’ solution

among the infinitely many possible solutions of the under-

determined problem. In this section we compare the “pre-

dictive power” of the internal statistics vs. external statis-

tics, when the same prediction method is applied to both of

them. As an example test case, we chose the ill-posed prob-

lem of Super-Resolution (image upsampling), and the pre-

diction method of “Example-based Super-Resolution” [8].

In Example-Based SR, a Database of ‘examples’ of high-

Figure 6. Density of Patch Recurrence: Patches recur more fre-

quently inside the same image than in a random external collec-

tion of natural images (regardless of its size). Note that the patch

density is displayed in log scale values.

res/low-res pairs of image patches {(hi, li)}ni=1
is provided

(usually with a relative scale factor of 2). Given an input im-

age L, its high-resolution (upsampled) version H is gener-

ated (“hallucinated”), by using the example pairs as ‘predic-

tors’ (priors) on how to upsample the low-resolution patches

of L. This yields the most likely high-resolution image H
of L, given the database of examples (predictors).

In order to compare the predictive power of internal vs.

external statistics in the above setting, we performed the

following experiment (repeated for all 100 images of the

BSD Test-set): Given a natural image I (the “ground truth”

high-res image denoted also as HGT ), we downscale I to

half its original resolution, to generate the low-res input L.

We generate an external database of high-res/low-res ex-

amples (from the 200 images in the BSD Train-set), and

an internal database of high-res/low-res examples (from L
and its down-scaled versions). The high-res/low-res pairs

were generated both internally and externally by downscal-

ing the available images by a factor of 2:1, and extracting

all the corresponding pairs of patches from the two scales.

Note that unlike previous experiments, here we are at an

immediate disadvantage, due to the fact that the ‘internal

image’ L is 1/4 of the size (area) of any individual external
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(a) Prediction Error (b) Prediction Uncertainty

Figure 7. External vs. Internal “Predictive Power”, evaluated for “Example-Based Super-Resolution” – See text.

image. A ratio of 1:200 between the internal/external num-

ber of images now translates to a ratio of 1:800 in the num-

ber of examples to learn from (the high-res/low-res pairs of

patches). We therefore add to the internal database rotated

versions of L (at ±45◦), increasing the space of internal

pairs of patches back to its original internal/ external ratio.

Now, for every 5×5 patch, l ∈ L, we search for its k = 9
low-res Nearest-Neighbors {li}ki=1

in the internal/external

databases. Their corresponding high-res patches, {hi}ki=1
,

which serve as individual predictors, are averaged to re-

cover the overall high-res estimate ĥ of l:

ĥ =

∑
i wi · hi∑

i wi
, where wi = exp−

‖l − li‖22
2σ2

. (4)

For each high-res ground truth patch, hGT , we measure:

(i) The Prediction Error: ‖hGT − ĥ‖2
2
.

(ii) The Prediction Uncertainty: The weighted vari-

ance of the predictors {hi}ki=1
is approximated using

trace (CovW (hi, hj)) (with the same weights as above).

The second measure serves as a reliability measure of

the prediction. The high-res predictors, {hi}ki=1
, should

not only be individually close to the true hGT (low predic-

tion error), but should also be mutually consistent with each

other (low uncertainty). High uncertainty (entropy) among

all the high-res candidates {hi}ki=1
of a given low-res patch

l, indicates high ambiguity in the predicted high-res patch.

This results in visual artifacts, like ‘hallucinations’ and blur-

ring (due to multiple inconsistent high-res interpretations).

Fig. 7 displays the statistics of these two measures, aver-

aged over all the patches from 100 natural images. Note that

it requires hundreds of images to achieve external predic-

tion error similar to the internal one. Moreover, in the high

gradient patches, the internal prediction error is still lower

than the external error, even for large external databases.

Although these patches are relatively sparse in the image,

these are the most critical patches in Super-Resolution (the

edges, corners, and high-detailed image parts). This is

where the increase in resolution is observed.

External SR

Internal SR

External SR Internal SR

Figure 8. Super Resolution using External vs. Internal

examples. External super-resolution exhibits more halluci-

nations and blur artifacts. More results can be found in

www.wisdom.weizmann.ac.il/~vision/SingleImageStatsitics.html

Moreover, the prediction uncertainty is much higher ex-

ternally than internally (for any database size), alluding to

the fact that general external statistics is more prone to ‘hal-

lucinations’ than internal image-specific statistics. Fig. 8 il-

lustrates this, showing visual examples of internal vs. exter-

nal example-based prediction. The external database of 200

general images produces inferior results, displaying hallu-

cination of details and more blurriness.
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Internal Denoising

(e) PSNR: 33.3 dB
Runtime: 0.5 min (f)

Figure 9. External vs. Internal Denoising – See text.

Exploiting Huge Databases: What happens if we push the

envelop to huge external databases, e.g., all the images on

the Internet? Patches will undoubtedly find better matches!

But there are two major problems with huge databases:

(i) Predictive power: Our purpose is not only to find similar

patches, but to use them as predicting priors in ill-posed

problems. Fig. 7.b shows that larger external databases

exhibit lower predictive power (higher uncertainty). Huge

databases are likely to exhibit very low predictive power.

(ii) Computation: High gradient patches (which are the

most informative ones) are rare and have very low density

in an external database, regardless of its size (see Fig. 6).

As such, these patches cannot be captured well by any

compact quantized representation (K-SVD, PCA, etc. –

see Sec. 5). Thus, finding such patches in huge external

databases requires an extensive search. This is computa-

tionally infeasible for any practical application. In contrast,

internally these patches have sufficiently good Nearest-

Neighbors (comparable to hundreds of external images -

Figs. 4,5), and their search space is limited to a single image

(and even better, to the patch local vicinity - Fig. 1.b,c).

The problem of huge databases is further exemplified in

Fig. 9, this time in the context of image denoising. Denois-

ing is performed in the NLM [4] manner, once using in-

ternal (noisy) patches, and once using an external database

of clean images (averaging over similar external patches).

In principal, increasing the number of clean patches in the

database should improve the denoising results, as observed

in Fig. 9.a,c (denoising using 300 external images yields

cleaner results than denoising using 3 external images). Yet,

with 300 images, the external denoising is still inferior to

internal denoising (Fig. 9.e). Moreover, it comes with an

enormous run-time of 4 days (on a Linux 2668 MHz ma-

chine), vs. 0.5 minute run-time for internal denoising.

To reduce the external run time, for each patch in the

noisy image we limit its external averaging to only 1000

external Nearest Neighbors (using KD-tree). While the re-

duced run-times are still high, the limited NN-search in-

duces a new problem: Enlarging the external database (e.g.,

from 3 to 300 – Fig. 9.b,d) now yields worse (noisier)

results! This surprising artifact is due to over-fitting the

noise in smooth image patches (as also occurs in global-

NLM – see Sec. 3). While denoising of the detailed (infre-

quent) patches improves as the database grows, denoising of

smooth patches (the majority) becomes worse. The graph in

Fig. 9f shows that this observation holds in general for noisy

natural images. Note that unlike super-resolution, in image-

denoising the smooth patches are the most important ones

(this is where the noise is most visible). Global PSNR is

thus an adequate measure in denoising (larger dB is better).

5. Limitations of Compact Representation

Compact representations were proposed to take advan-

tage of the redundency of patches within an image (e.g., [7,

10]). While these are very useful for many applications,

they cannot capture well the full richness of single-image

statistics. In fact, as we will see, they harm the most infor-

mative (detailed) patches in the image.

As noted in [14, 3], when image descriptors (e.g, SIFT)

are divided into fine bins, the bin-density follows a power-

law (also known as ‘long-tail’ or ‘heavy-tail’ distributions).

The long-tail behavior holds also for image patches. This

results from the fact that many different high-gradient im-

age patches have very low density (i.e., each of them recurs

rarely in the image). Such patches are found in low-density

regions in the ‘space of all image patches’, rather isolated.

Namely, there are almost no clusters around these patches.

Any quantization/clustering process applied to obtain a

compact representation, will represent well the most fre-

quent clusterable elements (smoother patches), whereas the

infrequent/unclusterable elements (high-gradient patches)

will suffer from high quantization errors. This property is

inherent to long-tailed distributions, independently of the

clustering/quantization method.

To illustrate this we conduct the following experiment.

Each image patch is represented in two ways: (i) Using

K-SVD: Every patch is represented as a linear combina-

tion of 3 elements from a 256-element K-SVD dictionary
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(a) Input Image (b) K-SVD (c) Raw Patches Error Vals. (d) Statistics over 300 natural images

Figure 10. Compact Representation vs. Raw Image Information. K-SVD introduces high errors in the most informative detailed image

patches. In (b) and (c) red corresponds to high errors, blue correspond to low errors; (d) Graph showing mean error and standard deviation

of the errors computed on 300 images.

built from 5 × 5 patches of the image, plus the mean in-

tensity value (DC) of the patch (using the K-SVD code of

www.cs.technion.ac.il/~ronrubin/software.html) (ii) Using

raw image patches: A linear combination of 3 other patches

in the same image (no multi-scale), plus the patch DC.

Fig. 10.a-c shows a visual result on one image. The

‘quantization’ error induced by K-SVD dominates in the

detailed parts of the image, and is significantly higher than

when using raw image patches. Fig. 10.d further shows that

this observation holds in general for natural images (statis-

tics accumulated over the 300 images of the BSD).

Finally, we should note that adding those badly repre-

sented patches to the compact representation will elimi-

nate its compactness. For example (doing a “back-of-the-

envelope” calculations), given a 256 × 256 image (65536

bytes) and a K-SVD dictionary of 256 elements of 5 × 5
(6400 bytes), the initial saving in storage space is 1/10.

Let’s say we add the 3% most isolated image patches (that

are poorly represented by K-SVD). This adds 3% · 2562 · 52
= 49152 bytes (almost the original image size!) In other

words, patches are already represented quite compactly in

the image itself (due to their built-in overlaps with each

other), providing the full richness of all image patches.

Moreover, the raw image preserves geometric information

of where to look for similar patches (Sec. 2), while this in-

formation is lost in compact representations.

6. Conclusions

We show that internal patch redundancy within a single
natural image rapidly decays with the growth of the spatial
distance from the patch, and its gradient content. This
yields a new “internal parametric prior”, which can be used
to improve performance of existing algorithms (e.g., NLM).
We further show that besides the obvious advantages of
internal image statistics (low memory and low computation
costs), it also tends to be more powerful than general
external statistics (e.g., has better predictive power) – an
observation not necessarily intuitive. Finally, we observe
that compact representations of patches (e.g., K-SVD)
cannot capture well the full richness of single-image
statistics; yet, a single raw image is compact enough on

its own, rich enough, and preserves geometric information
of where to look for patches. These observations open the
door to new more powerful image-specific priors.
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